Skip to main content

Induction of Oxidative Stress by Hyperthermia and Enhancement of Hyperthermia-Induced Apoptosis by Oxidative Stress Modification

  • Chapter
  • First Online:
Hyperthermic Oncology from Bench to Bedside

Abstract

Hyperthermia (HT) is considered to be a possible treatment modality for various cancers, and its pleiotropic effects support its combined use with radiotherapy and/or chemotherapy. However, clinical results by HT alone have not always been satisfactory. In mammalian cells, HT elicits a wide spectrum of alterations in cellular morphology, biochemistry and function. One of these HT-induced alterations, oxidative stress, has been attributed to the increased production of reactive oxygen spaces (ROS), and is known to play an important role as an intracellular mediator of HT-induced cell death, including apoptosis. Indeed, it has been well established that increases in intracellular oxidative stress significantly enhance HT-induced apoptosis. Attention has therefore been focused on the development of heat sensitizers to modulate the intracellular ROS. Interestingly, the modification of oxidative stress via addition of ROS-generating compounds significantly enhanced the apoptosis elicited by HT. In this chapter, we describe the induction of oxidative stress by HT and enhancement of HT-induced apoptosis by oxidative stress modification, and we discuss the possible mechanisms underlying this enhancement.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Richter K, Haslbeck M, Buchner J. The heat shock response: life on the verge of death. Mol Cell. 2010;40:253–66. doi:10.1016/j.molcel.2010.10.006.

    Article  CAS  PubMed  Google Scholar 

  2. Westra A, Dewey WC. Variation in sensitivity to heat shock during the cell-cycle of Chinese hamster cells in vitro. Int J Radiat Biol Relat Stud Phys Chem Med. 1971;19:467–77.

    Article  CAS  PubMed  Google Scholar 

  3. Velichko AK, Petrova NV, Kantidze OL, Razin SV. Dual effect of heat shock on DNA replication and genome integrity. Mol Biol Cell. 2012;23:3450–60. doi:10.1091/mbc.E11-12-1009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Mariner PD, Walters RD, Espinoza CA, Drullinger LF, Wagner SD, Kugel JF, et al. Human Alu RNA is a modular transacting repressor of mRNA transcription during heat shock. Mol Cell. 2008;29:499–509. doi:10.1016/j.molcel.2007.12.013.

    Article  CAS  PubMed  Google Scholar 

  5. Finkel T, Holbrook NJ. Oxidants, oxidative stress and the biology of ageing. Nature. 2000;408:239–47.

    Article  CAS  PubMed  Google Scholar 

  6. Slimen IB, Najar T, Ghram A, Dabbebi H, Ben Mrad M, Abdrabbah M. Reactive oxygen species, heat stress and oxidative-induced mitochondrial damage. A review. Int J Hyperthermia. 2014;30:513–23. doi:10.3109/02656736.2014.971446.

    Article  PubMed  Google Scholar 

  7. Skibba JL, Quebbeman EJ, Kalbfleisch JH. Nitrogen metabolism and lipid peroxidation during hyperthermic perfusion of human livers with cancer. Cancer Res. 1986;46:6000–3.

    CAS  PubMed  Google Scholar 

  8. Katschinski DM, Boos K, Schindler SG, Fandrey J. Pivotal role of reactive oxygen species as intracellular mediators of hyperthermia-induced apoptosis. J Biol Chem. 2000;275:21094–8.

    Article  CAS  PubMed  Google Scholar 

  9. El-Orabi NF, Rogers C, Edwards HG, Schwartz DD. Heat-induced inhibition of superoxide dismutase and accumulation of reactive oxygen species leads to HT-22 neuronal cell death. J Therm Biol. 2011;36:49–56. doi:10.1016/j.jtherbio.2010.11.002.

    Article  CAS  Google Scholar 

  10. Wang Z, Cai F, Chen X, Luo M, Hu L, Lu Y. The role of mitochondria-derived reactive oxygen species in hyperthermia-induced platelet apoptosis. PLoS One. 2013;8:e75044. doi:10.1371/journal.pone.0075044.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Westermann A, Mella O, Van Der Zee J, Jones EL, Van Der Steen-Banasik E, Koper P, et al. Long-term survival data of triple modality treatment of stage IIB-III-IVA cervical cancer with the combination of radiotherapy, chemotherapy and hyperthermia – an update. Int J Hyperthermia. 2012;28:549–53. doi:10.3109/02656736.2012.673047.

