Skip to main content

Mass Spectrometry in Ecotoxicology

  • Conference paper
  • First Online:
Toxic Chemical and Biological Agents

Abstract

Risk assessment of chemical effects in the environment requires the understanding of the fate and behavior of anthropogenic chemicals in natural and technical systems, which is the focus of environmental chemistry. The exposure data obtained by environmental chemists are in turn used to evaluate the significance of toxicological effects in organisms, as studied by environmental toxicologists. Mass spectrometry-based techniques are frequently applied to monitor the exposure or investigate the effects of chemicals, particularly their mechanism of action. These techniques include, for example, targeted and non-targeted chemical analytics as well as diverse –omics methods. This chapter illustrates the application of mass spectrometry in environmental chemistry and toxicology using research projects carried out at our institute, with a particular focus on the aquatic environment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bertazzi PA et al (1998) The Seveso studies on early and long-term effects of dioxin exposure: a review. Environ Health Perspect 106(suppl 2):625–633

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Beyer A, Biziuk M (2009) Environmental fate and global distribution of polychlorinated biphenyls. In: Whitacre DM (ed) Reviews of environmental contamination and toxicology, vol 201. Springer US, Boston, pp 137–158

    Google Scholar 

  3. Fensterheim RJ (1993) Documenting temporal trends of polychlorinated biphenyls in the environment. Regul Toxicol Pharmacol 18(2):181–201

    Article  CAS  PubMed  Google Scholar 

  4. Muir DCG, Norstrom RJ (2000) Geographical differences and time trends of persistent organic pollutants in the Arctic. Toxicol Lett 112-113:93–101

    Article  CAS  PubMed  Google Scholar 

  5. Porta M, Zumeta E (2002) Implementing the Stockholm treaty on persistent organic pollutants. Occup Environ Med 59(10):651–652

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Cairns T, Siegmund EG (1981) PCBs. Regulatory history and analytical problems. Anal Chem 53(11):1183A–1193A

    Article  CAS  PubMed  Google Scholar 

  7. Djien Liem AK, Furst P, Rappe C (2000) Exposure of populations to dioxins and related compounds. Food Addit Contam 17(4):241–259

    Article  Google Scholar 

  8. Oliveira IB et al (2016) Tralopyril bioconcentration and effects on the gill proteome of the Mediterranean mussel Mytilus galloprovincialis. Aquat Toxicol 177:198–210

    Article  CAS  PubMed  Google Scholar 

  9. Pillai S et al (2014) Linking toxicity and adaptive responses across the transcriptome, proteome, and phenotype of Chlamydomonas reinhardtii exposed to silver. Proc Natl Acad Sci U S A 111(9):3490–3495

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Tamminen M et al (2018) Proteome evolution under non-substitutable resource limitation. Nat Commun 9(1):4650

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Aerni H-R et al (2004) Combined biological and chemical assessment of estrogenic activities in wastewater treatment plant effluents. Anal Bioanal Chem 378(3):688–696

    Article  CAS  PubMed  Google Scholar 

  12. Reemtsma T et al (2016) Mind the gap: persistent and mobile organic compounds—water contaminants that slip through. Environ Sci Technol 50(19):10308–10315

    Article  CAS  PubMed  Google Scholar 

  13. Schwarzenbach RP et al (2006) The challenge of micropollutants in aquatic systems. Science 313(5790):1072–1077

    Article  CAS  PubMed  Google Scholar 

  14. Ammann AA et al (2014) LC-MS/MS determination of potential endocrine disruptors of cortico signalling in rivers and wastewaters. Anal Bioanal Chem 406(29):7653–7665

    Article  CAS  PubMed  Google Scholar 

  15. Kern S et al (2010) A tiered procedure for assessing the formation of biotransformation products of pharmaceuticals and biocides during activated sludge treatment. J Environ Monit 12(11):2100–2111

    Article  CAS  PubMed  Google Scholar 

  16. Ammann AA, Suter MJ-F (2016) Multimode gradient high performance liquid chromatography mass spectrometry method applicable to metabolomics and environmental monitoring. J Chromatogr A 1456:145–151

    Article  CAS  PubMed  Google Scholar 

  17. Brack W (2003) Effect-directed analysis: a promising tool for the identification of organic toxicants in complex mixtures? Anal Bioanal Chem 377(3):397–407

    Article  CAS  PubMed  Google Scholar 

  18. Sonavane M et al (2018) An integrative approach combining passive sampling, bioassays, and effect-directed analysis to assess the impact of wastewater effluent. Environ Toxicol Chem 37(8):2079–2088

    Article  CAS  PubMed  Google Scholar 

  19. Routledge EJ, Sumpter JP (1996) Estrogenic activity of surfactants and some of their degradation products assessed using a recombinant yeast screen. Environ Toxicol Chem 15(3):241–248

    Article  CAS  Google Scholar 

  20. Vermeirssen ELM et al (2005) Characterization of environmental estrogens in river water using a three pronged approach: active and passive water sampling and the analysis of accumulated estrogens in the bile of caged fish. Environ Sci Technol 39(21):8191–8198

