Skip to main content

C/N ratios and Carbon Isotope Composition of Organic Matter in Estuarine Environments

  • Chapter
  • First Online:
Applications of Paleoenvironmental Techniques in Estuarine Studies

Part of the book series: Developments in Paleoenvironmental Research ((DPER,volume 20))

Abstract

The sediments that are preserved in estuarine environments (saltmarsh, riverine estuaries, mangrove habitats, lagoons, isolation basins and fjords) contain organic matter that allows investigation of the provenance of that material. These data can then be used specifically to investigate past sea level/land level changes and changes in freshwater flux. Where microfossils are poorly preserved or absent, C/N and δ13C analyses offer an alternative method to deduce environmental histories, but they are especially useful when used in conjunction with a range of other proxies, and when local modern end-member organic variables can be measured to ‘calibrate’ the sedimentary C/N and δ13C. There are a wide range of C/N-δ13C based carbon studies, here we describe examples of studies in a variety of estuarine environments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Anderson DM, Gilbert PM, Burkholder JM (2002) Harmful algal blooms and eutrophication: nutrient sources, composition and consequences. Estuaries 25:704–726

    Article  Google Scholar 

  • Andrews JE, Greenway AM, Dennis PF (1998) Combined carbon isotope and C/N ratios as indicators of source and fate of organic matter in a poorly flushed, tropical estuary: Hunts Bay, Kingston Harbour, Jamaica. Estuar Coast Shelf Sci 46:743–756

    Article  CAS  Google Scholar 

  • Barth JAC, Veizer J, Mayer B (1998) Origin of particulate organic carbon in the upper St. Lawrence: isotopic constraints. Earth Planet Sci Lett 162:111–121

    Article  CAS  Google Scholar 

  • Benedict CR, Wong WWL, Wong JHH (1980) Fractionation of the stable isotopes of inorganic carbon by seagrasses. Plant Physiol 65:512–517

    Article  CAS  Google Scholar 

  • Benfer NP, King BA, Lemckert (2007) Salinity observations in a subtropical estuarine system on the Gold Coast, Australia. J Coastal Res SI 50 (Proceedings of the 9th International Coastal Symposium, Gold Coast, Australia), pp. 646–651

    Google Scholar 

  • Bentley MJ, Hodgson DA, Sugden DE et al (2005) Early Holocene retreat of the George VI Ice Shelf, Antarctic Peninsula. Geology 33:173–176

    Article  Google Scholar 

  • Berglund BE, Sandgren P, Barnekow L et al (2005) Early Holocene history of the Baltic Sea, as reflected in coastal sediments in Blekinge, southeastern Sweden. Quatern Int 130:111–139

    Article  Google Scholar 

  • Boutton TW (1991) Stable carbon isotope ratios of natural materials: II. Atmospheric, terrestrial, marine, and freshwater environments. In: Coleman DC, Fry B (eds) Carbon Isotopes Techniques. Academic Press, Inc., San Diego, pp 173–185

    Chapter  Google Scholar 

  • Bratton JF, Colman SM, Seal RR II (2003) Eutrophication and carbon sources in Chesapeake Bay over the last 2700 yr: Human impacts in context. Geochem Cosmochim Ac 67:3385–3402

    Article  CAS  Google Scholar 

  • Brodie CR, Casford JSL, Lloyd JM et al (2011a) Evidence for bias in C/N, δ13C and δ15N values of bulk organic matter, and on environmental interpretation, from a lake sedimentary sequence by pre-analysis acid treatment methods. Quaternary Sci Rev 30:3076–3087

    Article  Google Scholar 

  • Brodie CR, Heaton THE, Leng MJ et al (2011b) Evidence for bias in measured δ15N values of terrestrial and aquatic organic materials due to pre-analysis acid treatment methods. Rapid Commun Mass Spectrom 25:1089–1099

    Article  CAS  Google Scholar 

  • Brodie CR, Leng MJ, Casford JSL et al (2011c) Evidence for bias in C and N concentrations and δ13C composition of terrestrial and aquatic organic materials due to pre-analysis acid preparation methods. Chem Geol 282:67–83

    Article  CAS  Google Scholar 

  • Brush GS (2009) Historical land use, nitrogen, and coastal eutrophication: a paleoecological perspective. Estuar Coast 32:18–28

