Skip to main content

There and Back Again: Lampreys in the 21st Century and Beyond

  • Chapter
  • First Online:
Lampreys: Biology, Conservation and Control

Part of the book series: Fish & Fisheries Series ((FIFI,volume 38))

Abstract

The 21st century is proving to be an exciting time to study lamprey biology. Lampreys have long provided important insights into key developments in vertebrate evolution; research in support of sea lamprey control in the Laurentian Great Lakes has made significant contributions to our understanding of lamprey biology; and there is now (near) global interest in the conservation of threatened lamprey species. Furthermore, we are beginning to see a convergence of these formerly discrete research areas, as well as greater interactions and knowledge exchange between researchers and managers from different geographic regions. In this conclusion to Volumes 1 and 2 of Lampreys: Biology, Conservation and Control, we provide an overview of some exciting advances in our knowledge of lamprey biology and potential challenges facing lampreys and lamprey biologists in the near future. Recent advances and remaining knowledge gaps in many aspects of fundamental lamprey biology are covered in other chapters in these two volumes; here, we focus on the intersection of biology, conservation, and control. For example, molecular analysis has resolved many of the previous uncertainties regarding lamprey phylogenetic relationships, but continued uncertainties (e.g., the relationship between “paired” parasitic and non-parasitic lampreys) and lack of an explicit phylogenetic framework contribute to ongoing confusion among biologists regarding correct lamprey nomenclature. Although lamprey taxonomy will no doubt continue to be revised as we refine our hypotheses regarding the evolutionary relationships among lampreys, it is important that we: (1) use consistent and accepted species names to enable accurate communication between researchers and managers from different regions; and (2) recognize that conservation legislation acknowledges biological diversity below the species level (i.e., evolutionarily significant units, ESUs) so that genetically or otherwise distinct lamprey populations are eligible for protection without prematurely or inconsistently describing each as a distinct species. Novel methodologies that are contributing to our understanding of lamprey biology and that have exciting applications to lamprey conservation and control include: (1) improvements to deepwater larval sampling methods to help evaluate the extent to which lentic and deep riverine habitats are used by different lamprey species; (2) improved tools for monitoring the spawning migration; (3) environmental DNA (eDNA) and pheromone detection assays that have the potential to provide cost-effective supplements to traditional lamprey survey methods; and (4) genetic and genomic tools that are being used in a variety of ways to help refine our understanding of lamprey biology (e.g., mating systems, larval dispersal and growth rates) and to aid conservation and control efforts (e.g., elucidating genetic stock structure, monitoring the success of translocation efforts). Not surprisingly, advances and challenges related to lamprey control and conservation are often “two sides of the same coin.” This is particularly true with respect to passage of upstream migrants at anthropogenic barriers, and knowledge of lamprey behavior at barriers is being used to both block sea lamprey migration in Great Lakes tributaries and enhance passage efficiency for other lampreys elsewhere. Achieving successful lamprey conservation and control will also require positive public and legislative attitudes towards species in need of conservation and continued public support and acceptance of sea lamprey control efforts. Pursuit of genetic control options in particular will need to address ethical and societal concerns.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Allendorf FW (2017) Genetics and the conservation of natural populations: allozymes to genomes. Mol Ecol 26:420–430

    Article  CAS  PubMed  Google Scholar 

  • Almeida PR, Quintella BR, Dias NM (2002) Movement of radio-tagged anadromous sea lamprey during the spawning migration in the River Mondego (Portugal). Hydrobiology 483:1–8

    Article  Google Scholar 

  • Aman JT, Docker MF, Grimes KW (2017) New England range extension of American Brook Lamprey (Lethenteron appendix), as confirmed by genetic analysis. Northeast Nat 24:536–543

    Article  Google Scholar 

  • Applegate VC (1950) Natural history of the sea lamprey, Petromyzon marinus, in Michigan. US Fish Wildl Serv Spec Sci Rep Fish 55:1–237

    Google Scholar 

  • April J, Mayden RL, Hanner RH, Bernatchez L (2011) Genetic calibration of species diversity among North America’s freshwater fishes. Proc Natl Acad Sci USA 108:10602–10607

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Armstrong JD, Bean CW, Wells A (2018) The Scottish invasion of pink salmon in 2017. J Fish Biol 93:8–11

    Article  PubMed  Google Scholar 

  • Arntzen EV, Mueller RP (2017) Video-based electroshocking platform to identify lamprey ammocoete habitats: field validation and new discoveries in the Columbia River basin. N Am J Fish Manag 37:676–681

    Article  Google Scholar 

  • Artamonova VS, Kucheryavyy AV, Pavlov DS (2011) Nucleotide sequences of the mitochondrial cytochrome oxidase subunit I (COI) gene of lamprey classified with Lethenteron camtschaticum and the Lethenteron reissneri complex show no species-level differences. Doklad Biol Sci 437:113–118

    Article  CAS  Google Scholar 

  • Baker CF, Stewart M, Fine JM, Sorensen PW (2009) Partial evolutionary divergence of a migratory pheromone between northern and southern hemisphere lampreys. In: Haro A, Smith KL, Rulifson RA et al (eds) Challenges for diadromous fishes in a dynamic global environment. Am Fish Soc Symp 69:845–846

    Google Scholar 

  • Bailey RM (1980) Comments on the classification and nomenclature of lampreys—an alternative view. Can J Fish Aquat Sci 37:1626–1629

    Article  Google Scholar 

  • Beamish RJ (1982) Lampetra macrostoma, a new species of freshwater parasitic lamprey from the west coast of Canada. Can J Fish Aquat Sci 39:736–747

    Article  Google Scholar 

  • Beamish RJ (1987) Evidence that parasitic and nonparasitic life history types are produced by one population of lamprey. Can J Fish Aquat Sci 44:1779–1782

    Article  Google Scholar 

  • Beamish RJ, Youson JH (1987) Life history and abundance of young adult Lampetra ayresi in the Fraser River and their possible impact on salmon and herring stocks in the Strait of Georgia. Can J Fish Aquat Sci 44:525–537

    Article  Google Scholar 

  • Beatty SJ, Morgan DL, Torre A (2007) Restoring ecological connectivity in the Margaret River: western Australia’s first rock-ramp fishways. Ecol Manag Restor 8:224–228

    Article  Google Scholar 

  • Bentacur-R R, Wiley EO, Arratia G et al (2017) Phylogenetic classification of bony fishes. BMC Evol Biol 17:162

    Article  Google Scholar 

  • Berg LS (1931) A review of the lampreys of the northern hemisphere. Ann Mus Zool Acad Sci URSS 32:87–116

    Google Scholar 

  • Bergstedt RA, Genovese JH (1994) New technique for sampling sea lamprey larvae in deepwater habitats. N Am J Fish Manag 14:449–452

    Article  Google Scholar 

  • Bergstedt RA, Seelye JG (1995) Evidence for lack of homing by sea lamprey. Trans Am Fish Soc 124:235–239

    Article  Google Scholar 

  • Bergstedt RA, Twohey MB (2007) Research to support sterile-male-release and genetic alteration techniques for sea lamprey control. J Great Lakes Res 33(Spec Issue 2):48–69

    Article  Google Scholar 

  • Biggs J, Ewald N, Valentini A et al (2015) Using eDNA to develop a national citizen science-based monitoring programme for the great crested newt (Triturus cristatus). Biol Conserv 183:19–28

    Article  Google Scholar 

  • Boguski DA, Reid SB, Goodman DH, Docker MF (2012) Genetic diversity, endemism and phylogeny of lampreys within the genus Lampetra sensu stricto (Petromyzontiformes: Petromyzontidae) in western North America. J Fish Biol 81:1891–1914

    Article  CAS  PubMed  Google Scholar 

  • Bracken FS, Hoelzel A, Hume JB, Lucas MC (2015) Contrasting population genetic structure among freshwater-resident and anadromous lampreys: the role of demographic history, differential dispersal and anthropogenic barriers to movement. Mol Ecol 24:1188–1204

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brant CO, Johnson NS, Li K, Buchinger TJ, Li W (2016) Female sea lamprey shift orientation toward a conspecific chemical cue to escape a sensory trap. Behav Ecol 27:810–819

    Article  Google Scholar 

  • Bravener GA, Twohey M (2016) Evaluation of a sterile-male release technique: a case study of invasive sea lamprey control in a tributary of the Laurentian Great Lakes. N Am J Fish Manag 36:1125–1138

    Article  Google Scholar 

  • Brumo AF, Grandmontagne L, Namitz SN, Markle DF (2009) Approaches for monitoring Pacific lamprey spawning populations in a coastal Oregon stream. In: Brown LR, Chase SD, Mesa MG, Beamish RJ, Moyle PB (eds) Biology, management, and conservation of lampreys in North America. Am Fish Soc Symp 72:203–222

    Google Scholar 

  • Bryan MB, Zalinski D, Filcek KB et al (2005) Patterns of invasion and colonization of the sea lamprey (Petromyzon marinus) in North America as revealed by microsatellite genotypes. Mol Ecol 14:3757–3773

    Article  CAS  PubMed  Google Scholar 

  • Buchinger TJ, Siefkes MJ, Zielinski BS, Brant CO, Li W (2015) Chemical cues and pheromones in the sea lamprey (Petromyzon marinus). Front Zool 12:32