    Article  CAS  PubMed  Google Scholar 

  21. Macikova P et al (2014) Endocrine disrupting compounds affecting corticosteroid Signaling pathways in Czech and Swiss waters: potential impact on fish. Environ Sci Technol 48(21):12902–12911

    Article  CAS  PubMed  Google Scholar 

  22. Tousova Z et al (2017) European demonstration program on the effect-based and chemical identification and monitoring of organic pollutants in European surface waters. Sci Total Environ 601:1849–1868

    Article  PubMed  CAS  Google Scholar 

  23. Bernet D et al (2004) Frequent and unexplained gonadal abnormalities in whitefish (central alpine Coregonus sp.) from an alpine oligotrophic lake in Switzerland. Dis Aquat Org 61(1–2):137–148

    Article  CAS  Google Scholar 

  24. Liedtke A et al (2009) Unpublished results

    Google Scholar 

  25. Soto AM et al (1995) The E-SCREEN assay as a tool to identify estrogens: an update on estrogenic environmental pollutants. Environ Health Perspect 103(suppl 7):113–122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Liedtke A et al (2009) Internal exposure of whitefish (Coregonus lavaretus) to estrogens. Aquat Toxicol 93(2):158–165

    Article  CAS  PubMed  Google Scholar 

  27. Schymanski EL et al (2014) Strategies to characterize polar organic contamination in wastewater: exploring the capability of high resolution mass spectrometry. Environ Sci Technol 48(3):1811–1818

    Article  CAS  PubMed  Google Scholar 

  28. Singer HP et al (2016) Rapid screening for exposure to “non-target” pharmaceuticals from wastewater effluents by combining HRMS-based suspect screening and exposure modeling. Environ Sci Technol 50(13):6698–6707

    Article  CAS  PubMed  Google Scholar 

  29. Groh KJ et al (2011) Global proteomics analysis of testis and ovary in adult zebrafish (Danio rerio). Fish Physiol Biochem 37(3):619–647

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Nesatyy VJ, Suter MJ-F (2008) Analysis of environmental stress response on the proteome level. Mass Spectrom Rev 27(6):556–574

    Article  CAS  PubMed  Google Scholar 

  31. Kind T, Fiehn O (2007) Seven Golden rules for heuristic filtering of molecular formulas obtained by accurate mass spectrometry. BMC Bioinf 8:105–105

    Article  CAS  Google Scholar 

  32. Groh KJ et al (2015) Development and application of the adverse outcome pathway framework for understanding and predicting chronic toxicity: I. Challenges and research needs in ecotoxicology. Chemosphere 120:764–777

    Article  CAS  PubMed  Google Scholar 

  33. Eggen RIL, Suter MJ-F (2007) Analytical chemistry and ecotoxicology—tasks, needs and trends. J Toxic Environ Health A 70(9):724–726

    Article  CAS  Google Scholar 

  34. Groh KJ et al (2015) Development and application of the adverse outcome pathway framework for understanding and predicting chronic toxicity: II. A focus on growth impairment in fish. Chemosphere 120:778–792

    Article  CAS  PubMed  Google Scholar 

  35. Groh KJ, Tollefsen KE (2015) The challenge: adverse outcome pathways in research and regulation—current status and future perspectives. Environ Toxicol Chem 34(9):1935–1937

    Article  CAS  PubMed  Google Scholar 

  36. Van den Brink PJ et al (2018) Toward sustainable environmental quality: priority research questions for Europe. Environ Toxicol Chem 37(9):2281–2295

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Ashauer R et al (2011) Toxicokinetic-toxicodynamic modeling of quantal and graded sublethal endpoints: a brief discussion of concepts. Environ Toxicol Chem 30(11):2519–2524

    Article  CAS  PubMed  Google Scholar 

  38. Groh KJ, Suter MJ-F (2014) Mass spectrometry in environmental toxicology. CHIMIA Int J Chem 68(3):140–145

    Article  CAS  Google Scholar 

  39. Kirla KT et al (2016) From the cover: zebrafish larvae are insensitive to stimulation by cocaine: importance of exposure route and toxicokinetics. Toxicol Sci 154(1):183–193

    Article  CAS  PubMed  Google Scholar 

  40. Mottaz H et al (2017) Dose-dependent effects of morphine on lipopolysaccharide (LPS)-induced inflammation, and involvement of multixenobiotic resistance (MXR) transporters in LPS efflux in teleost fish. Environ Pollut 221:105–115

    Article  CAS  PubMed  Google Scholar 

  41. Madureira DJ et al (2014) Systems toxicology approach to understand the kinetics of Benzo(a)pyrene uptake, biotransformation, and DNA adduct formation in a liver cell model. Chem Res Toxicol 27(3):443–453

    Article  CAS  PubMed  Google Scholar 

  42. Nestler H et al (2012) Multiple-endpoint assay provides a detailed mechanistic view of responses to herbicide exposure in Chlamydomonas reinhardtii. Aquat Toxicol 110-111:214–224

    Article  CAS  PubMed  Google Scholar 

  43. Nestler H et al (2012) Linking proteome responses with physiological and biochemical effects in herbicide-exposed Chlamydomonas reinhardtii. J Proteome 75(17):5370–5385

