Skip to main content

Actinomycetes as Mitigators of Climate Change and Abiotic Stress

  • Chapter
  • First Online:
Plant Growth Promoting Actinobacteria

Abstract

Agricultural productivity is affected worldwide due to anthropogenic and climate change-induced abiotic stresses, posing a threat to food security. Use of microorganisms for abiotic stress management in agriculture is emerging as economically viable and environmental-friendly option. Actinomycetes, the Gram-positive bacteria with filamentous structure that are common associates of plants (as rhizosphere inhabitants and as plant endophytes), are receiving attention for their potential application in stressed ecosystems. Many actinomycetes exhibit plant growth-promoting (PGP) properties including indole acetic acid (IAA) production, phosphate solubilization, siderophore production, biocontrol of phytopathogens, and 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase activity. Besides, they can grow under diverse stress conditions such as moisture stress, high temperature, salinity, alkalinity, and wide pH range. Recently, many reports have documented the role of actinomycetes in alleviating salinity and drought stress in crop plants. However, there is a need to further strengthen the research to explore their potential to improve plant productivity under diverse environmental stress conditions by conducting extensive pot and field trials and to understand the underlying mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aldesuquy HS, Mansour FA, Abo-Hamed SA (1998) Effect of the culture filtrates of Streptomyces on growth and productivity of wheat plants. Folia Microbiol 43:465–470

    Article  Google Scholar 

  • Alexander M (1977) Microbiology of the rhizosphere. In introduction to soil microbiology. Wiley, Chichester, pp 423–437

    Google Scholar 

  • Ali SZ, Sandhya V, Grover M, Kishore N, Rao LV, Venkateswarlu B (2009) Pseudomonas sp. strain AKM-P6 enhances tolerance of sorghum seedlings to elevated temperatures. Biol Fertil Soils 46:45–55

    Article  CAS  Google Scholar 

  • Aly MM, El-Sabbagh SM, El-Shouny WA, Ebrahim MKH (2003) Physiological response of Zea mays to NaCl stress with respect to Azotobacter chroococcum and Streptomyces niveus. Pak J Biol Sci 6:2073–2080

    Article  Google Scholar 

  • Aly MM, El Sayed HEA, Jastaniah SD (2012) Synergistic effect between Azotobacter vinelandii and Streptomyces sp. isolated from saline soil on seed germination and growth of wheat plant. J Am Sci 8:667–676

    Google Scholar 

  • Ameur LH, Ghoul M (2014) Effect of salinity stress, Streptomyces sp. SF5 and Salsola vermiculata on germination of Triticum durum. Sky J Agric Res 3:7–16

    Google Scholar 

  • Challinor A, Wheeler TR (2008) Crop yield reduction in the tropics under climate change: processes and uncertainties. Agric For Meteorol 148:343–356

    Article  Google Scholar 

  • Choudhary DK (2012) Microbial rescue to plant under habitat-imposed abiotic and biotic stresses. Appl Microbiol Biotechnol 96:1137–1155

    Article  CAS  PubMed  Google Scholar 

  • Clair SS, Lynch JP (2010) The opening of Pandora’s box: climate change impacts on soil fertility and crop nutrition in developing countries. Plant Soil 335:101–115

    Article  Google Scholar 

  • Cruz JA, Lantican NB, Delfin EF, Paterno ES (2014) Enhancement of growth and yield of upland rice (Oryza sativa L.) var. NSIC Rc 192 by actinomycetes. J Agric Technol 10:875–883

    CAS  Google Scholar 

  • Doumbou CL, Salove MKH, Crawford DL, Beaulieu C (2001) Actinomycetes, promising tools to control plant diseases and to promote plant growth. Phytoprotection 82:85–102

    Article  Google Scholar 

  • El-Tarabily KA (2008) Promotion of tomato (Lycopersicon esculentum Mill.) plant growth by rhizosphere competent 1-aminocyclopropane-1-carboxylic acid deaminase producing streptomycete actinomycetes. Plant Soil 308:161–174

    Article  CAS  Google Scholar 

  • El-Tarabily KA, Nassar AH, Hardy GESJ, Sivasithamparam K (2009) Plant growth-promotion and biological control of Pythium aphanidermatum, a pathogen of cucumber, by endophytic actinomycetes. J Appl Microbiol 106:13–26

