Skip to main content

Design, Analysis and Application of Dynamic Visual Cryptography for Visual Inspection of Biomedical Systems

  • Conference paper
  • First Online:
Nanostructured Materials for the Detection of CBRN

Abstract

Health care industry has a growing need for advanced tools that enables the discovery the existence or concentration of biological analytes. In this article a concept of novel cantilever-type microsystem platform in the field of biomechanics using optical technique of image encryption and communication scheme based on computer generated holography is proposed. An image hiding technique based on computer generated holography and dynamic visual cryptography is employed. Dynamic visual cryptography is a visual cryptography scheme based on time-averaging geometric moiré. It is used together with Gerchberg–Saxton algorithm and 3D microstructure manufacturing techniques to design the optical scheme. Stochastic moiré grating is used to embed the secret image into a cover image. The image can visually decoded by a naked eye – the secret is revealed if the amplitude of harmonic oscillations in the Fourier plane corresponds to an accurately preselected value. The phase information of computer generated hologram is then formed on a piezoelectric cantilever-type microsystem platform using electron beam lithography. It serves as an optical element for visual inspections of dynamical changes in investigated biological environment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Yeknami AF (2016) A 300-mV modulator using a gain-enhanced, inverter-based amplifier for medical implant devices. J Low Power Electron Appl 6(1):1

    Article  Google Scholar 

  2. Koenig O, Zengerle D, Perle N, Hossfeld S, Neumann B, Behring A, Avci-Adali M, Walker T, Schlensak C, Wendel HP, Nolte A (2017) RNA-eluting surfaces for the modulation of gene expression as a novel stent concept. Pharmaceuticals 10(1):23

    Article  Google Scholar 

  3. Su J, Xu H, Sun J, Gong X, Zhao H (2013) Dual delivery of BMP-2 and bFGF from a new nano-composite scaffold, loaded with vascular stents for large-size mandibular defect regeneration. Int J Mol Sci 14(6):12714

    Article  Google Scholar 

  4. Xu H, Su J, Sun J, Ren T (2012) Preparation and characterization of new nano-composite scaffolds loaded with vascular stents. Int J Mol Sci 13(3):3366

    Article  Google Scholar 

  5. An P, Yuan W, Ren S (2009) MEMS biomimetic acoustic pressure gradient sensitive structure for sound source localization. Sensors 9(7):5637

    Article  Google Scholar 

  6. Ilik B, Koyuncuoglu A, Ulusan H, Chamanian S, Isik D, Sardan-Sukas O, Kulah H (2017) Thin film PZT acoustic sensor for fully implantable cochlear implants. Proceedings 1(4):366

    Article  Google Scholar 

  7. Bonanno A, Sanginario A, Marasso SL, Miccoli B, Bejtka K, Benetto S, Demarchi D (2016) A multipurpose CMOS platform for nanosensing. Sensors 16(12):2034

    Article  Google Scholar 

  8. Risi MD, Makhlouf H, Rouse AR, Tanbakuchi AA, Gmitro AF (2014) Design and performance of a multi-point scan confocal microendoscope. Photonics 1(4):421

    Article  Google Scholar 

  9. Lu Q, Yadid-Pecht O, Sadowski DC, Mintchev MP (2014) A catheter-based acoustic interrogation device for monitoring motility dynamics of the lower esophageal sphincter. Sensors 14(8):14700

    Article  Google Scholar 

  10. Pasinszki T, Krebsz M, Tung TT, Losic D (2017) Carbon nanomaterial based biosensors for non-invasive detection of cancer and disease biomarkers for clinical diagnosis. Sensors 17(8):1–32

    Article  Google Scholar 

  11. Yamanaka K, Vestergaard MC, Tamiya E (2016) Printable electrochemical biosensors: a focus on screen-printed electrodes and their application. Sensors 16(10):1761

    Article  Google Scholar 

  12. Prabhakaran PN, Renugai M (2012) Design and analysis of capacitive MEMS viscometric sensor for CGM. Int J Emerg Technol 2(11):135

    Google Scholar 

  13. Ermakov V, Kruchinin S, Fujiwara A (2008) Electronic nanosensors based on nanotransistor with bistability behaviour. In: Bonca J, Kruchinin S (eds) Proceeding of NATO ARW “Electron transport in nanosystems”. Springer, pp 341–349

    Google Scholar 

  14. Ermakov V, Kruchinin S, Hori H, Fujiwara A (2007) Phenomena of strong electron correlastion in the resonant tunneling. Int J Mod Phys B 11:827–835

    Google Scholar 

  15. Yang Z, Wang M, Bai Y, Chen X (2014) A differential capacitive viscometric sensor for continuous glucose monitoring. Springer International Publishing, Cham

    Book  Google Scholar 

  16. Naor M, Shamir A (1995) Visual cryptography. Springer, Berlin, pp 1–12

    MATH  Google Scholar 

  17. Ragulskis M, Aleksa A (2009) Image hiding based on time-averaging moire. Opt Commun 282(14):2752

    Article  ADS  Google Scholar 

  18. Turunen J (1997) Diffrctive optics for industrial and commercial applications. Akademie Verlag, Berlin

    Google Scholar 

  19. Suleski TJ, Baggett B, Delaney WF, Koehler C (1999) Johnson EG, Fabrication of high-spatial-frequency gratings through computer-generated near-field holography. Opt Lett 24(9):602

    Article  ADS  Google Scholar 

  20. Schilling A, Herzig HP, Stauffer L, Vokinger U, Rossi M (2001) Efficient beam shaping of linear, high-power diode lasers by use of micro-optics. Appl Opt 40(32):5852

    Article  ADS  Google Scholar 

  21. Kley EB, Wittig LC, Cumme M, Zeitner UD, Dannberg P (1999) Fabrication and properties of refractive micro-optical beam-shaping elements. SPIE 3879:20–31

    ADS  Google Scholar 

  22. Dufresne ER, Spalding GC, Dearing MT, Sheets SA, Grier DG (2001) Computer-generated holographic optical tweezer arrays. Rev Scient Instrum 72(3):1810

    Article  ADS  Google Scholar 

  23. Gerchberg RW, Saxton WO, Owen W (1972) A practical algorithm for the determination of the phase from image and diffraction plane pictures. Optik 35:237

    Google Scholar 

  24. Wang YY, Wang YR, Wang Y, Li HJ, Sun WJ (2007) Optical image encryption based on binary Fourier transform computer-generated hologram and pixel scrambling technology. Opt Lasers Eng 45(7):761

    Article  Google Scholar 

  25. Xi S, Sun X, Liu B, Tian W (2013) Spread spectrum characteristics of {CGH} for double random phase encrypted image. Optik 124(12):1260

    Article  ADS  Google Scholar 

  26. Kong D, Shen X, Cao L, Zhang H, Zong S, Jin G (2016) Three-dimensional information hierarchical encryption based on computer-generated holograms. Opt Commun 380:387

    Article  ADS  Google Scholar 

  27. Ma L, Jin W (2018) Symmetric and asymmetric hybrid cryptosystem based on compressive sensing and computer generated holography. Opt Commun 407(Suppl C):51

    Google Scholar 

  28. P. Palevicius, M. Ragulskis (2015) Image communication scheme based on dynamic visual cryptography and computer generated holography. Opt Commun 335:161

    Article  ADS  Google Scholar 

  29. Palevicius P, Ragulskis M, Janusas G, Palevicius A (2017) Image encryption scheme based on computer generated holography and time-averaged moire. Proc SPIE 10453:10453

    Google Scholar 

  30. Rodionov VE, Shnidko IN, Zolotovsky A, Kruchinin SP (2013) Electroluminescence of Y2O3:Eu and Y2O3:Sm films. Mater Sci 31:232–239

    Google Scholar 

  31. Sugahara M, Kruchinin SP (2001) Controlled not gate based on a two-layer system of the fractional quantum Hall effect. Mod Phys Lett B 15:473–477

    Article  ADS  Google Scholar 

  32. Kruchinin S, Klepikov V, Novikov VE (2005) Nonlinear current oscillations in a fractal Josephson junction. Mater Sci 23(4):1009–1013

    Google Scholar 

  33. Ragulskis M, Navickas Z (2009) Time average geometric moire-back to the basics. Exp Mech 49(4):439

    Article  Google Scholar 

  34. Whyte G, Courtial J (2005) Experimental demonstration of holographic three-dimensional light shaping using a Gerchberg–Saxton algorithm. New J Phys 7(1):117

    Article  Google Scholar 

Download references

Acknowledgements

This research was funded by a grants (No. MIP-081/2015 and S-MIP-17-102) from the Research Council of Lithuania.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Palevicius .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media B.V., part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Palevicius, A., Janusas, G., Ragulskis, M., Palevicius, P., Sodah, A. (2018). Design, Analysis and Application of Dynamic Visual Cryptography for Visual Inspection of Biomedical Systems. In: Bonča, J., Kruchinin, S. (eds) Nanostructured Materials for the Detection of CBRN. NATO Science for Peace and Security Series A: Chemistry and Biology. Springer, Dordrecht. https://doi.org/10.1007/978-94-024-1304-5_17

Download citation

Publish with us

Policies and ethics