    Article  CAS  Google Scholar 

  44. Hidasi AO et al (2017) Clobetasol propionate causes immunosuppression in zebrafish (Danio rerio) at environmentally relevant concentrations. Ecotoxicol Environ Saf 138:16–24

    Article  CAS  PubMed  Google Scholar 

  45. Di Paolo C et al (2015) Early life exposure to PCB126 results in delayed mortality and growth impairment in the zebrafish larvae. Aquat Toxicol 169:168–178

    Article  PubMed  CAS  Google Scholar 

  46. Kirla KT et al (2018) Importance of toxicokinetics to assess the utility of zebrafish larvae as model for psychoactive drug screening using meta-chlorophenylpiperazine (mCPP) as example. Front Pharmacol 9:414–414

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Sturla SJ et al (2014) Systems toxicology: from basic research to risk assessment. Chem Res Toxicol 27(3):314–329

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Groh KJ, Nesatyy VJ, Suter MJ-F (2011) Proteomics for the analysis of environmental stress responses in prokaryotes. In: de Bruijn FJ (ed) Handbook of molecular microbial ecology I: Metagenomics and complementary approaches. Wiley-Blackwell, pp 603–625

    Google Scholar 

  49. Groh KJ et al (2013) Analysis of protein expression in zebrafish during gonad differentiation by targeted proteomics. Gen Comp Endocrinol 193:210–220

    Article  CAS  PubMed  Google Scholar 

  50. Oliveira IB et al (2017) Toxicity of emerging antifouling biocides to non-target freshwater organisms from three trophic levels. Aquat Toxicol 191:164–174

    Article  CAS  PubMed  Google Scholar 

  51. Tierbach A et al (2018) Glutathione S-transferase protein expression in different life stages of zebrafish (Danio rerio). Toxicol Sci 162(2):702–712

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Viant MR et al (2017) How close are we to complete annotation of metabolomes? Curr Opin Chem Biol 36:64–69

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. van Straalen NM, Feder ME (2012) Ecological and evolutionary functional genomics—how can it contribute to the risk assessment of chemicals? Environ Sci Technol 46(1):3–9

    Article  PubMed  CAS  Google Scholar 

  54. Groh KJ, Suter MJ-F (2015) Stressor-induced proteome alterations in zebrafish: a meta-analysis of response patterns. Aquat Toxicol 159:1–12

    Article  CAS  PubMed  Google Scholar 

  55. Tufi S et al (2016) Changes in neurotransmitter profiles during early zebrafish (Danio rerio) development and after pesticide exposure. Environ Sci Technol 50(6):3222–3230

    Article  CAS  PubMed  Google Scholar 

  56. Taylor NS, Gavin A, Viant MR (2018) Metabolomics discovers early-response metabolic biomarkers that can predict chronic reproductive fitness in individual Daphnia magna. Meta 8(3):42

    Google Scholar 

  57. Viant MR, Sommer U (2013) Mass spectrometry based environmental metabolomics: a primer and review. Metabolomics 9(1):144–158

    Article  CAS  Google Scholar 

  58. Shu L, Suter MJ-F, Räsänen K (2015) Evolution of egg coats: linking molecular biology and ecology. Mol Ecol 24(16):4052–4073

    Article  PubMed  Google Scholar 

  59. Sigg L et al (2014) Chemical aspects of nanoparticle ecotoxicology. CHIMIA Int J Chem 68(11):806–811

    Article  CAS  Google Scholar 

  60. Groh KJ et al (2015) Critical influence of chloride ions on silver ion-mediated acute toxicity of silver nanoparticles to zebrafish embryos. Nanotoxicology 9(1):81–91

    Article  CAS  PubMed  Google Scholar 

  61. Yue Y et al (2017) Interaction of silver nanoparticles with algae and fish cells: a side by side comparison. J Nanobiotechnol 15(1):16–16

    Article  CAS  Google Scholar 

  62. Aengenheister L et al (2019) Investigating the accumulation and translocation of titanium dioxide nanoparticles with different surface modifications in static and dynamic human placental transfer models. Eur J Pharm Biopharm 142:488–497

    Article  CAS  PubMed  Google Scholar 

  63. Wigginton NS et al (2010) Binding of silver nanoparticles to bacterial proteins depends on surface modifications and inhibits enzymatic activity. Environ Sci Technol 44(6):2163–2168

    Article  CAS  PubMed  Google Scholar 

  64. Yue Y et al (2016) Silver nanoparticle–protein interactions in intact rainbow trout gill cells. Environ Sci Nano 3(5):1174–1185

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marc F.-J. Suter .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature B.V.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Groh, K.J., Suter, M.FJ. (2020). Mass Spectrometry in Ecotoxicology. In: Sindona, G., Banoub, J.H., Di Gioia, M.L. (eds) Toxic Chemical and Biological Agents. NATO Science for Peace and Security Series A: Chemistry and Biology. Springer, Dordrecht. https://doi.org/10.1007/978-94-024-2041-8_6

Download citation

Publish with us

Policies and ethics