    Article  CAS  Google Scholar 

  • Byrne R, Ingram LB, Starratt S et al (2001) Carbon-isotope, diatom, and pollen evidence for late Holocene salinity change in a brackish marsh in the San Francisco Estuary. Quaternary Res 55:66–76

    Article  CAS  Google Scholar 

  • Chapman VJ (1976) Mangrove Vegetation. J. Cramer, Vaduz, Germany

    Google Scholar 

  • Chivas AR, Garcia A, van der Kaars S et al (2001) Sea-level and environmental changes since the last interglacial in the Gulf of Carpentaria, Australia: an overview. Quatern Int 83–85:19–46

    Article  Google Scholar 

  • Chmura GL, Aharon P, Socki RA et al (1987) An inventory of 13C abundances in coastal wetlands of Louisiana, USA: vegetation and sediments. Oecologia 74:264–271

    Article  CAS  Google Scholar 

  • Chmura GL, Aharon P (1995) Stable carbon isotope signatures of sedimentary carbon in coastal wetlands as indicators of salinity regime. J Coastal Res 11:124–135

    Google Scholar 

  • Church TM, Sommerfield CK, Velinksy DJ et al (2006) Marsh sediments as records of sedimentation, eutrophication and metal pollution in the urban Delaware Estuary. Mar Chem 102:72–95

    Article  CAS  Google Scholar 

  • Cifuentes LA, Sharp JH, Fogel ML (1988) Stable carbon and nitrogen isotope biogeochemistry in the Delaware Estuary. Limnol Oceanogr 33:1102–1115

    Article  CAS  Google Scholar 

  • Cloern JE, Canuel EA, Harris D (2002) Stable carbon and nitrogen isotope composition of aquatic and terrestrial plants of the San Francisco Bay estuarine system. Limnol Oceanogr 47:713–729

    Article  CAS  Google Scholar 

  • Cohen MCL, Pessenda LCR, Behling H et al (2012) Holocene palaeoenvironmental history of the Amazonian mangrove belt. Quaternary Sci Rev 55:50–58

    Article  Google Scholar 

  • Cooper SR, Brush GS (1991) Long-term history of Chesapeake Bay anoxia. Science 254:992–996

    Article  CAS  Google Scholar 

  • Corbett DR, Vance D, Letrick E et al (2007) Decadal-scale sediment dynamics and environmental change in the Albermarle estuarine system, North Carolina. Estuar Coast Shelf Sci 71:717–729

    Article  Google Scholar 

  • Cornwell JC, Conley DJ, Owens M et al (1996) A sediment chronology of the eutrophication of Chesapeake Bay. Estuaries 19:488–499

    Article  CAS  Google Scholar 

  • Cronin T, Willard D, Karlsen A et al (2000) Climatic variability in the eastern United States over the past millennium from Chesapeake Bay sediments. Geology 28:3–6

    Article  Google Scholar 

  • Degens ET, Gullard RR, Sackett WM et al (1968) Metabolic fractionation of carbon isotopes in marine plankton. 1. Temperature and respiration experiments. Deep-Sea Res 15:1–9

    CAS  Google Scholar 

  • Deines P (1980) The isotopic composition of reduced organic carbon. In: Fritz P, Fontes JC (eds) Handbook of Environmental Isotope Geochemistry, vol 1, The Terrestrial Environment. A. Elsevier, Amsterdam, pp 329–406

    Google Scholar 

  • DeLaune RD (1986) The use of δ13C signature of C3 and C4 plants in determining past depositional environments in rapidly accreting marshes of the Mississippi River deltaic plain, Louisiana, U.S.A. Chem Geol 59:315–320

    Article  CAS  Google Scholar 

  • Eadie BJ, McKee BA, Lansing MB et al (1994) Records of nutrient-enhanced coastal ocean productivity in sediments from the Louisiana Continental Shelf. Estuaries 17:754–765

    Article  CAS  Google Scholar 

  • Ellegaard M, Clarke AL, Reuss N et al (2006) Multi-proxy evidence of long-term changes in ecosystem structure in a Danish marine estuary, linked to increased nutrient loading. Estuar Coast Shelf Sci 68:567–578

    Article  Google Scholar 

  • Ember LM, Williams DF, Morris JT (1987) Processes that influence carbon isotope variations in salt marsh sediments. Mar Ecol Prog Ser 36:33–42