    Article  CAS  PubMed  Google Scholar 

  12. Krishna MC, Dewhirst MW, Friedman HS, Cook JA, DeGraff W, Samuni A, Russo A, Mitchell JB. Hyperthermic sensitization by the radical initiator 2,2’-azobis (2-amidinopropane) dihydrochloride (AAPH). I. In vitro studies. Int J Hyperthermia. 1994;10:271–81.

    Article  CAS  PubMed  Google Scholar 

  13. Wang CC, Chen F, Kim E, Harrison LE. Thermal sensitization through ROS modulation: a strategy to improve the efficacy of hyperthermic intraperitoneal chemotherapy. Surgery. 2007;142:384–92.

    Article  PubMed  Google Scholar 

  14. Li FJ, Kondo T, Zhao QL, Tanabe K, Ogawa R, Li M, et al. Enhancement of hyperthermia-induced apoptosis by a free radical initiator, 2,2’-azobis (2-amidinopropane) dihydrochloride, in human histiocytic lymphoma U937 cells. Free Radic Res. 2001;35:281–99.

    Article  CAS  PubMed  Google Scholar 

  15. Li FJ, Kondo T, Zhao QL, Hayashi Y, Ogawa R, Cui ZG, et al. A lipophilic free radical initiator, 2,2’-azobis (2,4-dimethylvaleronitrile) (AMVN) enhances caspase-dependent apoptosis induced by hyperthermia. Int J Hyperthermia. 2003;19:165–77.

    Article  PubMed  Google Scholar 

  16. Yuki H, Kondo T, Zhao QL, Fujiwara Y, Tanabe K, Ogawa R, et al. A free radical initiator, 2,2’-azobis (2-aminopropane) dihydrochloride enhances hyperthermia-induced apoptosis in human uterine cervical cancer cell lines. Free Radic Res. 2003;37:631–43.

    Article  CAS  PubMed  Google Scholar 

  17. Wada S, Cui ZG, Kondo T, Zhao QL, Ogawa R, Shoji M, et al. A hydrogen peroxide-generating agent, 6-formylpterin, enhances heat-induced apoptosis. Int J Hyperthermia. 2005;21:231–46.

    Article  CAS  PubMed  Google Scholar 

  18. Wada S, Tabuchi Y, Kondo T, Cui ZG, Zhao QL, Takasaki I, et al. Gene expression in enhanced apoptosis of human lymphoma U937 cells treated with the combination of different free radical generators and hyperthermia. Free Radic Res. 2007;41:73–81.

    Article  CAS  PubMed  Google Scholar 

  19. Hirano H, Tabuchi Y, Kondo T, Zhao QL, Ogawa R, Cui ZG, et al. Analysis of gene expression in apoptosis of human lymphoma U937 cells induced by heat shock and the effects of alpha-phenyl N-tert-butylnitrone (PBN) and its derivatives. Apoptosis. 2005;10:331–40.

    Article  CAS  PubMed  Google Scholar 

  20. Cui ZG, Kondo T, Matsumoto H. Enhancement of apoptosis by nitric oxide released from alpha-phenyl-tert-butyl nitrone under hyperthermic conditions. J Cell Physiol. 2006;206:468–76.

    Article  CAS  PubMed  Google Scholar 

  21. Yu DY, Matsuya Y, Zhao QL, Ahmed K, Wei ZL, Nemoto H, et al. Enhancement of hyperthermia-induced apoptosis by a new synthesized class of furan-fused tetracyclic compounds. Apoptosis. 2007;12:1523–32.

    Article  CAS  PubMed  Google Scholar 

  22. Yu DY, Matsuya Y, Zhao QL, Ahmed K, Wei ZL, Hori T, et al. Enhancement of hyperthermia-induced apoptosis by a new synthesized class of benzocycloalkene compounds. Apoptosis. 2008;13:448–61. doi:10.1007/s10495-008-0178-9.