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Buchinger TJ, Li K, Huertas M et al (2017a) Evidence for partial overlap of male olfactory cues in lampreys. J Exp Biol 220:497–506

    Article  PubMed  Google Scholar 

  • Buchinger TJ, Bussy U, Li K et al (2017b) Phylogenetic distribution of a male pheromone that may exploit a nonsexual preference in lampreys. J Evol Biol 30:2244–2254

    Article  CAS  PubMed  Google Scholar 

  • Buchinger TJ, Bussy U, Buchinger EG et al (2017c) Increased pheromone signaling by small male sea lamprey has distinct effects on female mate search and courtship. Behav Ecol Sociobiol 71:155

    Article  Google Scholar 

  • Carim KJ, Dysthe JC, Young MK, McKelvey KS, Schwartz MK (2016) A noninvasive tool to assess the distribution of Pacific lamprey (Entosphenus tridentatus) in the Columbia River basin. PLoS ONE 12:e0169334

    Article  CAS  Google Scholar 

  • Carstens BC, Pelletier TA, Reid NM, Satler JD (2013) How to fail at species delimitation. Mol Ecol 22:4369–4383

    Article  PubMed  Google Scholar 

  • Castro-Santos T, Shi X, Haro A (2017) Migratory behavior of adult sea lamprey and cumulative passage performance through four fishways. Can J Fish Aquat Sci 74:790–800

    Article  Google Scholar 

  • Chaitra MS, Vasudevan K, Shanker K (2004) The biodiversity bandwagon: the splitters have it. Curr Sci 86:897–899

    Google Scholar 

  • Clabough TS, Keefer ML, Caudill CC, Johnson CL, Peery CA (2012) Use of night video to enumerate adult Pacific lamprey passage at hydroelectric dams: challenges and opportunities to improve escapement estimates. N Am J Fish Manag 32:687–695

    Article  Google Scholar 

  • Clemens BJ, van de Wetering S, Kaufman J, Holt RA, Schreck CB (2009) Do summer temperatures trigger spring maturation in Pacific lamprey, Entosphenus tridentatus. Ecol Freshw Fish 18:418–426

    Article  Google Scholar 

  • Clemens BJ, Beamish RJ, Coates KC et al (2017a) Conservation challenges and research needs for Pacific Lamprey in the Columbia River basin. Fisheries 42:268–280

    Article  Google Scholar 

  • Clemens BJ, Wyss L, McCoun R et al (2017b) Temporal genetic population structure and interannual variation in migration behavior of Pacific Lamprey Entosphenus tridentatus. Hydrobiologia 794:223–240

    Article  Google Scholar 

  • Close DA, Fitzpatrick MS, Li HW (2002) The ecological and cultural importance of a species at risk of extinction, Pacific lamprey. Fisheries 27:19–25

    Article  Google Scholar 

  • Columbia River Inter-Tribal Fish Commission (2011) Tribal Pacific lamprey restoration plan for the Columbia River basin, Columbia River Inter-Tribal Fish Commission, Portland, OR. http://www.critfc.org/wp-content/uploads/2012/12/lamprey_plan.pdf. Accessed 12 Dec 2013

  • Connecticut River Atlantic Salmon Commission (2018) Connecticut River anadromous sea lamprey management plan. Connecticut River Atlantic Salmon Commission, Sunderland, MA. https://www.fws.gov/r5crc/pdf/CRASC-sea-lamprey-plan-final-2018-11-26-18.pdf. Accessed 02 Jan 2019

  • Corlett TR (2017) A bigger toolbox: biotechnology in biodiversity conservation. Trends Biotechnol 35:55–65

    Article  CAS  PubMed  Google Scholar 

  • COSEWIC (2015) Guidelines for recognizing designatable units. Committee on the Status of Endangered Wildlife in Canada. https://www.canada.ca/en/environment-climate-change/services/committee-status-endangered-wildlife/guidelines-recognizing-designatable-units.html. Accessed 26 Nov 2018

  • Creaser CW, Hubbs CL (1922) A revision of the Holarctic lampreys. Occas Pap Mus Zool Univ Mich 120:1–14

    Google Scholar 

  • Crother BI, Bonnett RM, Boundy J et al (2017) Scientific and standard English names of amphibians and reptiles of North America north of Mexico, with comments regarding confidence in our understanding, 8th edn. Herpetol Circ 43:1–102

    Google Scholar 

  • Dale PE, Knight JM, Griffin L et al (2014) Multi-agency perspectives on managing mangrove wetlands and the mosquitoes they produce. J Am Mosq Control 30:106–115

    Article  Google Scholar 

  • Dawson HA, Quintella BR, Almeida PR, Treble AJ, Jolley JC (2015) The ecology of larval and metamorphosing lampreys. In: Docker MF (ed) Lampreys: biology, conservation and control, vol 1. Springer, Dordrecht, pp 75–137

    Google Scholar 

  • Dearden PK, Gemmell NJ, Mercier OR et al (2018) The potential for the use of gene drives for pest control in New Zealand: a perspective. J R Soc N Z 48:225–244

    Article  Google Scholar 

  • DeCelles G, Zemeckis D (2014) Acoustic and radio telemetry. In: Cadrin SX, Kerr LA, Mariani S (eds) Stock identification methods: applications in fishery science, 2nd edn. Academic Press, New York, pp 397–428

    Chapter  Google Scholar 

  • Deiner K, Altermatt F (2014) Transport distance of invertebrate environmental DNA in a natural river. PLoS ONE 9:e88786

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Deiner K, Walser JC, Mächler E, Altermatt F (2015) Choice of capture and extraction methods affect detection of freshwater biodiversity from environmental DNA. Biol Conserv 183(Spec Issue):53–63

    Article  Google Scholar 

  • de Queiroz K (2007) Species concepts and species delimitation. Syst Biol 6:879–886

    Article  Google Scholar 

  • Derosier AL, Jones ML, Scribner KT (2007) Dispersal of sea lamprey larvae during early life: relevance for recruitment dynamics. Environ Biol Fish 78:271–284

    Article  Google Scholar 

  • Docker MF (2009) A review of the evolution of nonparasitism in lampreys and an update of the paired species concept. In: Brown LR, Chase SD, Mesa MG, Beamish RJ, Moyle PB (eds) Biology, management, and conservation of lampreys in North America. Am Fish Soc Symp 72:71–114

    Google Scholar 

  • Docker MF, Youson JH, Beamish RJ, Devlin RH (1999) Phylogeny of the lamprey genus Lampetra inferred from mitochondrial cytochrome b and ND3 gene sequences. Can J Fish Aquat Sci 56:2340–2349

    Article  CAS  Google Scholar 

  • Docker MF, Mandrak ME, Heath DD (2012) Contemporary gene flow between “paired” silver (Ichthyomyzon unicuspis) and northern brook (I. fossor) lampreys: implications for conservation. Conserv Genet 13:823–835

    Article  CAS  Google Scholar 

  • Docker MF, Hume JB, Clemens BJ (2015) Introduction: a surfeit of lampreys. In: Docker MF (ed) Lampreys: biology, conservation and control, vol 1. Springer, Dordrecht, pp 1–34

    Google Scholar 

  • Docker MF, Silver GS, Jolley JC, Spice EK (2016) Simple genetic assay distinguishes lamprey genera Entosphenus and Lampetra: comparison with existing genetic and morphological identification methods. N Am J Fish Manag 36:780–787

    Article  Google Scholar 

  • Dodd HR, Hayes DB, Baylis JR et al (2003) Low-head sea lamprey barrier effects on stream habitat and fish communities in the Great Lakes basin. J Great Lakes Res 29(Suppl 1):386–402

    Article  Google Scholar 

  • Dunlop ES, McLaughlin R, Adams JV et al (2018) Rapid evolution meets invasive species control: the potential for pesticide resistance in sea lamprey control. Can J Fish Aquat Sci 75:152–168

    Article  CAS  Google Scholar 

  • Eshenroder RL (2014) The role of the Champlain Canal and Erie Canal as putative corridors for colonization of Lake Champlain and Lake Ontario by Sea Lampreys. Trans Am Fish Soc 143:634–649

    Article  Google Scholar 

  • Esvelt KM, Smidler AL, Catteruccia F, Church GM (2014) Concerning RNA-guided gene drives for the alteration of wild populations. eLife 3:e03401

    Google Scholar 

  • Farlinger SP, Beamish RJ (1984) Recent colonization of a major salmon-producing lake in British Columbia by Pacific lamprey (Lampetra tridentata). Can J Fish Aquat Sci 41:278–285

    Article  Google Scholar 

  • Fine JM, Vrieze LA, Sorensen PW (2004) Evidence that petromyzontid lampreys employ a common migratory pheromone that is partially comprised of bile acids. J Chem Ecol 30:2091–2110

    Article  CAS  PubMed  Google Scholar 

  • Fine JM, Sisler SP, Vrieze LA, Swink WD, Sorensen PW (2006) A practical method for obtaining useful quantities of pheromones from sea lamprey and other fishes for identification and control. J Great Lakes Res 32:832–838

    Article  Google Scholar 

  • Fodale MF, Bronte CR, Bergstedt RA, Cuddy DW, Adams JV (2003) Classification of lentic habitat for sea lamprey (Petromyzon marinus) larvae using a remote seabed classification device. J Great Lakes Res 29(Suppl 1):190–203