    Article  Google Scholar 

  • Falkowski PG (1991) Species variability in the fractionation of 13C and 12C by marine phytoplankton. J Plankton Res 13:21–28

    Google Scholar 

  • Farquhar GD, Hubick KT, Condon AG et al (1989) Carbon isotope fractionation and plant water-use efficiency. In: Rundel PW, Ehleringer JR, Nagy KA (eds) Stable Isotopes in Ecological Research. Springer, New York, pp 21–40

    Chapter  Google Scholar 

  • Fry B, Scalan RS, Parker PL (1977) Stable carbon isotope evidence for two sources of organic matter in coastal sediments: seagrass and plankton. Geochim Cosmochim Acta 41:1875–1877

    Article  CAS  Google Scholar 

  • Fry B, Sherr EB (1989) δ13C measurements as indicators of carbon flow in marine and freshwater ecosystems. In: Rundel PW, Ehleringer JR, Nagy KA (eds) Stable Isotopes in Ecological Research. Springer, New York, pp 196–229

    Chapter  Google Scholar 

  • Goñi MA, Teixeir MJ, Perkey DW (2003) Sources and distribution of organic matter in a river-dominated estuary (Winyah Bay, SC, USA). Estuar Coast Shelf Sci 57:1023–1048

    Article  CAS  Google Scholar 

  • Gray AJ (1992) Saltmarsh plant ecology: zonation and succession revisited. In: Allen JRL, Pye K (eds) Saltmarshes: morphodynamics, conservation and engineering significance. Cambridge University Press, Cambridge, pp 63–79

    Google Scholar 

  • Haines EB (1976) Stable carbon isotope ratios in biota, soils and tidal water of a Georgia salt marsh. Estuar Coast Mar Sci 4:609–616

    Article  CAS  Google Scholar 

  • Hunt JM (1970) The significance of carbon isotope variations in marine sediments. In: Hobson GD, Speers GC (eds) Advances in Organic Geochemistry. Proceedings of the Third International Congress, London, 1966, vol 32, Int Ser Monog Earth Sci. Pergamon Press, Oxford, pp 27–35

    Google Scholar 

  • Ingram LB, Ingle JC, Conrad ME (1996a) A 2000-year record of Sacramento-San Joaquin River inflow to San Francisco Bay estuary, California. Geology 24:331–334

    Article  CAS  Google Scholar 

  • Ingram LB, Ingle JC, Conrad ME (1996b) Stable isotope record of late Holocene salinity and river discharge in San Francisco Bay, California. Earth Planet Sci Lett 141:237–247

    Article  CAS  Google Scholar 

  • Jennings AE, Weiner NJ (1996) Environmental change in eastern Greenland during the last 1300 years: evidence from foraminifera and lithofacies in Nansen Fjord, 68oN. Holocene 6:79–191

    Article  Google Scholar 

  • Jia J, Gao JH, Liu YF et al (2012) Environmental changes in Shamei Lagoon, Hainan Island, China: Interactions between natural processes and human activities. J Asian Earth Sci 52:158–168

    Article  Google Scholar 

  • Johnson BJ, Moore KA, Lehmann C et al (2007) Middle to late Holocene fluctuations of C3 and C4 vegetation in a Northern New England Salt Marsh, Sprague Marsh, Phippsburg Maine. Org Geochem 38:394–403

    Article  CAS  Google Scholar 

  • Keeley JE, Sandquist DR (1992) Carbon: freshwater plants. Plant Cell Environ 15:1021–1035

    Article  CAS  Google Scholar 

  • Keeling CD, Whorf TP, Wahlen M et al (1995) Interannual extremes in the rate of rise of atmospheric carbon dioxide since 1980. Nature 375:666–670

    Article  CAS  Google Scholar 

  • Kemp AC, Vane CH, Horton BP et al (2010) Stable carbon isotopes as potential sea-level indicators in salt marshes, North Carolina, USA. Holocene 20:623–636

    Article  Google Scholar 

  • Kemp AC, Vane CH, Horton BP et al (2012) Application of stable carbon isotopes for reconstructing salt-marsh floral zones and relative sea level, New Jersey, USA. J Quaternary Sci 27:404–414

    Article  Google Scholar 

  • Krauss KW, Lovelock CE, McKee KL et al (2008) Environmental drivers in mangrove establishment and early development. A review. Aquat Bot 89:105–127

    Article  Google Scholar 

  • Lamb AL, Wilson GP, Leng MJ (2006) A review of coastal and palaeoclimate and relative sea-level reconstructions using δ13C and C/N ratios in organic material. Earth Sci Rev 75:29–57

    Article  CAS  Google Scholar 

  • Leng MJ, Marshall JD (2004) Palaeoclimate interpretation of stable isotope data from lake sediment archives. Quaternary Sci Rev 23:811–831

    Article  Google Scholar 

  • Leng MJ, Lamb AL, Heaton THE et al (2005) Isotopes in lake sediments. In: Leng MJ (ed) Isotopes in Palaeoenvironmental Research. Developments in Palaeoenvironmental Research, vol 10, Volume. Springer, Dordrecht, pp 147–184

    Chapter  Google Scholar 

  • Leng MJ, Wagner B, Anderson NJ et al (2012) Deglaciation and catchment ontogeny in coastal southwest Greenland: implications for terrestrial and aquatic carbon cycling. J Quaternary Sci 27:575–584

    Article  Google Scholar 

  • Lewis JP, Ryves DB, Rasmussen P et al (2013) Environmental change in the Limfjord, Denmark (ca.7,500-1,500 cal yrs BP): a multiproxy study. Quaternary Sci Rev 78:126–140

    Article  Google Scholar 

  • Mackie EAV, Leng MJ, Lloyd JM et al (2005) Bulk organic δ13C and C/N ratios as palaeosalinity indicators within a Scottish isolation basin. J Quaternary Sci 20:301–408

    Article  Google Scholar 

  • Malamud-Roam F, Ingram BL (2001) Carbon isotopic compositions of plants and sediments of tide marshes in the San Francisco Estuary. J Coast Res 17:17–29

    Google Scholar 

  • Malamud-Roam F, Ingram BL (2004) Late Holocene δ13C and pollen records of palaeosalinity from tidal marshes in the San Francisco Bay Estuary, California. Quaternary Res 62:134–145

    Article  CAS  Google Scholar 

  • Maslin MA, Swann G (2005) Isotopes in Marine Sediments. In: Leng MJ (ed) Isotopes in Palaeoenvironmental Research. Developments in Palaeoenvironmental Research, vol 10, Volume. Springer, Dordrecht, pp 227–290

    Chapter  Google Scholar 

  • McKee KL, Cahoon DR, Feller IC (2007) Caribbean mangroves adjust to rising sea level through biotic controls on change in soil elevation. Glob Ecol Biogeogr 16:545–556

    Article  Google Scholar 

  • Meyers PA (1994) Preservation of elemental and isotopic source identification of sedimentary organic matter. Chem Geol 114:289–302

    Article  CAS  Google Scholar 

  • Meyers PA, Teranes JL (2001) Sedimentary organic matter. In: Last WM, Smol JP (eds) Tracking Environmental Change Using Lake Sediments, vol 2, Physical and geochemical methods. Springer, Dordrecht, pp 239–269

    Chapter  Google Scholar 

  • Middelburg JJ, Nieuwenhuize J, Lubberts RK et al (1997) Organic carbon isotope systematics of coastal marshes. Estuar Coast Shelf Sci 45:681–687

    Article  CAS  Google Scholar 

  • Middelburg JJ, Nieuwenhuize J (1998) Carbon and nitrogen stable isotopes in suspended matter and sediments from the Schelde Estuary. Mar Chem 60:217–225

    Article  CAS  Google Scholar 

  • Mills K, Mackay AW, Bradley RS et al (2009) Diatom and stable isotope records of late-Holocene lake ontogeny at Indrepollen, Lofoten, NW Norway: a response to glacio-isostacy and Neoglacial cooling. Holocene 19:261–271

    Article  Google Scholar 

  • Monacci N, Meier-Grúnhagen U, Finney BP et al (2009) Mangrove ecosystem changes during the Holocene at Spanish Lookout Cay. Belize 280:37–46

    Google Scholar 

  • Müller A (2002) Geochemical expressions of late- and post-glacial land-sea interactions in the southern Baltic Sea. Boreal Environ Res 7:13–25

    Google Scholar 

  • Müller A, Mathesius U (1999) The palaeoenvironments of coastal lagoons in the southern Baltic Sea, I. The application of sedimentary Corg/N ratios as source indicators of organic matter. Palaeogeogr Palaeoclimatol Palaeoecol 145:1–16

    Article  Google Scholar 

  • Müller A, Voss M (1999) The palaeoenvironments of coastal lagoons in the southern Baltic Sea, II. δ13C and δ15N ratios of organic matter – sources and sediments. Palaeogeogr Palaeoclimatol Palaeoecol 145:17–32

    Article  Google Scholar 

  • Nixon SW (1995) Coastal eutrophication: A definition, social causes, and future concerns. Ophelia 41:199–220

    Article  Google Scholar 

  • O’Leary MH, Madhavan S, Paneth P (1992) Physical and chemical basis of carbon isotope fractionation in plants. Plant Cell Environ 15:1099–1104

    Article  Google Scholar 

  • Otero E, Culp R, Noakes JE et al (2003) The distribution and δ13C of dissolved organic carbon and its humic fraction in estuaries of southeastern USA. Estuar Coast Shelf Sci 56:1187–1194

    Article  CAS  Google Scholar 

  • Peters KE, Sweeney RE, Kaplan IR (1978) Correlation of carbon and nitrogen stable isotopes in sedimentary organic matter. Limnol Oceanogr 23:598–604

    Article  CAS  Google Scholar 

  • Peterson BJ, Howarth RW, Lipschutz F et al (1980) Salt marsh detritus: an alternative interpretation of stable carbon isotope ratios and fate of Spartina alterniflora. Oikos 34:173–177

    Article  CAS  Google Scholar 

  • Peterson BJ, Fry B, Hullar M et al (1994) The distribution and stable carbon isotope composition of dissolved organic carbon in estuaries. Estuaries 17:111–121

    Article  CAS  Google Scholar 

  • Philippsen B, Olsen J, Lewis JP et al (2013) Mid- to late-Holocene reservoir-age variability and isotope-based palaeoenvironmental reconstruction in the Limfjord, Denmark. Holocene 23:1017–1027

    Article  Google Scholar 

  • Prahl FG, Bennett JT, Carpenter R (1980) The early diagenesis of aliphatic hydrocarbons and organic matter in sedimentary particulates from Dabob Bay, Washington. Geochim Cosmochim Acta 44:1967–1976

    Article  CAS  Google Scholar 

  • Preston CD, Pearman DA, Dines TD (2002) New Atlas of the British and Irish Flora. Oxford University Press, Oxford

    Google Scholar 

  • Rashid MA (1985) Geochemistry of Marine Humic Compounds. Springer, New York

    Book  Google Scholar 

  • Rice DL, Hanson RB (1984) A kinetic model for detritus nitrogen: role of the associated bacteria in nitrogen accumulation. Bull Mar Sci 35:326–340

    Google Scholar 

  • Rosenbauer RJ, Swarzenski PW, Kendall C et al (2009) A carbon, nitrogen, and sulfur elemental and isotopic study in dated sediment cores from the Louisiana shelf. Geo-Mar Lett 29:415–429

    Article  CAS  Google Scholar 

  • Rundel PW, Ehleringer JR, Nagy KA (1988) Stable Isotopes in Ecological Research. Springer, Berlin

    Google Scholar 

  • Ruttenberg KC, Goñi MA (1997) Phosphorus distribution, C:N:P ratios, and δ13COC in Arctic, temperate, and tropical coastal sediments: tools for characterizing bulk sedimentary organic matter. Mar Geol 139:123–145

    Article  CAS  Google Scholar 

  • Sackett WM, Thompson RR (1963) Isotopic organic carbon composition of recent continental derived clastic sediments of Eastern Gulf Coast, Gulf of Mexico. Bull Am Assoc Petroleum Geologists 47:525–531

    CAS  Google Scholar 

  • Salomons W, Mook WG (1981) Field observations of the isotopic composition of particulate organic carbon in the southern North Sea and adjacent estuaries. Mar Geol 41:M11–M20

    Article  CAS  Google Scholar 

  • Sampei Y, Matsumoto E (2001) C/N ratios in a sediment core from Nakaumi Lagoon, southwest Japan – usefulness as an organic indicator. Geochem J 35:189–205

    Article  CAS  Google Scholar 

  • Schaeffer-Novelli Y, Cintron-Molero G, Soares MLG (2002) Mangroves as indicators of sea level change in the muddy coasts of the world. In: Healy T (ed) Wang Y. Elsevier, Muddy Coasts, pp 245–262

    Google Scholar 

  • Schidlowski M, Hayes JM, Kaplan IR (1983) Isotopic inferences of ancient biochemistries: carbon, sulphur, hydrogen and nitrogen. In: Scholf JW (ed) Earth’s Earliest Bioshere. Its Origin and Evolution. Princeton University Press, Princeton, pp 149–186

    Google Scholar 

  • Schleser GH (1995) Parameters determining carbon isotope ratios in plants. In: Frenzel B, Stauffer B, Weib M (eds) Problems of Stable Isotopes in Tree-Rings. Lake Sediments and Peat Bogs as Climate Evidence for the Holocene. Fischer Verlag, Stuttgart, pp 71–96

    Google Scholar 

  • Seemann JR, Critchley C (1985) Effects of salt stress on the growth, ion content, stomatal behaviour and photosynthetic capacity of a salt-sensitive species, Phaseolus vulgaris L. Planta 164:151–162

    Article  CAS  Google Scholar 

  • Seliger HH, Boggs JA, Biggley WH (1985) Catastrophic anoxia in the Chesapeake Bay in 1984. Science 228:70–73

    Article  CAS  Google Scholar 

  • Sepúlveda J, Pantoja S, Hughen KA (2011) Sources and distribution of organic matter in northern Patagonia fjords, Chile (~44-47°S): A multi-tracer approach for carbon cycling assessment. Continental Shelf Res 31:315–329

    Article  Google Scholar 

  • Shennan I, Tooley MJ, Green F et al (1999) Sea level, climate change and coastal evolution in Morar, northwest Scotland. Geol Mijnbouw 77:247–262

    Article  Google Scholar 

  • Shennan I, Lambeck K, Horton B et al (2000) Late Devensian and Holocene records of relative sea-level changes in northwest Scotland and their implications for glacio-hydro-isostatic modelling. Quaternary Sci Rev 19:1103–1135

    Article  Google Scholar 

  • Stahle DW, Cleaveland MK, Blanton DB et al (1998) The lost colony and Jamestown droughts. Science 280:564–567

    Article  CAS  Google Scholar 

  • St-Onge G, Hillaire-Marcel C (2001) Isotopic constraints of sedimentary inputs and organic carbon burial rates in the Saguenay Fjord, Quebec. Mar Geol 176:1–22

    Article  CAS  Google Scholar 

  • Stout JD, Rafter TA, Troughton JH (1975) The possible significance of isotope ratios in palaeoecology. B Roy Soc NZ 13:279–286

    Google Scholar 

  • Sullivan MJ, Moncreiff CA (1990) Edaphic algae are an important component of salt marsh food-webs: evidence from multiple stable isotope analyses. Mar Ecol Prog Ser 62:149–159

    Article  Google Scholar 

  • Talbot MR, Johannessen T (1992) A high resolution palaeoclimatic record for the last 27,500 years in tropical West Africa from the carbon and nitrogen isotopic composition of lacustrine organic matter. Earth Planet Sci Lett 110:23–37

    Article  CAS  Google Scholar 

  • Thibodeau B, de Vernal A, Mucci A (2006) Recent eutrophication and consequent hypoxia in the bottom waters of the Lower St. Lawrence Estuary: Micropaleontological and geochemical evidence. Mar Geol 231:37–50

    Article  CAS  Google Scholar 

  • Thornton SF, McManus J (1994) Applications of organic carbon and nitrogen stable isotope and C/N ratios as source indicators of organic matter provenance in estuarine systems: Evidence from the Tay Estuary, Scotland. Estuar Coast Shelf Sci 38:219–233

    Article  CAS  Google Scholar 

  • Turney CSM (1999) Lacustrine bulk organic δ13C in the British Isles during the last Glacial-Holocene transition (14-9 ka 14C BP). Arctic Antarctic Alpine Res 31:71–81

    Article  Google Scholar 

  • Tyson RV (1995) Sedimentary Organic Matter: Organic Facies and Palynofacies. Chapman and Hall, London