    Article  CAS  PubMed  Google Scholar 

  23. Yu DY, Zhao QL, Wei ZL, Shehata M, Kondo T. Enhancement of hyperthermia-induced apoptosis by sanazole in human lymphoma U937 cells. Int J Hyperthermia. 2009;25:364–73. doi:10.1080/02656730902967418.

    Article  CAS  PubMed  Google Scholar 

  24. Zhao QL, Fujiwara Y, Kondo T. Mechanism of cell death induction by nitroxide and hyperthermia. Free Radic Biol Med. 2006;40:1131–43.

    Article  CAS  PubMed  Google Scholar 

  25. Zhao QL, Fujiwara Y, Kondo T. Synergistic induction of apoptosis and caspase-independent autophagic cell death by a combination of nitroxide Tempo and heat shock in human leukemia U937 cells. Apoptosis. 2010;15:1270–83. doi:10.1007/s10495-010-0522-8.

    Article  CAS  PubMed  Google Scholar 

  26. Venkataraman S, Wagner BA, Jiang X, Wang HP, Schafer FQ, Ritchie JM, et al. Overexpression of manganese superoxide dismutase promotes the survival of prostate cancer cells exposed to hyperthermia. Free Radic Res. 2004;38:1119–32.

    Article  CAS  PubMed  Google Scholar 

  27. Yoshihisa Y, Zhao QL, Hassan MA, Wei ZL, Furuichi M, Miyamoto Y, et al. SOD/catalase mimetic platinum nanoparticles inhibit heat-induced apoptosis in human lymphoma U937 and HH cells. Free Radic Res. 2011;45:326–35. doi:10.3109/10715762.2010.532494.

    Article  CAS  PubMed  Google Scholar 

  28. Minotti G. Sources and role of iron in lipid peroxidation. Chem Res Toxicol. 1993;6:134–46.

    Article  CAS  PubMed  Google Scholar 

  29. Radi R, Cassina A, Hodara R, Quijano C, Castro L. Peroxynitrite reactions and formation in mitochondria. Free Radic Biol Med. 2002;33:1451–64.

    Article  CAS  PubMed  Google Scholar 

  30. Matsumoto H, Hayashi S, Hatashita M, Ohnishi K, Ohtsubo T, Kitai R, et al. Nitric oxide is an initiator of intercellular signal transduction for stress response after hyperthermia in mutant p53 cells of human glioblastoma. Cancer Res. 1999;59:3239–44.

    CAS  PubMed  Google Scholar 

  31. Moon EJ, Sonveaux P, Porporato PE, Danhier P, Gallez B, Batinic-Haberle I, et al. NADPH oxidase-mediated reactive oxygen species production activates hypoxia-inducible factor-1 (HIF-1) via the ERK pathway after hyperthermia treatment. Proc Natl Acad Sci U S A. 2010;107:20477–82. doi:10.1073/pnas.1006646107.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Matés JM, Sánchez-Jiménez FM. Role of reactive oxygen species in apoptosis: implications for cancer therapy. Int J Biochem Cell Biol. 2000;32:157–70.

    Article  PubMed  Google Scholar 

  33. Terao K, Niki E. Damage to biological tissues induced by radical initiator 2,2’-azobis(2-amidinopropane) dihydrochloride and its inhibition by chain-breaking antioxidants. J Free Radic Biol Med. 1986;2:193–201.

    Article  CAS  PubMed  Google Scholar 

  34. Ziegler I. Pteridine formation during lectin-induced lymphocyte activation. J Cell Biochem. 1985;28:197–206.

    Article  CAS  PubMed  Google Scholar 

  35. Arai T, Endo N, Yamashita K, Sasada M, Mori H, Ishii H, et al. 6-formylpterin, a xanthine oxidase inhibitor, intracellularly generates reactive oxygen species involved in apoptosis and cell proliferation. Free Radic Biol Med. 2001;30:248–59.

    Article  CAS  PubMed  Google Scholar 

  36. Kanthasamy AG, Kitazawa M, Kanthasamy A, Anantharam V. Role of proteolytic activation of protein kinase C delta in oxidative stress-induced apoptosis. Antioxid Redox Signal. 2003;5:609–20.

    Article  CAS  PubMed  Google Scholar 

  37. Saito K, Yoshioka H, Kazama S, Cutler RG. Release of nitric oxide from a spin trap, N-tert-butyl-alpha-phenylnitrone, under various oxidative conditions. Biol Pharm Bull. 1998;21:401–4.