    Article  CAS  PubMed  Google Scholar 

  • Franco-Correa M, Quintana A, Duque C, Suarez C, Rodriguez MX, Barea JM (2010) Evaluation of actinomycete strains for key traits related with plant growth-promotion and mycorrhiza helping activities. Appl Soil Ecol 45:209–217

    Article  Google Scholar 

  • Gayathri P, Muralikrishnan V (2013) Isolation and characterization of endophytic actinomycetes from mangrove plant for antimicrobial activity. Int J Curr Microbiol Appl Sci 2:78–89

    Google Scholar 

  • Gopalakrishnan S, Srinivas V, Vidya MS, Rathore A (2013) Plant growth-promoting activities of Streptomyces spp. in sorghum and rice. Springer Plus 2:574

    Article  PubMed  PubMed Central  Google Scholar 

  • Grover M, Ali SZ, Sandhya V, Rasul A, Venkateswarlu B (2011) Role of microorganisms in adaptation of agriculture crops to abiotic stress. World J Microbiol Biotechnol 27:1231–1240

    Article  Google Scholar 

  • Grover M, Madhubala R, Ali SZ, Yadav SK, Venkateswarlu B (2014) Influence of Bacillus spp. strains on seedling growth and physiological parameters of sorghum under moisture stress conditions. J Basic Microbiol 54:951–961

    Article  CAS  PubMed  Google Scholar 

  • Grover M, Maheswari M, Desai S, Gopinath KA, Venkateswarlu B (2015) Elevated CO2: plant associated microorganisms and carbon sequestration. Appl Soil Ecol 95:73–85

    Article  Google Scholar 

  • Gupta N, Sahoo D, Bas UC (2010) Evaluation of in vitro solubilization potential of phosphate solubilizing Streptomyces isolated from phyllosphere of Heritiera fomes (mangrove). Afr J Microbiol Res 4:136–142

    CAS  Google Scholar 

  • Hasegawa S, Meguro A, Nishimura T, Kunoh H (2004) Drought tolerance of tissue-cultured seedlings of mountain laurel (Kalmia latifolia L.) induced by an endophytic actinomycete. I. Enhancement of osmotic pressure in leaf cells. Actinomycetologica 18:43–47

    Article  Google Scholar 

  • Hasegawa S, Meguro A, Toyoda K, Nishimura T, Kunoh H (2005) Drought tolerance of tissue-cultured seedlings of mountain laurel (Kalmia latifolia L.) induced by an endophytic actinomycete. II. Acceleration of callose accumulation and lignification. Actinomycetologica 19:13–17

    Article  CAS  Google Scholar 

  • Igarashi Y, Iida T, Yoshida R, Furumai T (2002) Pteridic acids A and B, novel plant growth-promoters with auxin-like activity from Streptomyces hygroscopicus TP-A0451. J Antibiot 55:764–767

    Article  CAS  PubMed  Google Scholar 

  • Jog R, Nareshkumar G, Rajkumar S (2012) Plant growth-promoting potential and soil enzyme production of the most abundant Streptomyces spp. from wheat rhizosphere. J Appl Microbiol 113:1154–1164

    Article  CAS  PubMed  Google Scholar 

  • Jog R, Pandya M, Nareshkumar G, Rajkumar S (2014) Mechanism of phosphate solubilization and antifungal activity of Streptomyces spp. isolated from wheat roots and rhizosphere and their application in improving plant growth. Microbiology 160:778–788

    Article  CAS  PubMed  Google Scholar 

  • Killham K, Firestone MK (1984) Salt stress control of intracellular solutes in streptomycetes indigenous to saline soils. Appl Environ Microbiol 47:301–306

    CAS  PubMed  PubMed Central  Google Scholar 

  • LeBlanc J, Goncalves ER, Mohn WW (2008) Global response to desiccation stress in the soil actinomycete Rhodococcus jostii RHA1. Appl Environ Microbiol 74:2627–2636

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mahajan S, Tuteja N (2006) Cold, salinity and drought stresses: an overview. Arch Biochem Biophys 444:139–158