    Book  Google Scholar 

  • Valiela I, Teal JM, Allen SD (1985) Decomposition in salt marsh ecosystems: the phases and major factors affecting disappearance of above-ground organic matter. J Exp Mar Biol Ecol 89:29–54

    Article  CAS  Google Scholar 

  • Van Heemst JDH, Megens L, Hatcher PG et al (2000) Nature, origin and average age of estuarine ultrafiltered dissolved organic matter as determined by molecular and carbon isotope characterization. Org Geochem 31:847–857

    Article  Google Scholar 

  • Voss M, Larsen B, Leivuori M et al (2000) Stable isotope signals of eutrophication in coastal Baltic Sea sediments. J Mar Syst 25:287–298

    Article  Google Scholar 

  • Wada E, Minagawa M, Mizutani H et al (1987) Biogeochemical studies on the transport of organic matter along the Otsuchi River watershed, Japan. Estuar Coast Shelf Sci 25:321–336

    Article  CAS  Google Scholar 

  • Westman P, Hedenström A (2002) Environmental changes during isolation processes from the Litorina Sea as reflected by diatoms and geochemical parameters – a case study. Holocene 12:531–540

    Article  Google Scholar 

  • Wilson GP, Lamb AL, Leng MJ et al (2005a) Variability of organic d13C and C/N in the Mersey Estuary, U.K. and its implications for sea-level reconstruction studies. Estuar Coast Shelf Sci 64:685–698

    Article  Google Scholar 

  • Wilson GP, Lamb AL, Leng MJ et al (2005b) δ13C and C/N as potential coastal palaeoenvironmental indicators in the Mersey Estuary, UK. Quaternary Sci Rev 24:2015–2029

    Article  Google Scholar 

  • Woodroffe CD, Thom BG, Chappell J (1985) Development of widespread mangrove swamps in mid-Holocene times in northern Australia. Nature 317:711–713

    Article  Google Scholar 

  • Woodroffe CD (1990) The impacts of sea level rise on Mangrove shorelines. Progr Phys Geol 14:483–520

    Article  Google Scholar 

  • Wooller M, Smallwood B, Jacobsen M et al (2003a) Carbon and nitrogen stable isotopic variation in Laguncularia racemosa (L.) (white mangrove) from Florida and Belize: Implications for trophic level studies. Hydrobiologia 499:13–23

    Article  CAS  Google Scholar 

  • Wooller M, Smallwood B, Scharler U et al (2003b) A taphonomic study of δ13C and δ15N values in Rhizophora mangle leaves for a multi-proxy approach to mangrove palaeoecology. Org Geochem 34:1259–1275

    Article  CAS  Google Scholar 

  • Wooller MJ, Morgan R, Fowell S et al (2007) A multiproxy peat record of Holocene mangrove palaeoecology from Twin Cays, Belize. Holocene 17:1129–1139

    Article  Google Scholar 

  • Yamamuro M (2000) Chemical tracers of sediment organic matter origins in two coastal lagoons. J Mar Syst 26:127–134

    Article  Google Scholar 

  • Yu F, Zong Y, Lloyd JM et al (2010) Bulk organic δ13C and C/N as indicators for sediment sources in the Pearl River delta and estuary, southern China. Estuar Coast Shelf Sci 87:618–630

    Article  CAS  Google Scholar 

  • Zedler JB (1980) Algal mat productivity: comparisons in a salt marsh. Estuaries 3:122–131

    Article  Google Scholar 

  • Zimmerman AR, Canuel EA (2002) Sediment geochemical records of eutrophication in the mesohaline Chesapeake Bay. Limnol Oceanogr 47:1084–1093

    Article  CAS  Google Scholar 

  • Zong Y, Lloyd JM, Leng MJ et al (2006) Reconstruction of Holocene monsoon history from the Pearl River Estuary, southern China, using diatoms and carbon isotope ratios. Holocene 16:251–263

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Melanie J. Leng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Leng, M.J., Lewis, J.P. (2017). C/N ratios and Carbon Isotope Composition of Organic Matter in Estuarine Environments. In: Weckström, K., Saunders, K., Gell, P., Skilbeck, C. (eds) Applications of Paleoenvironmental Techniques in Estuarine Studies. Developments in Paleoenvironmental Research, vol 20. Springer, Dordrecht. https://doi.org/10.1007/978-94-024-0990-1_9

Download citation

Publish with us

Policies and ethics