    Article  CAS  PubMed  Google Scholar 

  38. Shrivastava P, Pantano C, Watkin R, McElhinney B, Guala A, Poynter ML, et al. Reactive nitrogen species-induced cell death requires Fas-dependent activation of c-Jun N-terminal kinase. Mol Cell Biol. 2004;24:6763–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Schett G, Steiner CW, Gröger M, Winkler S, Graninger W, Smolen J, et al. Activation of Fas inhibits heat-induced activation of HSF1 and up-regulation of hsp70. FASEB J. 1999;13:833–42.

    CAS  PubMed  Google Scholar 

  40. Krishna MC, Russo A, Mitchell JB, Goldstein S, Dafni H, Samuni A. Do nitroxide antioxidants act as scavengers of O2-. or as SOD mimics? J Biol Chem. 1996;271:26026–31.

    Article  CAS  PubMed  Google Scholar 

  41. Matsuya Y, Sasaki K, Nagaoka M, Kakuda H, Toyooka N, Imanishi N, et al. Synthesis of a new class of furan-fused tetracyclic compounds using o-quinodimethane chemistry and investigation of their antiviral activity. J Org Chem. 2004;69:7989–93.

    Article  CAS  PubMed  Google Scholar 

  42. Shibamoto Y, Sakano K, Kimura R, Nishidai T, Nishimoto S, Ono K, et al. Radiosensitization in vitro and in vivo by 3-nitrotriazoles. Int J Radiat Oncol Biol Phys. 1986;12:1063–6.

    Article  CAS  PubMed  Google Scholar 

  43. Schepetkin IA, Cherdyntseva NV, Kagiya VT. Sanazole as substrate of xanthine oxidase and microsomal NADPH/cytochrome P450 reductase. Pathophysiology. 2001;8:119–27.

    Article  CAS  PubMed  Google Scholar 

  44. Murray JI, Whitfield ML, Trinklein ND, Myers RM, Brown PO, Botstein D. Diverse and specific gene expression responses to stresses in cultured human cells. Mol Biol Cell. 2004;15:2361–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Furusawa Y, Tabuchi Y, Wada S, Takasaki I, Ohtsuka K, Kondo T. Identification of biological functions and gene networks regulated by heat stress in U937 human lymphoma cells. Int J Mol Med. 2011;28:143–51. doi:10.3892/ijmm.2011.702.

    CAS  PubMed  Google Scholar 

  46. Kajihara A, Takahashi A, Ohnishi K, Imai Y, Yamakawa N, Yasumoto J, et al. Protein microarray analysis of apoptosis-related protein expression following heat shock in human tongue squamous cell carcinomas containing different p53 phenotypes. Int J Hyperthermia. 2008;24:605–12. doi:10.1080/02656730802348339.

    Article  CAS  PubMed  Google Scholar 

  47. Jia M, Souchelnytskyi S. Proteome profiling of heat shock of human primary breast epithelial cells, a dataset report. Cell Stress Chaperones. 2011;16:459–67. doi:10.1007/s12192-010-0253-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Akerfelt M, Morimoto RI, Sistonen L. Heat shock factors: integrators of cell stress, development and lifespan. Nat Rev Mol Cell Biol. 2010;11:545–55. doi:10.1038/nrm2938.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Franceschelli S, Rosati A, Lerose R, De Nicola S, Turco MC, Pascale M. Bag3 gene expression is regulated by heat shock factor 1. J Cell Physiol. 2008;215:575–7. doi:10.1002/jcp.21397.

    Article  CAS  PubMed  Google Scholar 

  50. Verheij M, Bose R, Lin XH, Yao B, Jarvis WD, Grant S, et al. Requirement for ceramide-initiated SAPK/JNK signalling in stress-induced apoptosis. Nature. 1996;380:75–9.

    Article  CAS  PubMed  Google Scholar 

  51. Chang SW, Lee SI, Bae WJ, Min KS, Shin ES, Oh GS, et al. Heat stress activates interleukin-8 and the antioxidant system via Nrf2 pathways in human dental pulp cells. J Endod. 2009;35:1222–8. doi:10.1016/j.joen.2009.06.005.