    Article  Google Scholar 

  • Mayak S, Tirosh T, Glick BR (2004) Plant growth-promoting bacteria that confer resistance to water stress in tomato and pepper. Plant Sci 166:525–530

    Article  CAS  Google Scholar 

  • Meguro A, Ohmura Y, Hasegawa S, Shimizu M, Nishimura T, Kunoh H (2006) An endophytic actinomycete, Streptomyces sp. MBR- 52, that accelerates emergence and elongation of plant adventitious roots. Actinomycetologica 20:1–9

    Article  CAS  Google Scholar 

  • Meguro A, Toyoda K, Ogiyama H, Hasegawa S, Nishimura T, Kunoh H, Shiraishi T (2012) Genes expressed in tissue-cultured seedlings of mountain laurel (Kalmia latifolia L.) with colonizing Streptomyces padanus AOK30. J Gen Plant Pathol 78:303–310

    Article  CAS  Google Scholar 

  • Msehli W, Jellali N, DellOrto M, Abdelly C, Zocchi G, Gharsalli M (2011) Responses of two lines of Medicago ciliaris to Fe deficiency under saline conditions. Plant Growth Regul 64:221–230

    Article  CAS  Google Scholar 

  • Munns R (2002) Comparative physiology of salt and water stress. Plant Cell Environ 25:239–250

    Article  CAS  PubMed  Google Scholar 

  • Netondo GW, Onyango JC, Beck E (2004) Sorghum and salinity: II. Gas exchange and chlorophyll fluorescence of sorghum under salt stress. Crop Sci 44:806–811

    Article  Google Scholar 

  • Palaniyandi SA, Damodharan K, Yang SH, Suh JW (2014) Streptomyces sp. strain PGPA39 alleviates salt stress and promotes growth of ‘Micro Tom’ tomato plants. J Appl Microbiol 117:766–773

    Article  CAS  PubMed  Google Scholar 

  • Sadeghi A, Karimi E, Dahaji PA, Javid MG, Dalvand Y, Askari H (2012) Plant growth-promoting activity of an auxin and siderophore producing isolate of Streptomyces under saline soil conditions. World J Microbiol Biotechnol 28:1503–1509

    Article  CAS  PubMed  Google Scholar 

  • Sakure S, Limbore A, Zalake M, Jaigude S (2015) Isolation and characterization of actinomycetes from rhizosphere soil of different plants for antiphytopathogenic activity and stress tolerance. Int J Curr Microbiol Appl Sci 2:379–387

    Google Scholar 

  • Sandhya V, Ali SZ, Minakshi G, Reddy G, Venkateswarlu B (2009) Alleviation of drought stress effects in sunflower seedlings by the exopolysaccharides producing Pseudomonas putida strain GAP-P45. Biol Fertil Soils 46:17–26

    Article  CAS  Google Scholar 

  • Seidahmed HA, Ballal ME, Mahgoub A (2013) Sodicity tolerance of Moringa olifera, Acacia Senegal and Acacia tortilis subspp raddiana seedlings. J Nat Resour Environ Stud 1:4–6

    Google Scholar 

  • Selvakumar G, Bhatt RM, Upreti KK, Bindu GH, Shweta K (2015) Citricoccus zhacaiensis B-4 (MTCC 12119) a novel osmotolerant plant growth-promoting actinobacterium enhances onion (Allium cepa L.) seed germination under osmotic stress conditions. World J Microbiol Biotechnol 31:833–839

    Article  CAS  PubMed  Google Scholar 

  • Shimizu M (2011) Endophytic actinomycetes: biocontrol agents and growth promoters. In: Maheshwari DK (ed) Bacteria in agrobiology: plant growth responses. Springer, Berlin, pp 201–220

    Chapter  Google Scholar 

  • Shimizu M, Yazawa S, Ushijima Y (2009) A promising strain of endophytic Streptomyces sp. for biological control of cucumber anthracnose. J Gen Plant Pathol 75:27–36

    Article  Google Scholar 

  • Srinivasarao C, Chary GR, Venkateswarlu B, Vittal K, Prasad JVNS, Kundu S, Singh SR, Gajanan GN, Sharma RA, Deshpande AN, Patel JJ, Balaguravaiah G (2009) Carbon sequestration strategies in rainfed production systems of India. Central Research Institute for Dryland Agriculture, Hyderabad, pp 1–102

    Google Scholar 

  • Srinivasarao Ch, Venkateswarlu B, Lal R, Singh AK, Kundu S (2013) Sustainable management of soils of dryland ecosystems of India for enhancing agronomic productivity and sequestering carbon. In: Sparks DL (ed) Advances in agronomy, vol 121. Elsevier, B V, pp 254–329

    Google Scholar 

  • Srinivasarao C, Venkateswarlu B, Lal R, Singh AK, Kundu S, Vittal KPR, Patel JJ, Patel MM (2014) Long term manuring and fertilizer effects on depletion of soil organic carbon stocks under pearl millet-clusterbean-castor rotation in western India. Land Degrad Dev 25:173–183

    Article  Google Scholar 

  • Srinivasarao Ch, Lal R, Prasad JVNS, Gopinath KA, Singh R, Jakkula VS, Sahrawat KL, Venkateswarlu B, Sikka AK, Virmani SM (2015) Potential and challenges of rainfed farming in India. In: Sparks DL (ed) Advances in agronomy, vol 133. Elsevier, B V, pp 113–181

    Google Scholar 

  • Srivastava P, Kumar R (2015) Soil salinity: a serious environmental issue and plant growth-promoting bacteria as one of the tools for its alleviation. Saudi J Biol Sci 22:123–131

    Article  Google Scholar 

  • Srivastava S, Patel JS, Singh HB, Sinha A, Sarma BK (2015) Streptomyces rochei SM3 induces stress tolerance in chickpea against Sclerotinia sclerotiorum and NaCl. J Phytopathol 163:583–592

    Article  CAS  Google Scholar 

  • Strap JL (2011) Actinobacteria–plant interactions: a boon to agriculture. In: Maheshwari DK (ed) Bacteria in agrobiology: plant growth responses. Springer, Berlin/Heidelberg, pp 285–307

    Chapter  Google Scholar 

  • Tresner HD, Hayes JA, Backus EJ (1968) Differential tolerance of Streptomyces to sodium chloride as a taxonomic aid. Appl Microbiol 16:1134–1138

    CAS  PubMed  PubMed Central  Google Scholar 

  • Venkateswarlu B, Grover M (2009) Can microbes help crops cope with climate change? Indian J Microbiol 49:297–298

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang C, Wang Z, Qiao X, Li Z, Li F, Chen M, Wang Y, Huang Y, Cui H (2013) Antifungal activity of volatile organic compounds from Streptomyces alboflavus TD-1. FEMS Microbiol Lett 341:45–51

    Article  CAS  PubMed  Google Scholar 

  • Yadav S, Irfan M, Ahmed A, Hayat S (2011) Causes of salinity and plant manifestations of salt stress: a review. J Environ Biol 32:667–685

    PubMed  Google Scholar 

  • Yandigeri MS, Meena KK, Singh D, Malviya N, Singh DP, Solanki MK, Yadav AK, Arora DK (2012) Drought-tolerant endophytic actinobacteria promote growth of wheat (Triticum aestivum) under water stress conditions. Plant Growth Regul 68:411–420

    Article  CAS  Google Scholar 

  • Yang J, Kloepper JW, Ryu CM (2009) Rhizosphere bacteria help plants tolerate abiotic stress. Trends Plant Sci 14:1–4

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors of this manuscript are thankful to the Indian Council of Agricultural Research for providing support under AMAAS (Application of Microorganisms in Agriculture and Allied Sectors) project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Minakshi Grover .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Singapore

About this chapter

Cite this chapter

Grover, M., Bodhankar, S., Maheswari, M., Srinivasarao, C. (2016). Actinomycetes as Mitigators of Climate Change and Abiotic Stress. In: Subramaniam, G., Arumugam, S., Rajendran, V. (eds) Plant Growth Promoting Actinobacteria. Springer, Singapore. https://doi.org/10.1007/978-981-10-0707-1_13

Download citation

Publish with us

Policies and ethics