    Article  Google Scholar 

  • Foulds WL, Lucas MC (2013) Extreme inefficiency of two conventional, technical fishways used by European river lamprey (Lampetra fluviatilis). Ecol Eng 58:423–433

    Article  Google Scholar 

  • Fraser DJ, Bernatchez L (2001) Adaptive evolutionary conservation: towards a unified concept for defining conservation units. Mol Ecol 10:2741–2752

    Article  CAS  PubMed  Google Scholar 

  • Frick KE, Corbett SC, Moser ML (2017) Climbing success of adult Pacific lamprey on a vertical wetted wall. Fish Manag Ecol 24:230–239

    Article  Google Scholar 

  • Froese R, Pauly D (eds) (2018) FishBase. http://www.fishbase.org, version 06/2018. Accessed 23 Nov 2018

  • Fryer JK (2008) Feasibility of using a computerized video fish counting system to estimate night time passage of salmon and lamprey at the Washington Shore Bonneville Dam fish counting station. Columbia River Inter-Tribal Fish Commission Completion Report, Portland, OR

    Google Scholar 

  • Funk WC, McKay JK, Hohenlohe PA, Allendorf FW (2012) Harnessing genomics for delineating conservation units. Trends Ecol Evol 27:489–496

    Article  PubMed  PubMed Central  Google Scholar 

  • Gaigher A, Launey S, Lasne E, Besnard A-L, Evanno G (2013) Characterization of thirteen microsatellite markers in river and brook lampreys (Lampetra fluviatilis and L. planeri). Conserv Genet Res 5:141–143

    Google Scholar 

  • Gallion DG, van Hevelingen TH, van der Leeuw BK (2016) Use of lamprey passage structures at Bonneville and John Day dams. U.S. Army Corps of Engineers 2016 Annual Report, Portland District, Fisheries Field Unit, Cascade Locks, OR

    Google Scholar 

  • Gilmore SA (2004) Genetic assessment of adult mating success and accuracy of statolith aging in the sea lamprey Petromyzon marinus. MS thesis, Michigan State University, Lansing, MI

    Google Scholar 

  • Gingera TD, Steeves TB, Boguski DA et al (2016) Detection and identification of lampreys in Great Lakes streams using environmental DNA. J Great Lakes Res 42:649–659

    Article  CAS  Google Scholar 

  • Goldberg C, Strickler K, Pilliod D (eds) (2015) Special issue: environmental DNA: a powerful new tool for biological conservation. Biol Conserv 183:1–102

    Google Scholar 

  • Goldberg CS, Turner CR, Deiner K et al (2016) Critical considerations for the application of environmental DNA methods to detect aquatic species. Methods Ecol Evol 7:1299–1307

    Article  Google Scholar 

  • Goodman DH, Reid SB (2017) Climbing above the competition: innovative approaches and recommendations for improving Pacific lamprey passage at fishways. Ecol Eng 107:224–232

    Article  Google Scholar 

  • Goodman DH, Reid SB, Docker MF, Haas GR, Kinziger AP (2008) Mitochondrial DNA evidence for high levels of gene flow among populations of a widely distributed anadromous lamprey Entosphenus tridentatus (Petromyzontidae). J Fish Biol 72:400–417

    Article  CAS  Google Scholar 

  • Goodman DH, Kinziger AP, Reid SB, Docker MF (2009) Morphological diagnosis of Entosphenus and Lampetra ammocoetes (Petromyzontidae) in Washington, Oregon, and California. In: Brown LR, Chase SD, Mesa MG, Beamish RJ, Moyle PB (eds) Biology, management, and conservation of lampreys in North America. Am Fish Soc Symp 72:223–232

    Google Scholar 

  • Goodman DH, Reid SB, Reyes RC, Wu BJ, Bridges BB (2017) Screen efficiency and implications for losses of lamprey macrophthalmia at California’s largest water diversions. N Am J Fish Manag 37:30–40

    Article  Google Scholar 

  • Grill G, Lehner B, Lumsdon AE et al (2015) An index-based framework for assessing patterns and trends in river fragmentation and flow regulation by global dams at multiple scales. Environ Res Lett 10:015001

    Article  Google Scholar 

  • Gustavson MS, Collins PC, Finarelli JA et al (2015) An eDNA assay for Irish Petromyzon marinus and Salmo trutta and field validation in running water. J Fish Biol 87:1254–1262

    Article  CAS  PubMed  Google Scholar 

  • Hansen MJ, Hayne DW (1962) Sea lamprey larvae in Ogontz Bay and Ogontz River, Michigan. J Wild Manag 26:237–247

    Article  Google Scholar 

  • Hansen MJ, Madenjian CP, Slade JW et al (2016) Population ecology of the sea lamprey (Petromyzon marinus) as an invasive species in the Laurentian Great Lakes and an imperiled species in Europe. Rev Fish Biol Fish 26:509–535

    Article  Google Scholar 

  • Harris JE, Jolley JC (2017) Estimation of occupancy, density, and abundance of larval lampreys in tributary river mouths upstream of dams on the Columbia River, Washington and Oregon. Can J Fish Aquat Sci 74:843–852

    Article  Google Scholar 

  • Harrison RG, Larson EL (2014) Hybridization, introgression, and the nature of species boundaries. J Hered 105:795–809

    Article  PubMed  Google Scholar 

  • Heath G, Childs D, Docker MF, McCauley DW, Whyard S (2014) RNA interference technology to control pest sea lampreys—a proof-of-concept. PLoS ONE 9:e88387

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hendry AP, Bolnick DI, Berner D, Peichel CL (2009) Along the speciation continuum in sticklebacks. J Fish Biol 75:2000–2036

    Article  CAS  PubMed  Google Scholar 

  • Hess J (2016) Insights gained through recent technological advancements for conservation genetics of Pacific lamprey (Entosphenus tridentatus). In: Orlov A, Beamish R (eds) Jawless fishes of the world, vol 2. Cambridge Scholars Publishing, Newcastle upon Tyne, pp 149–159

    Google Scholar 

  • Hess JE, Campbell NR, Close DA, Docker MF, Narum SR (2013) Population genomics of Pacific lamprey: adaptive variation in a highly dispersive species. Mol Ecol 22:2898–2916

    Article  CAS  PubMed  Google Scholar 

  • Hess JE, Caudill CC, Keefer ML et al (2014) Genes predict long distance migration and large body size in a migratory fish, Pacific lamprey. Evol Appl 7:1192–1208

    Article  PubMed  PubMed Central  Google Scholar 

  • Hess JE, Campbell NR, Docker MF et al (2015) Use of genotyping by sequencing data to develop a high-throughput and multifunctional SNP panel for conservation applications in Pacific lamprey. Mol Ecol 15:187–202

    Article  CAS  Google Scholar 

  • Hogg R, Coghlan SM Jr, Zydlewski J (2013) Anadromous sea lampreys recolonize a Maine coastal river tributary after dam removal. Trans Am Fish Soc 142:1381–1394

    Article  Google Scholar 

  • Hogg RS, Coghlan SM Jr, Zydlewski J, Gardner C (2015) Fish community response to a small-stream dam removal in a Maine coastal river tributary. Trans Am Fish Soc 144:467–479

    Article  Google Scholar 

  • Holbrook CM, Bergstedt R, Adams NS, Hatton TW, McLaughlin RL (2015) Fine-scale pathways used by adult sea lampreys during riverine spawning migrations. Trans Am Fish Soc 144:549–562

    Article  CAS  Google Scholar 

  • Holbrook CM, Jubar AK, Barber JM, Tallon K, Hondorp DW (2016) Telemetry narrows the search for sea lamprey spawning locations in the St. Clair-Detroit River system. J Great Lakes Res 42:1084–1091

    Article  Google Scholar 

  • Hubbs CL, Potter IC (1971) Distribution, phylogeny and taxonomy. In: Hardisty MW, Potter IC (eds) The biology of lampreys, vol 1. Academic Press, London, pp 1–65

    Google Scholar 

  • Hubbs CL, Trautman MB (1937) A revision of the lamprey genus Ichthyomyzon. Misc Publ Mus Zool Univ Mich 35:7–109

    Google Scholar 

  • Hubert N, Hanner R, Holm E et al (2008) Identifying Canadian freshwater fishes through DNA barcodes. PLoS ONE 3:e2490

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hume JB, Wagner CM (2018) A death in the family: sea lamprey (Petromyzon marinus) avoidance of confamilial alarm cues diminishes with phylogenetic distance. Ecol Evol 8:3751–3762

    Article  PubMed  PubMed Central  Google Scholar 

  • Hume B, Meckley TD, Johnson NS et al (2015) Application of a putative alarm cue hastens the arrival of invasive sea lamprey (Petromyzon marinus) at a trapping location. Can J Fish Aquat Sci 72:1799–1806

    Article  CAS  Google Scholar 

  • Hume JB, Recknagel H, Bean CW, Adams CE, Mable BK (2018a) RADseq and mate choice assays reveal unidirectional gene flow among three lamprey ecotypes despite weak assortative mating: insights into the formation and stability of multiple ecotypes in sympatry. Mol Ecol 27:4572–4590

    Article  CAS  PubMed  Google Scholar 

  • Hume JB, Lucas MC, Reinhardt U et al (2018b) Selective removal of sea lamprey via behavioral guidance in a model fishway: a proof of concept test. Great Lakes Fishery Commission Completion Report, Ann Arbor, MI

    Google Scholar 

  • Irwin BJ, Liu W, Bence JR, Jones ML (2012) Defining economic injury levels for sea lamprey control in the Great Lakes basin. N Am J Fish Manag 32:760–771

    Article  Google Scholar 

  • Isaac NJB, Mallet J, Mace GM (2004) Taxonomic inflation: influence on macroecology and conservation. Trends Ecol Evol 19:464–469

    Article  PubMed  Google Scholar 

  • Jane SF, Wilcox TM, McKelvey KS et al (2015) Distance, flow and PCR inhibition: eDNA dynamics in two headwater streams. Mol Ecol Resour 15:216–227

    Article  CAS  PubMed  Google Scholar 

  • Jensen JA, Jones ML (2018) Forecasting the response of Great Lakes sea lamprey (Petromyzon marinus) to barrier removals. Can J Fish Aquat Sci 75:1415–1426

    Article  Google Scholar 

  • Jerde CL, Mahon AR, Chadderton WL, Lodge DM (2011) “Sight-unseen” detection of rare aquatic species using environmental DNA. Conserv Lett 4:150–157

    Article  Google Scholar 

  • Johnson NS, Swink WD, Brenden TO et al (2014) Survival and metamorphosis of low-density populations of larval sea lampreys (Petromyzon marinus) in streams following lampricide treatment. J Great Lakes Res 40:155–163

    Article  Google Scholar 

  • Johnson NS, Buchinger TJ, Li W (2015a) Reproductive ecology of lampreys. In: Docker MF (ed) Lampreys: biology, conservation and control, vol 1. Springer, Dordrecht, pp 265–303

    Google Scholar 

  • Johnson NS, Tix JA, Hlina BL et al (2015b) A sea lamprey (Petromyzon marinus) sex pheromone mixture increases trap catch relative to a single synthesized component in specific environments. J Chem Ecol 41:311–321

    Article  CAS  PubMed  Google Scholar 

  • Johnson NS, Siefkes MJ, Wagner CM et al (2015c) Factors influencing capture of invasive sea lamprey in traps baited with a synthesized sex pheromone component. J Chem Ecol 41:913–923

    Article  CAS  PubMed  Google Scholar 

  • Johnson NS, Brenden TO, Swink WD, Lipps MA (2016) Survival and metamorphosis of larval sea lamprey (Petromyzon marinus) residing in Lakes Michigan and Huron near river mouths. J Great Lakes Res 42:1461–1469

    Article  Google Scholar 

  • Jolley JC, Silver GS, Whitesel TA (2012) Occupancy and detection of larval Pacific lampreys and Lampetra spp. in a large river: the Lower Willamette River. Trans Am Fish Soc 141:305–312

    Article  Google Scholar 

  • Jolley JC, Kovalchuk G, Docker MF (2016) River lamprey (Lampetra ayresii) outmigrant upstream of the John Day dam in the mid-Columbia River. Northwest Nat 97:48–52

    Article  Google Scholar 

  • Jolley JC, Silver GS, Harris JE, Whitesel TA (2018) Pacific lamprey recolonization of a Pacific northwest river following dam removal. River Res Appl 34:44–51

    Article  Google Scholar 

  • Jones ML, Irwin BJ, Hansen GJA et al (2009) An operating model for the integrated pest management of Great Lakes sea lampreys. Open Fish Sci J 2:59–73

    Article  Google Scholar 

  • Jones ML, Brenden TO, Irwin BJ (2015) Re-examination of sea lamprey control policies for the St. Marys River: completion of an adaptive management cycle. Can J Fish Aquat Sci 72:1538–1551

    Article  Google Scholar 

  • Kawai YL, Yura K, Shindo M et al (2015) Complete genome sequence of the mitochondrial DNA of the river lamprey, Lethenteron japonicum. Mitochondrial DNA 26:863–864

    Article  CAS  PubMed  Google Scholar 

  • Keefer ML, Daigle WR, Peery CA et al (2010) Testing adult Pacific lamprey performance at structural challenges in fishways. N Am J Fish Manag 30:376–385

    Article  Google Scholar 

  • Keefer ML, Caudill CC, Clabough TS et al (2013) Fishway passage bottleneck identification and prioritization: a case study of Pacific lamprey at Bonneville Dam. Can J Fish Aquat Sci 70:1551–1565

    Article  Google Scholar 

  • Keefer ML, Caudill CC, Johnson EL et al (2017) Inter-observer bias in fish classification and enumeration using dual-frequency identification sonar (DIDSON): a Pacific lamprey case study. Northwest Sci 91:41–53

    Article  Google Scholar 

  • Kemp PS (2016) Meta-analyses, metrics and motivation: mixed messages in the fish passage debate. River Res Appl 32:2116–2124

    Article  Google Scholar 

  • Kerr JR, Karageorgopoulos P, Kemp PS (2015) Efficacy of side-mounted vertically oriented bristle pass for improving upstream passage of European eel (Anguilla anguilla) and river lamprey (Lampetra fluviatilis) at an experimental Crump weir. Ecol Eng 85:121–131

    Article  Google Scholar 

  • Kimura M, Maruyama T, Crow JF (1963) Mutation load in small populations. Genetics 48:1303–1312

    CAS  PubMed  PubMed Central  Google Scholar 

  • King JJ, Wightman GD, Hanna G, Gilligan N (2015) River engineering works and lamprey ammocoetes: impacts, recovery, mitigation. Water Environ J 29:482–488

    Article  Google Scholar 

  • Kirk MA, Caudill CC (2016) Network analyses reveal intra- and interspecific differences in behavior when passing a complex migration obstacle. J Appl Ecol 54:836–845

    Article  Google Scholar 

  • Kirk MA, Caudill CC, Johnson EL, Keefer ML, Clabough TS (2015) Characterization of adult Pacific lamprey swimming behavior in relation to environmental conditions within large-dam fishways. Trans Am Fish Soc 144:998–1012

    Article  Google Scholar 

  • Kirk MA, Caudill CC, Tonina D, Syms JC (2016) Effects of water velocity, turbulence and obstacle length on the swimming capabilities of adult Pacific lamprey. Fish Manag Ecol 23:356–365

    Article  Google Scholar 

  • Kirk MA, Caudill CC, Syms JC, Tonina D (2017) Context-dependent responses to turbulence for an anguilliform swimming fish, Pacific lamprey, during passage of an experimental vertical-slot weir. Ecol Eng 106:296–307

    Article  Google Scholar 

  • Klar GT, Young RJ (2005) Integrated management of sea lampreys in the Great Lakes 2004. Annual Report to the Great Lakes Fishery Commission, Ann Arbor, MI

    Google Scholar 

  • Klemetsen A (2010) The charr problem revisited: exceptional phenotypic plasticity promotes ecological speciation in postglacial lakes. Freshw Rev 3:49–74

    Article  Google Scholar 

  • Kottelat M (1997) European freshwater fishes. An heuristic checklist of the freshwater fishes of Europe (exclusive of former USSR), with an introduction for non-systematists and comments on nomenclature and conservation. Biologia 52(Suppl 5):1–271

    Google Scholar 

  • Kottelat M, Freyhof J (2007) Handbook of European freshwater fishes. Kottelat, Cornol, Switzerland

    Google Scholar 

  • Kusakabe R, Tochinai S, Kuratani S (2003) Expression of foreign genes in lamprey embryos: an approach to study evolutionary changes in gene regulation. J Exp Zool B Mol Dev Evol 296:87–97

    Article  PubMed  Google Scholar 

  • Lacoursière-Roussel A, Côté G, Leclerc V, Bernatchez L (2016) Quantifying relative fish abundance with eDNA: a promising tool for fisheries management. J Appl Ecol 53:1148–1157

    Article  CAS  Google Scholar 

  • Lang NJ, Roe KJ, Renaud CB et al (2009) Novel relationships among lampreys (Petromyzontiformes) revealed by a taxonomically comprehensive molecular data set. In: Brown LR, Chase SD, Mesa MG, Beamish RJ, Moyle PB (eds) Biology, management, and conservation of lampreys in North America. Am Fish Soc Symp 72:41–55

    Google Scholar 

  • Lasne E, Sabatié M-R, Jeannot N, Cucherousset J (2014) The effects of dam removal on river colonization by sea lamprey Petromyzon marinus. Riv Res Appl 31:904–911

    Article  Google Scholar 

  • Lee DS, Weise JG (1989) Habitat selection of lentic larval lampreys: preliminary analysis based on research with a manned submersible. J Great Lakes Res 15:156–163

    Article  Google Scholar 

  • Lee WJ, Kocher TD (1995) Complete sequence of a sea lamprey (Petromyzon marinus) mitochondrial genome: early establishment of the vertebrate genome organization. Genetics 139:873–887

    CAS  PubMed  PubMed Central  Google Scholar 

  • Levin B, Ermakov A, Ermakov O et al (2016) Ukrainian brook lamprey Eudontomyzon mariae (Berg): phylogenetic position, genetic diversity, distribution, and some data on biology. In: Orlov A, Beamish R (eds) Jawless fishes of the world, vol 1. Cambridge Scholars Publishing, Newcastle upon Tyne, pp 58–82

    Google Scholar 

  • Li K, Scott AM, Riedy JJ et al (2017) Three novel bile alcohols of mature male sea lamprey (Petromyzon marinus) act as chemical cues for conspecifics. J Chem Ecol 43:543–549

    Article  CAS  PubMed  Google Scholar 

  • Li W, Twohey M, Jones M, Wagner M (2007) Research to guide use of pheromones to control sea lamprey. J Great Lakes Res 33(Spec Issue 2):70–86

    Article  CAS  Google Scholar 

  • Li Y (2014) Phylogeny of the lamprey genus Lethenteron Creaser and Hubbs 1922 and closely related genera using the mitochondrial cytochrome b gene and nuclear gene introns. MSc thesis, University of Manitoba, Winnipeg, MB

    Google Scholar 

  • Li Y, Xie W, Li Q (2016) Characterisation of the bacterial community structures in the intestine of Lampetra morii. Antonie Leeuwenhoek 109:979–986

    Article  CAS  PubMed  Google Scholar 

  • Lin B, Zhang Z, Wang Y et al (2008) Amplified fragment length polymorphism assessment of genetic diversity in Pacific lampreys. N Am J Fish Manag 28:1182–1193

    Article  Google Scholar 

  • Livermore J, Trainor M, Bednarski MS (2017) Successful spawning of anadromous Petromyzon marinus L. (sea lamprey) in a restored stream channel following dam removal. Northeast Nat 24:380–390

    Article  Google Scholar 

  • Lodge DM, Turner CR, Jerde CL et al (2012) Conservation in a cup of water: estimating biodiversity and population abundance from environmental DNA. Mol Ecol 21:2555–2558

    Article  PubMed  PubMed Central  Google Scholar 

  • Lucht JM (2015) Public acceptance of plant biotechnology and GM crops. Viruses 7:4254–4281

    Article  PubMed  PubMed Central  Google Scholar 

  • Luzier CW, Docker MF, Whitesel TA (2010) Characterization of 10 microsatellite loci for western brook lamprey Lampetra richardsoni. Conserv Genet Resour 2:71–74

    Article  Google Scholar 

  • Lynch M, Gabriel W (1990) Mutation load and the survival of small populations. Evolution 44:1725–1737

    Article  PubMed  Google Scholar 

  • Magilligan FJ, Nislow KH, Kynard BE, Hackman AM (2016) Immediate changes in stream channel geomorphology, aquatic habitat, and fish assemblages following dam removal in a small upland catchment. Geomorphology 252:158–170

    Article  Google Scholar 

  • Mahon AR, Jerde CL, Galaska M et al (2013) Validation of eDNA surveillance sensitivity for detection of Asian caps in controlled and field experiments. PLoS ONE e58316

    Google Scholar 

  • Maitland PS, Renaud CB, Quintella BR, Close DA, Docker MF (2015) Conservation of native lampreys. In: Docker MF (ed) Lampreys: biology, conservation and control, vol 1. Springer, Dordrecht, pp 375–428

    Google Scholar 

  • Manion PJ, Smith BR (1978) Biology of larval and metamorphosing sea lampreys, Petromyzon marinus, of the 1960 year class in the Big Garlic River, Michigan, Part II, 1966–72. Great Lakes Fish Comm Tech Rep 30:1–35

    Google Scholar 

  • Manousaki T, Qiu H, Noro M et al (2016) Molecular evolution in the lamprey genomes and its relevance to the timing of whole genome duplications. In: Orlov A, Beamish R (eds) Jawless fishes of the world, vol 1. Cambridge Scholars Publishing, Newcastle upon Tyne, pp 2–16

    Google Scholar 

  • Manzon RG, Youson JH, Holmes JA (2015) Lamprey metamorphosis. In: Docker MF (ed) Lampreys: biology, conservation and control, vol 1. Springer, Dordrecht, pp 139–214

    Google Scholar 

  • Marsden JE, Chipman BD, Pientka B, Schoch WF, Young BA (2010) Strategic plan for Lake Champlain fisheries. Great Lakes Fish Comm Misc Publ 2010–03:1–54

    Google Scholar 

  • von Martens E (1868) About some East Asian freshwater animals. Arch Naturgesch 34:1–64 [in German]

    Article  Google Scholar 

  • Martignac F, Daroux A, Baglinieri J-L, Ombredane D, Guillarde J (2015) The use of acoustic cameras in shallow waters: new hydroacoustic tools for monitoring migratory fish population: a review of DIDSON technology. Fish Fish 16:486–510

    Article  Google Scholar 

  • Martin H, White MM (2008) Intraspecific phylogeography of the Least Brook Lamprey (Lampetra aepyptera). Copeia 2008:579–585

    Article  Google Scholar 

  • Mateus CS, Alves MJ, Quintella BR, Almeida PR (2013a) Three new cryptic species of the lamprey genus Lampetra Bonnaterre, 1788 (Petromyzontiformes: Petromyzontidae) from the Iberian Peninsula. Contrib Zool 82:37–53

    Article  Google Scholar 

  • Mateus CS, Stange M, Berner D et al (2013b) Strong genome-wide divergence between sympatric European river and brook lampreys. Curr Biol 23:R649–R650

    Article  CAS  PubMed  Google Scholar 

  • Mateus CS, Almeida PR, Mesquita N, Quintella BR, Alves MJ (2016) European lampreys: new insights on postglacial colonization, gene flow and speciation. PLoS ONE 11:e0148107

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mayden RL (1997) A hierarchy of species concepts: the denouement in the saga of the species problem. In: Claridge MF, Dawah HA, Wilson MR (eds) Species: the units of diversity. Chapman and Hall, London, pp 381–423

    Google Scholar 

  • McCann EL, Johnson NS, Pangle KL (2018a) Corresponding long-term shifts in stream temperature and invasive fish migration. Can J Fish Aquat Sci 75:772–778

    Article  Google Scholar 

  • McCann EL, Johnson NS, Hrodey PJ, Pangle KL (2018b) Characterization of sea lamprey stream entry using dual-frequency identification sonar. Trans Am Fish Soc 147:514–524

    Article  Google Scholar 

  • McCauley DW, Docker MF, Whyard S, Li W (2015) Lampreys as diverse model organisms in the genomics era. BioScience 65:1046–1056

    Article  PubMed  PubMed Central  Google Scholar 

  • McFarlane CT, Docker MF (2009) Characterization of 14 microsatellite loci in the paired lamprey species Ichthyomyzon unicuspis and I. fossor and cross amplification in four other Ichthyomyzon species. Conserv Genet Resour 1:377–380

    Article  Google Scholar 

  • McKee AM, Spear SF, Pierson TW (2015) The effect of dilution and the use of a post-extraction nucleic acid purification column on the accuracy, precision, and inhibition of environmental DNA samples. Biol Conserv 183(Spec Issue):70–76

    Article  Google Scholar 

  • McKelvey KS, Young MK, Knotek EL et al (2016) Sampling large geographic areas for rare species using environmental DNA (eDNA): a study of bull trout Salvelinus confluentus occupancy in western Montana. J Fish Biol 88:1215–1222

    Article  CAS  PubMed  Google Scholar 

  • McLain AL, Dahl FH (1968) An electric beam trawl for the capture of larval lampreys. Trans Am Fish Soc 97:289–293

    Article  Google Scholar 

  • McLaughlin RL, Porto L, Noakes DLG et al (2006) Effects of low-head barriers on stream fishes: taxonomic affiliations and morphological correlates of sensitive species. Can J Fish Aquat Sci 63:766–779

    Article  Google Scholar 

  • McLaughlin RL, Hallett A, Pratt TC, O’Conner LM, McDonald DG (2007) Research to guide use of barriers, traps, and fishways to control sea lamprey. J Great Lakes Res 33(Spec Iss 2):7–19

    Article  Google Scholar 

  • McLean AR, Barber J, Bravener G, Rous AM, McLaughlin RL (2015) Understanding low success trapping invasive sea lampreys: an entry-level analysis. Can J Fish Aquat Sci 72:1876–1885

    Article  Google Scholar 

  • Meckley TD, Wagner CM, Gurarie E (2014) Coastal movements of migrating sea lamprey (Petromyzon marinus) in response to a partial pheromone added to river water: implications for management of invasive populations. Can J Fish Aquat Sci 71:533–544

    Article  CAS  Google Scholar 

  • Meckley TD, Gurarie E, Miller JR, Wagner CM (2017) How fishes find the shore: evidence for orientation to bathymetry from the non-homing sea lamprey. Can J Fish Aquat Sci 74:2045–2058

    Article  Google Scholar 

  • Meeuwig MH, Bayer JM, Reiche RA (2006) Morphometric discrimination of early life stage Lampetra tridentata and L. richardsoni (Petromyzonidae) from the Columbia River Basin. J Morph 267:623–633

    Article  PubMed  Google Scholar 

  • Mehta TK, Ravi V, Yamasaki S et al (2013) Evidence for at least six Hox clusters in the Japanese lamprey (Lethenteron japonicum). Proc Natl Acad Sci USA 110:16044–16049

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Merkes CM, McCalla SG, Jensen NR, Gaikowski MP, Amberg JJ (2014) Persistence of DNA in carcasses, slime and avian feces may effect interpretation of environmental DNA data. PLoS ONE 9:e113346

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mesa MG, Copeland ES (2009) Critical uncertainties and research needs for the restoration and conservation of native lampreys in North America. In: Brown LR, Chase SD, Mesa MG, Beamish RJ, Moyle PB (eds) Biology, management, and conservation of lampreys in North America. Am Fish Soc Symp 72:311–321

    Google Scholar 

  • Mesa MG, Magie RJ, Copeland ES (2010) Passage and behavior of radio-tagged adult Pacific lampreys (Entosphenus tridentatus) at the Willamette Falls project, Oregon. Northwest Sci 84:233–242

    Article  Google Scholar 

  • Moser ML, Close DA (2003) Assessing Pacific lamprey status in the Columbia River Basin. Northwest Sci 77:116–125

    Google Scholar 

  • Moser ML, Paradis RL (2017) Pacific lamprey restoration in the Elwha River drainage following dam removals. Am Curr 42:3–8

    Google Scholar 

  • Moser ML, Almeida PR, Kemp PS, Sorensen PW (2015) Lamprey spawning migration. In: Docker MF (ed) Lampreys: biology, conservation and control, vol 1. Springer, Dordrecht, pp 215–263

    Google Scholar 

  • Moyle, PB, Brown LR, Chase SD, Quiñones RM (2009) Status and conservation of lampreys in California. In: Brown LR, Chase SD, Mesa MG, Beamish RJ, Moyle PB (eds) Biology, management, and conservation of lampreys in North America. Am Fish Soc Symp 72:279–292

    Google Scholar 

  • Mueller R, Arntzen E, Nabelek M et al (2012) Laboratory testing of modified electroshocking system designed for deepwater juvenile lamprey sampling. Trans Am Fish Soc 141:841–845

    Article  Google Scholar 

  • Mullett KM, Heinrich JW, Adams JV et al (2003) Estimating lake-wide abundance of spawning-phase sea lampreys (Petromyzon marinus) in the Great Lakes: extrapolating from sampled streams using regression models. J Great Lakes Res 29(Suppl 1):240–252

    Article  Google Scholar 

  • Nathan LR, Simmons MD, Wegleitner B, Jerde CL, Mahon A (2014) Quantifying environmental DNA signals for aquatic invasive species across multiple detection platforms. Environ Sci Technol 48:12800–12806

    Article  CAS  PubMed  Google Scholar 

  • Neave FB, Mandrak NE, Docker MF, Noakes DL (2007) An attempt to differentiate sympatric Ichthyomyzon ammocoetes using meristic, morphological, pigmentation, and gonad analyses. Can J Zool 85:549–560

    Article  Google Scholar 

  • Negrea C, Thompson DE, Juhnke SD, Fryer DS, Loge FL (2014) Automatic detection and tracking of adult Pacific lampreys in underwater video collected at Snake and Columbia River fishways. N Am J Fish Manag 34:111–118

    Article  Google Scholar 

  • Ostberg CO, Chase DM, Hayes MC, Duda JJ (2018) Distribution and seasonal differences in Pacific lamprey and Lampetra spp eDNA across 18 Puget Sound watersheds. PeerJ e4496

    Google Scholar 

  • Page LM, Espinosa-Pérez H, Findley LT et al (2013) Common and scientific names of fishes from the United States, Canada, and Mexico, 7th edn. Am Fish Soc Spec Publ 34, Bethesda, MD

    Google Scholar 

  • Palsbøll PJ, Bérubé M, Allendorf FW (2007) Identification of management units using population genetic data. Trends Ecol Evol 22:11–16

    Article  PubMed  Google Scholar 

  • Pante E, Schoelinck C, Puillandre N (2014) From integrative taxonomy to species description: one step beyond. Syst Biol 64:152–160

    Article  PubMed  Google Scholar 

  • Pante E, Puillandre N, Vircel A et al (2015) Species are hypotheses: avoid connectivity assessments based on pillars of sand. Mol Ecol 24:525–544

    Article  PubMed  Google Scholar 

  • Parker KA (2018) Evidence for the genetic basis and inheritance of ocean and river-maturing ecotypes of Pacific lamprey (Entosphenus tridentatus) in the Klamath River, California. MS thesis, Humboldt State University, Arcata, CA

    Google Scholar 

  • Peng L, Lu J, Sun X-W (2016) Mitochondrial DNA sequence of Lampetra morri. Mitochondrial DNA 27:1391–1392

    Article  CAS  PubMed  Google Scholar 

  • Pereira A, Almada V, Doadrio I (2011) Genetic relationships of brook lampreys of the genus Lampetra in a Pyrenean stream in Spain. Ichthyol Res 58:278–282

    Article  Google Scholar 

  • Pereira A, Doadrio I, Robalo J, I, Almada V (2014) Different stocks of brook lamprey in Spain and their origin from Lampetra fluviatilis at two distinct times and places. J Fish Biol 85:1793–1798

    Article  CAS  PubMed  Google Scholar 

  • Pereira E, Quintella BR, Mateus CS et al (2017) Performance of a vertical-slot fish pass for the sea lamprey Petromyzon marinus L. and habitat recolonization. Riv Res Appl 33:16–26

    Article  Google Scholar 

  • Petersen Lewis RS (2009) Yurok and Karuk traditional ecological knowledge: Insights into Pacific lamprey populations of the Lower Klamath Basin. In: Brown LR, Chase SD, Mesa MG, Beamish RJ, Moyle PB (eds) Biology, management, and conservation of lampreys in North America. Am Fish Soc Symp 72:1–39

    Google Scholar 

  • Port JA, O’Donnell JL, Romero-Maraccini OC et al (2016) Assessing vertebrate biodiversity in kelp forest ecosystem using environmental DNA. Mol Ecol 25:527–541

    Article  CAS  PubMed  Google Scholar 

  • Porto LM, McLaughlin RL, Noakes DLG (1999) Low-head barrier dams restrict movements of fishes in two Lake Ontario streams. N Am J Fish Manag 138:652–665

    Google Scholar 

  • Potter IC, Gill HS, Renaud CB, Haoucher D (2015) The taxonomy, phylogeny, and distribution of lampreys. In: Docker MF (ed) Lampreys: biology, conservation and control, vol 1. Springer, Dordrecht, pp 35–73

    Google Scholar 

  • Pratt TC, O’Conner LM, Hallett AG et al (2009) Balancing aquatic habitat fragmentation and control of invasive species: enhancing selective fish passage at sea lamprey control barriers. Trans Am Fish Soc 138:652–665

    Article  Google Scholar 

  • Pu J, Ren J, Zhang Z et al (2016) Complete mitochondrial genomes of Korean lamprey (Lethenteron morii) and American brook lamprey (L. appendix). Mitochondrial DNA 27:1860–1861

    Google Scholar 

  • Quinn TP, McGinnity P, Reed TE (2016) The paradox of “premature migration” by adult anadromous salmonid fishes: patterns and hypotheses. Can J Fish Aquat Sci 73:1015–1030

    Article  Google Scholar 

  • Rees HC, Bishop K, Middleditch DJ et al (2014) The application of eDNA for monitoring of the great crested newt in the UK. Ecol Evol 4:4023–4032

    Article  PubMed  PubMed Central  Google Scholar 

  • Reid SB, Goodman DH (2015) Detectability of Pacific lamprey occupancy in western drainages: implications for distribution surveys. Trans Am Fish Soc 144:315–322

    Article  Google Scholar 

  • Reid SB, Goodman DH (2016a) Pacific lamprey in coastal drainages of California: occupancy patterns and contraction of the southern range. Trans Am Fish Soc 145:703–711

    Article  Google Scholar 

  • Reid SB, Goodman DH (2016b) Free-swimming speeds and behavior in adult Pacific lamprey, Entosphenus tridentatus. Environ Biol Fish 99:969–974

    Article  Google Scholar 

  • Ren J, Pu J, Buchinger T et al (2015) The mitogenomes of the pouched lamprey (Geotria australis) and least brook lamprey (Lampetra aepyptera) with phylogenetic considerations. Mitochondrial DNA 27:3560–3562

    Article  PubMed  CAS  Google Scholar 

  • Ren J, Buchinger T, Pu J, Jia L, Li W (2016) Complete mitochondrial genomes of paired species northern brook lamprey (Ichthyomyzon fossor) and silver lamprey (I. unicuspis). Mitochondrial DNA 27:1862–1863

    CAS  PubMed  Google Scholar 

  • Renaud CB (2011) Lampreys of the world: an annotated and illustrated catalogue of lamprey species known to date. FAO Species Cat Fish Purp 5, FAO, Rome

    Google Scholar 

  • Renaud CB, Docker MF, Mandrak NE (2009) Taxonomy, distribution, and conservation of lampreys in Canada. In: Brown LR, Chase SD, Mesa MG, Beamish RJ, Moyle PB (eds) Biology, management, and conservation of lampreys in North America. Am Fish Soc Symp 72:293–309

    Google Scholar 

  • Rey JR, Walton WE, Wolfe RJ et al (2012) North American wetlands and mosquito control. Int J Environ Res Public Health 9:4537–4605

    Article  PubMed  PubMed Central  Google Scholar 

  • Richards JE, Beamish RJ, Beamish FWH (1982) Descriptions and keys for ammocoetes of lampreys from British Columbia, Canada. Can J Fish Aquat Sci 39:1484–1495

    Article  Google Scholar 

  • Rodríguez-Muñoz R, Waldman JR, Grunwald C, Roy NK, Wirgin I (2004) Absence of shared mitochondrial DNA haplotypes between sea lamprey from North American and Spanish rivers. J Fish Biol 64:783–787

    Article  Google Scholar 

  • Rooney SM, Wightman G, Ó’Conchúir R, King JJ (2015) Behaviour of sea lamprey (Petromyzon marinus L.) at man-made obstacles during upriver spawning migration: use of telemetry to assess weir modifications for improved passage. Biol Environ Proc R Ir Acad 115:125–136

    Article  Google Scholar 

  • Rougemont Q, Gaigher A, Lasne E et al (2015) Low reproductive isolation and highly variable levels of gene flow reveal limited progress towards speciation between European river and brook lampreys. J Evol Biol 28:2248–2263

    Article  CAS  PubMed  Google Scholar 

  • Rougemont Q, Roux C, Neuenschwander S et al (2016) Reconstructing the demographic history of divergence between European river and brook lampreys using approximate Bayesian computations. PeerJ 4:e1910

    Article  PubMed  PubMed Central  Google Scholar 

  • Rougemont Q, Gagnaire PA, Perrier C et al (2017) Inferring the demographic history underlying parallel genomic divergence among pairs of parasitic and nonparasitic lamprey ecotypes. Mol Ecol 26:142–162

    Article  CAS  PubMed  Google Scholar 

  • Rous AM, McLean AR, Barber J et al (2017) Spatial mismatch between sea lamprey behaviour and trap location explains low success at trapping for control. Can J Fish Aquat Sci 74:2085–2097

    Article  Google Scholar 

  • Roussel J-M, Paillison J-M, Tréguier A, Petit E (2015) The downside of eDNA as survey tool in water bodies. J Appl Ecol 52:823–826

    Article  CAS  Google Scholar 

  • Ryder OA (1986) Species conservation and systematics: the dilemma of subspecies. Trends Ecol Evol 1:9–10

    Article  Google Scholar 

  • Sanchez NK, Corniuk N, Reinhardt U (2017) Effects of submergence depths on swimming capacity of sea lamprey. McNair Sch Res J 10:11

    Google Scholar 

  • Schedina IM, Pfautsch S, Hartmann S et al (2014) Isolation and characterization of eight microsatellite loci in the brook lamprey Lampetra planeri (Petromyzontiformes) using 454 sequence data. J Fish Biol 85:960–964

    Article  CAS  PubMed  Google Scholar 

  • Schleen LP, Christie GC, Heinrich RA et al (2003) Development and implementation of an integrated program for control of sea lamprey in the St Marys River. J Great Lakes Res(Suppl 1):677–693

    Article  Google Scholar 

  • Schlick-Steiner BC, Steiner FM, Seifert B et al (2010) Integrative taxonomy: a multisource approach to exploring biodiversity. Annu Rev Entomol 55:421–438

    Article  CAS  PubMed  Google Scholar 

  • Schloesser NA, Merkes CM, Rees CB et al (2018) Correlating sea lamprey density with environmental DNA detections in the lab. Manag Biol Invasion 9:483–495

    Article  Google Scholar 

  • Schuldt RJ, Goold R (1980) Changes in the distribution of native lampreys in Lake Superior tributaries in response to sea lamprey (Petromyzon marinus) control, 1953–77. Can J Fish Aquat Sci 37:1872–1885

    Article  Google Scholar 

  • Scott AM, Li K, Li W (2018) The identification of sea lamprey pheromones using bioassay-guided fractionation. J Vis Exp 137:e58059

    Google Scholar 

  • Scott WB, Crossman EJ (1973) Freshwater fishes of Canada. Bull Fish Res Board Can 184, Ottawa

    Google Scholar 

  • Shafer ABA, Wolf JBW, Alves PC et al (2015) Genomics and the challenging translation into conservation practice. Trends Ecol Evol 30:78–87

    Article  PubMed  Google Scholar 

  • Sherburne S, Reinhardt UG (2016) First test of a species-selective adult sea lamprey migration barrier. J Great Lakes Res 42:893–898

    Article  Google Scholar 

  • Siefkes MJ (2017) Use of physiological knowledge to control the invasive sea lamprey (Petromyzon marinus) in the Laurentian Great Lakes. Conserv Physiol 5:cox031

    Google Scholar 

  • Sigsgaard AA, Carl H, Moller P, Thomsen PF (2015) Monitoring the near-extinct European weather loach in Denmark based on environmental DNA from water samples. Biol Conserv 183:46–52

    Article  Google Scholar 

  • Silva S, Macaya-Solis C, Lucas MC (2017a) Energetically efficient behaviour may be common in biology, but it is not universal: a test of selective tidal stream transport in a poor swimmer. Mar Ecol Prog Ser 584:161–174

    Article  Google Scholar 

  • Silva S, Lowry M, Macaya-Solis C, Byatt B, Lucas MC (2017b) Can navigation locks be used to help migratory fishes with poor swimming performance pass tidal barrages? A test with lampreys. Ecol Eng 102:291–302

    Article  Google Scholar 

  • Smith JJ, Kuraku S, Holt C et al (2013) Sequencing of the sea lamprey (Petromyzon marinus) genome provides insights into vertebrate evolution. Nat Genet 45:415–421

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smith JJ, Timoshevskaya N, Ye C et al (2018) The sea lamprey germline genome provides insights into programmed genome rearrangement and vertebrate evolution. Nat Genet 50:270–277

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sorensen PW, Johnson NJ (2016) Theory and application of semiochemicals in nuisance fish control. J Chem Ecol 42:698–715

    Article  CAS  PubMed  Google Scholar 

  • Sorensen PW, Fine JM, Dvornikovs V et al (2005) Mixture of new sulfated steroids functions as a migratory pheromone in the sea lamprey. Nat Chem Biol 1:324–328

    Article  CAS  PubMed  Google Scholar 

  • Sower SA (2015) The reproductive hypothalamic-pituitary axis in lampreys. In: Docker MF (ed) Lampreys: biology, conservation and control, vol 1. Springer, Dordrecht, pp 305–373

    Google Scholar 

  • Spice EK, Whitesel TA, McFarlane CT, Docker MF (2011) Characterization of 12 microsatellite loci for the Pacific lamprey, Entosphenus tridentatus (Petromyzontidae), and cross-amplification in five other lamprey species. Genet Mol Res 10:3246–3250

    Article  CAS  PubMed  Google Scholar 

  • Spice EK, Goodman DH, Reid SB, Docker MF (2012) Neither philopatric nor panmictic: microsatellite and mtDNA evidence suggests lack of natal homing but limits to dispersal in Pacific lamprey. Mol Ecol 21:2916–2930

    Article  PubMed  Google Scholar 

  • Spice EK, Whitesel TA, Silver GS, Docker MF (2019) Contemporary and historical river connectivity influence population structure in western brook lamprey in the Columbia River Basin. Conserv Genet 20:299–314

    Article  Google Scholar 

  • Square T, Romášek M, Jandzik D et al (2015) CRISPR/Cas9-mediated mutagenesis in the sea lamprey Petromyzon marinus: a powerful tool for understanding ancestral gene functions in vertebrates. Development 142:4180–4187

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stacey N, Sorensen P (2009) Hormonal pheromones in fish. In: Pfaff DW, Arnold AP, Etgen AM, Fahrback SE, Rubin RT (eds) Hormones, brain and behavior, vol 2, 2nd edn. Elsevier, San Diego, pp 639–682

    Chapter  Google Scholar 

  • Steeves TB, Slade JW, Fodale MF, Cuddy DW, Jones ML (2003) Effectiveness of using backpack electrofishing gear for collecting sea lamprey (Petromyzon marinus) larvae in Great Lakes tributaries. J Great Lakes Res 29(Suppl 1):161–173

    Article  Google Scholar 

  • Stewart M, Baker CF (2012) A sensitive analytical method for quantifying petromyzonol sulfate ins water as a potential tool for population monitoring of the southern pouched lamprey, Geotria australis, in New Zealand streams. J Chem Ecol 38:135–144

    Article  CAS  PubMed  Google Scholar 

  • Stewart M, Baker CF, Cooney T (2011) A rapid, sensitive, and selective method for quantitation of lamprey migratory pheromones in river water. J Chem Ecol 37:1203–1207

    Article  CAS  PubMed  Google Scholar 

  • Tablerlet P, Coissac R, Hajibabaei M, Rieseberg L (eds) (2012) Molecular ecology special issue on environmental DNA. Mol Ecol 2:1789–2050

    Google Scholar 

  • Takeshima H, Yokoyama R, Nishida M, Yamazaki Y (2005) Isolation of microsatellite loci in the threatened brook lamprey Lethenteron sp. N. Mol Ecol Notes 5:812–814

    Article  CAS  Google Scholar 

  • Taverny C, Lassalle G, Ortusi I et al (2012) From shallow to deep waters: habitats used by larval lampreys (genus Petromyzon and Lampetra) over a western European basin. Ecol Freshw Fish 21:87–99

    Article  Google Scholar 

  • Taylor EB (1999) Species pairs of north temperate freshwater fishes: evolution, taxonomy, and conservation. Rev Fish Biol Fish 9:299–324

    Article  Google Scholar 

  • Taylor EB, Harris LN, Spice EK, Docker MF (2012) Microsatellite DNA analysis of parapatric lamprey (Entosphenus spp.) populations: implications for evolution, taxonomy, and conservation of a Canadian endemic. Can J Zool 90:291–303

    Article  CAS  Google Scholar 

  • Thresher RE, Jones M, Drake DAR (2019a) Evaluating active genetic options for the control of Sea Lampreys (Petromyzon marinus) in the Laurentian Great Lakes. Can J Fish Aquat Sci (in press)

    Google Scholar 

  • Thresher RE, Jones M, Drake DAR (2019b) Stakeholder attitudes towards the use of recombinant technology to manage the impact of an invasive species: Sea Lamprey in the North American Great Lakes. Biol Invasion 21:575–586

    Article  Google Scholar 

  • Tilesius von Tilenau WG (1811) Piscium camtschaticorum descriptions et icones. Mém Acad Imp Sci St-Pétersbg 3:225–285

    Google Scholar 

  • Tummers JS, Winter E, Silva S et al (2016) Evaluating the effectiveness of a Larinier super active baffle fish pass for European river lamprey Lampetra fluviatilis before and after modification with wall-mounted studded tiles. Ecol Eng 91:183–194

    Article  Google Scholar 

  • Tummers JS, Kerr JR, O’Brien P, Kemp P, Lucas MC (2018) Enhancing the upstream passage of river lamprey at a microhydropower installation using horizontally-mounted studded tiles. Ecol Eng 125:87–97

    Article  Google Scholar 

  • Tutman P, Freyhof J, Dulcic J, Glamuzina B, Geiger M (2017) Lampetra soljani, a new brook lamprey from the southern Adriatic Sea basin (Petromyzontiformes: Petromyzontidae). Zootaxa 4273:531–548

    Article  PubMed  Google Scholar 

  • Ulibarri RM, Bonar SA, Rees C et al (2017) Comparing efficiency of American Fisheries Society standard snorkeling techniques to environmental DNA sampling techniques. N Am J Fish Manag 37:644–651

    Article  Google Scholar 

  • United States Fish and Wildlife Service (1996) Policy regarding the recognition of distinct vertebrate population segments under the Endangered Species Act. Federal Regist 61:4722–4725

    Google Scholar 

  • Urdaci MC, Taverny C, Élie A-M, Élie P (2014) A genetic method to differentiate Petromyzon marinus ammocoetes from those of the paired species Lampetra fluviatilis and L. planeri. Cybium 38:3–7

    Google Scholar 

  • Van Leeuwen T, Demaeght P, Osborne EJ et al (2012) Population bulk segregant mapping uncovers resistance mutations and the mode of action of a chitin synthesis inhibitor in arthropods. Proc Natl Acad Sci USA 109:4407–4412

    Article  PubMed  PubMed Central  Google Scholar 

  • Vladykov VD, Kott E (1979) A new parasitic species of the Holarctic lamprey genus Entosphenus Gill, 1862 (Petromyzonidae) from Klamath River, in California and Oregon. Can J Zool 57:808–823

    Article  Google Scholar 

  • Vogler AP, Monaghan MT (2007) Recent advances in DNA taxonomy. J Zool Syst Evol Res 45:1–10

    Article  Google Scholar 

  • Vowles AS, Don AM, Karageorgopoulos P, Worthington TA, Kemp PS (2015) Efficacy of a dual density studded fish pass designed to mitigate for impeded upstream passage of juvenile European eels (Anguilla anguilla) at a model Crump weir. Fish Manag Ecol 22:307–316

    Article  Google Scholar 

  • Vowles AS, Don AM, Karageorgopoulos P, Kemp PS (2017) Passage of European eel and river lamprey at a model weir provisioned with studded tiles. J Ecohydraul 2:88–98

    Article  Google Scholar 

  • Wagner WC, Stauffer TM (1962) Sea lamprey larvae in lentic environments. Trans Am Fish Soc 91:384–387

    Article  Google Scholar 

  • Waldman JR, Grunwald C, Roy NK, Wirgin II (2004) Mitochondrial DNA analysis indicates sea lampreys are indigenous to Lake Ontario. Trans Am Fish Soc 133:950–960

    Article  Google Scholar 

  • Waldman JR, Grunwald C, Wirgin I (2006) Evaluation of the native status of sea lampreys in Lake Champlain based on mitochondrial DNA sequencing analysis. Trans Am Fish Soc 135:1076–1085

    Article  CAS  Google Scholar 

  • Waldman J, Grunwald C, Wirgin I (2008) Sea lamprey Petromyzon marinus: an exception to the rule of homing in anadromous fishes. Biol Lett 4:659–662

    Article  PubMed  PubMed Central  Google Scholar 

  • Waldman J, Daniels R, Hickerson M, Wirgin I (2009) Mitochondrial DNA analysis indicates sea lampreys are indigenous to Lake Ontario: response to comment. Trans Am Fish Soc 138:1190–1197

    Article  Google Scholar 

  • Wang C, Schaller H (2015) Conserving Pacific Lamprey through collaborative efforts. Fisheries 40:72–79

    Article  Google Scholar 

  • Wang H, Johnson N, Bernardy J, Hubert T, Li W (2013) Monitoring sea lamprey pheromones and their degradation using rapid stream-side extraction coupled with UPLC-MS/MS. J Sep Sci 36:1612–1620

    Article  CAS  PubMed  Google Scholar 

  • Waples RS (1991) Pacific salmon, Oncorhynchus spp., and the definition of “species” under the Endangered Species Act. Mar Fish Rev 53:11–22

    Google Scholar 

  • Waples RS (1995) Evolutionarily significant units and the conservation of biological diversity under the Endangered Species Act. In: Nielsen JL Powers GA (eds) Evolution and the aquatic ecosystem: defining unique units in population conservation. Am Fish Soc Symp 17:8–27

    Google Scholar 

  • Webber BL, Raghu S, Edwards OR (2015) Is CRISPR-based gene drive a biocontrol silver bullet or global conservation threat. Proc Natl Acad Sci USA 112:10565–10567

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • White MM (2014) Intraspecific phylogeography of the American Brook Lamprey, Lethenteron appendix (DeKay, 1842). Copeia 2014:513–518

    Article  Google Scholar 

  • Whitlock SL, Schultz LD, Schreck CB, Hess JE (2017) Using genetic pedigree reconstruction to estimate effective spawner abundance from redd surveys: an example involving Pacific lamprey (Entosphenus tridentatus). Can J Fish Aquat Sci 74:1646–1653

    Article  CAS  Google Scholar 

  • Wilcox TM, McKelvey KS, Young MK et al (2013) Robust detection of rare species using environmental DNA: the importance of primer specificity. PLoS ONE 8:e59520

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wilcox TM, McKelvey KS, Young MK et al (2016) Understanding environmental DNA detection probabilities: a case study using a stream-dwelling char Salvelinus fontinalis. Biol Conserv 194:209–216

    Article  Google Scholar 

  • Willi Y, Griffin P, Van Buskirk J (2013) Drift load in populations of small size and low density. Heredity 110:296–302

    Article  CAS  PubMed  Google Scholar 

  • World Commission on Dams (2000) Dams and development: a new framework for decision-making. Earthscan Publications Ltd, London

    Google Scholar 

  • Xi X, Johnson NS, Brant CO et al (2011) Quantification of a male sea lamprey pheromone in tributaries of Laurentian Great Lakes by liquid chromatography tandem mass spectrometry. Environ Health Tech 45:6437–6443

    CAS  Google Scholar 

  • Yamazaki Y, Goto A, Nishida M (2003) Mitochondrial DNA sequence divergence between two cryptic species of Lethenteron, with reference to an improved identification technique. J Fish Biol 62:591–609

    Article  CAS  Google Scholar 

  • Yamazaki Y, Yokoyama R, Nishida M, Goto A (2006) Taxonomy and molecular phylogeny of Lethenteron lampreys in eastern Eurasia. J Fish Biol 68:251–269

    Article  Google Scholar 

  • Yamazaki Y, Yokoyama R, Nagai T, Goto A (2014) Population structure and gene flow among anadromous Arctic lamprey (Lethenteron camtschaticum) populations deduced from polymorphic microsatellite loci. Environ Biol Fish 97:43–52

    Article  Google Scholar 

  • Yan S-K, Liu R-H, Jin H-Z et al (2015) “Omics” in pharmaceutical research: overview, applications, challenges, and future perspectives. Chin J Nat Med 13:3–21

    PubMed  Google Scholar 

  • Yan X, Meng W, Wu F et al (2016) The nuclear DNA content and genetic diversity of Lampetra morii. PLoS ONE 11:e0157494

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zu Y, Zhang X, Ren J et al (2016) Biallelic editing of a lamprey genome using the CRISPR/Cas9 system. Sci Rep 6:23496

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge Drs. Tyler J. Buchinger and Mary L. Moser for providing insightful comments on an earlier draft of this chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Margaret F. Docker .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature B.V.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Docker, M.F., Hume, J.B. (2019). There and Back Again: Lampreys in the 21st Century and Beyond. In: Docker, M. (eds) Lampreys: Biology, Conservation and Control. Fish & Fisheries Series, vol 38. Springer, Dordrecht. https://doi.org/10.1007/978-94-024-1684-8_7

Download citation

Publish with us

Policies and ethics