    Article  PubMed  Google Scholar 

  52. Ahn SG, Thiele DJ. Redox regulation of mammalian heat shock factor 1 is essential for Hsp gene activation and protection from stress. Genes Dev. 2003;17:516–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Koizumi S, Gong P, Suzuki K, Murata M. Cadmium-responsive element of the human heme oxygenase-1 gene mediates heat shock factor 1-dependent transcriptional activation. J Biol Chem. 2007;282:8715–23.

    Article  CAS  PubMed  Google Scholar 

  54. Wang K, Fang H, Xiao D, Zhu X, He M, Pan X, et al. Converting redox signaling to apoptotic activities by stress-responsive regulators HSF1 and NRF2 in fenretinide treated cancer cells. PLoS One. 2009;4:e7538. doi:10.1371/journal.pone.0007538.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Dayalan Naidu S, Kostov RV, Dinkova-Kostova AT. Transcription factors Hsf1 and Nrf2 engage in crosstalk for cytoprotection. Trends Pharmacol Sci. 2015;36:6–14. doi:10.1016/j.tips.2014.10.011.

    Article  CAS  PubMed  Google Scholar 

  56. Mayerhofer M, Gleixner KV, Mayerhofer J, Hoermann G, Jaeger E, Aichberger KJ, et al. Targeting of heat shock protein 32 (Hsp32)/heme oxygenase-1 (HO-1) in leukemic cells in chronic myeloid leukemia: a novel approach to overcome resistance against imatinib. Blood. 2008;111:2200–10.

    Article  CAS  PubMed  Google Scholar 

  57. Kondo T, Matsuda T, Tashima M, Umehara H, Domae N, Yokoyama K, et al. Suppression of heat shock protein-70 by ceramide in heat shock-induced HL-60 cell apoptosis. J Biol Chem. 2000;275:8872–9.

    Article  CAS  PubMed  Google Scholar 

  58. Lin X, Fang Q, Chen S, Zhe N, Chai Q, Yu M, et al. Heme oxygenase-1 suppresses the apoptosis of acute myeloid leukemia cells via the JNK/c-JUN signaling pathway. Leuk Res. 2015;39:544–52. doi:10.1016/j.leukres.2015.02.009.

    Article  CAS  PubMed  Google Scholar 

  59. Sawai M, Ishikawa Y, Ota A, Sakurai H. The proto-oncogene JUN is a target of the heat shock transcription factor HSF1. FEBS J. 2013;280:6672–80. doi:10.1111/febs.12570.

    Article  CAS  PubMed  Google Scholar 

  60. Takekawa M, Saito H. A family of stress-inducible GADD45-like proteins mediate activation of the stress-responsive MTK1/MEKK4 MAPKKK. Cell. 1998;95:521–30.

    Article  CAS  PubMed  Google Scholar 

  61. Jin H, Suh DS, Kim TH, Yeom JH, Lee K, Bae J. IER3 is a crucial mediator of TAp73β-induced apoptosis in cervical cancer and confers etoposide sensitivity. Sci Rep. 2015;5:8367. doi:10.1038/srep08367.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Dong J, Naito M, Tsuruo T. c-Myc plays a role in cellular susceptibility to death receptor-mediated and chemotherapy-induced apoptosis in human monocytic leukemia U937 cells. Oncogene. 1997;15:639–47.

    Article  CAS  PubMed  Google Scholar 

  63. Jayachandran G, Sazaki J, Nishizaki M, Xu K, Girard L, Minna JD, et al. Fragile histidine triad-mediated tumor suppression of lung cancer by targeting multiple components of the Ras/Rho GTPase molecular switch. Cancer Res. 2007;67:10379–88.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoshiaki Tabuchi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Singapore

About this chapter

Cite this chapter

Tabuchi, Y., Ahmed, K., Kondo, T. (2016). Induction of Oxidative Stress by Hyperthermia and Enhancement of Hyperthermia-Induced Apoptosis by Oxidative Stress Modification. In: Kokura, S., Yoshikawa, T., Ohnishi, T. (eds) Hyperthermic Oncology from Bench to Bedside. Springer, Singapore. https://doi.org/10.1007/978-981-10-0719-4_2

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-0719-4_2

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-0717-0

  • Online ISBN: 978-981-10-0719-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics