Skip to main content

Abstract

Palaeolimnology, the interpretation of past environment/climate conditions from sediments accumulated in lake basins, is a rapidly expanding area of research (Last and Smol 2001a; 2001b; Smol et al. 2001a; 2001b). This is largely due to the explosion of research into climate change over recent decades, and also because lakes provide us with widespread, continuous records of terrestrial environmental change. Stable isotopes have become an essential part of palaeolimnology, since the work of McCrea (1950) and Urey et al. (1951) highlighted the potential for oxygen isotope compositions to be used for palaeotemperature reconstruction. The technique has been applied to both lacustrine sediments and fossils, and stratigraphic changes in δ18O are commonly attributed to changes in lake water isotope composition which can be dependent on temperature, air mass source area and/or precipitation/evaporation ratio. Pioneering works include: Stuiver (1970), Fritz and Poplawski (1974), Fritz et al. (1975), Eicher and Siegenthaler (1976), and reviews have been provided by Buchardt and Fritz (1980), Siegenthaler and Eicher (1986) and more recently by Ito (2001), Schwalb (2003) and Leng and Marshall (2004).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abbott M.B., Wolfe B.B., Wolfe A.P., Seltzer G.O., Aravena R., Mark B.G., Polissar P.J., Rodbell D.T., Rowe H.D. and Vuille M. 2003. Holocene paleohydrology and glacial history of the central Andes using multiproxy lake sediment studies. Palaeogeogr. Palaeocl. 194: 123–138.

    Google Scholar 

  • Abell P.I. and Williams M.A.J. 1989. Oxygen and carbon isotope ratios in gastropod shells as indicators of paleoenvironments in the Afar region of Ethiopia. Palaeogeogr. Palaeocl. 74: 265–278.

    Google Scholar 

  • Anderson N.J. and Leng M.J. 2004. Increased aridity during the early Holocene in West Greenland inferred from stable isotopes in laminated-lake sediments. Quaternary Sci. Rev. 23: 841–849.

    Google Scholar 

  • Andrews J.E., Riding R. and Dennis P.F. 1993. Stable isotope compositions of recent freshwater cyanobacterial carbonates from the British Isles: local and regional environmental controls. Sedimentology 40: 303–314.

    CAS  Google Scholar 

  • Andrews J.E., Riding R. and Dennis P.F. 1997. The stable isotope record of environmental and climatic signals in modern terrestrial microbial carbonates from Europe. Palaeogeogr. Palaeocl. 129: 171–189.

    Google Scholar 

  • Barker P.A., Street-Perrott F.A., Leng M.J., Greenwood P.B., Swain D.L., Perrott R.A., Telford J. and Ficken K.J. 2001. A 14 ka oxygen isotope record from diatom silica in two alpine tarns on Mt Kenya. Science 292: 2307–2310.

    Article  CAS  Google Scholar 

  • Beardall J.H., Griffiths J.A. and Raven J.A. 1982. Carbon isotope discrimination and the CO2 accumulation mechanism in Chlorella emersoni. J. Exp. Bot. 33: 729–737.

    CAS  Google Scholar 

  • Benson L. and Paillet F. 2002. HIBAL: a hydrologic-isotopic-balance model for application to paleolake systems. Quaternary Sci. Rev. 21: 1521–1539.

    Google Scholar 

  • Benson L.V. and White J.W.C. 1994. Stable isotopes of oxygen and hydrogen in the Truckee River-Pyramid Lake surface-water system. 3. Source of water vapour overlying Pyramid Lake. Limnol. Oceanogr. 39: 1954–1958.

    Google Scholar 

  • Bowen G.J. and Wilkinson B. 2002. Spatial distribution of δ18O in meteoric precipitation. Geology 30: 315–318.

    Article  Google Scholar 

  • Brandriss M.E., O'Neil J.R., Edlund M.B. and Stoermer E.F. 1998. Oxygen isotope fractionation between diatomaceous silica and water. Geochim. Cosmochim. Ac. 62: 1119–1125.

    Article  CAS  Google Scholar 

  • Brooks S.J. 2003. Chironomid analysis to interpret and quantify Holocene climate change. In: Mackay A.W., Battarbee R.W., Birks H.J.B. and Oldfield F. (eds), Global Change in the Holocene. Arnold, London, pp. 328–341.

    Google Scholar 

  • Buchardt B. and Fritz P. 1980. Environmental isotopes as environmental and climatological indicators. In: Fritz P and Fontes J.Ch. (eds), Handbook of Environmental Isotope Geochemistry. Elsevier, Amsterdam, pp. 473–504.

    Google Scholar 

  • Chivas A.R., De Dekker P., Cali J.A., Chapman A., Kiss E. and Shelly J.M.G. 1993. Coupled stable isotope and trace element measurements of lacustrine carbonates as palaeoclimatic indicators. In: Swart P.K., Lohmann K.C., McKenzie J.A. and Savin S. (eds), Climate Change in Continental Isotopic Records. Geophysical Monograph 78, pp. 113–122.

    Google Scholar 

  • Clark I. and Fritz I. 1997. Environmental Isotopes in Hydrogeology. Lewis Publishers, Boca Raton, New York, 328 pp.

    Google Scholar 

  • Coleman D.C. and Fry B. 1991. Carbon Isotope Techniques. Academic Press, London, 274 pp.

    Google Scholar 

  • Colleta P., Pentecost A. and Spiro B. 2001. Stable isotopes in charophyte incrustations: relationships with climate and water chemistry. Palaeogeogr. Palaeocl. 173: 9–19.

    Google Scholar 

  • Collister J.W. and Hayes J.M. 1991. A preliminary study of the carbon and nitrogen isotope biogeochemistry of lacustrine sedimentary rocks from the Green River Mountain Formation, Wyoming, Utah and Colorado. U.S.G.S. Bulletin, 1973–A–G: C1–C12.

    Google Scholar 

  • Cornell S., Rendell A. and Jickells T. 1995. Atmospheric inputs of dissolved organic nitrogen to the oceans. Nature 376: 243–246.

    Article  CAS  Google Scholar 

  • Craig H. 1961. Isotopic variations in meteoric waters. Science 133: 1702-1703.

    CAS  Google Scholar 

  • Craig H. 1965. The measurement of oxygen isotope palaeotemperatures. In: Tongiorgi E. (ed.), Stable Isotopes in Oceanographic Studies and Palaeotemperatures. Pisa, Consiglio Nazionale delle Ricerche Laboratorio di Geologia Nucleare, pp. 161–182.

    Google Scholar 

  • Craig H. and Gordon L.I. 1965. Deuterium and oxygen-18 variation in the ocean and marine atmosphere. In: Tongiorgi E. (ed.), Stable Isotopes in Oceanographic Studies and Palaeotemperatures. Pisa, Consiglio Nazionale delle Ricerche Laboratorio di Geologia Nucleare, pp. 277–373.

    Google Scholar 

  • Craig H., Gordon L. and Horibe Y. 1963. Isotopic exchange effects in the evaporation of water. 1. low-temperature experimental results. J. Geophys. Res. 68: 5079–5087.

    CAS  Google Scholar 

  • Dansgaard W. 1964. Stable isotopes in precipitation. Tellus 16: 436–468.

    Article  Google Scholar 

  • Darling W.G., Bath A.H., Gibson J.J. and Rozanski K. This volume. Isotopes in Water. In: Leng M.J. (ed.), Isotopes in Palaeoenvironmental Research. Springer, Dordrecht, The Netherlands.

    Google Scholar 

  • Dinçer T. 1968. The use of Oxygen 18 and Deuterium concentrations in the water balance of lakes. Water Resour. Res. 4: 1289–1306.

    Google Scholar 

  • Drummond C.N., Patterson W.P. and Walker J.C.G. 1995. Climatic forcing of carbon-oxygen isotopic covariance in temperate-region marl lakes. Geology 23: 1031–1034.

    Article  CAS  Google Scholar 

  • Edwards T.W.D. and McAndrews J.H. 1989. Paleohydrology of a Canadian Shield lake inferred from 18O in sediment cellulose. Can. J. Earth Sci. 26: 1850–1859.

    CAS  Google Scholar 

  • Edwards T.W.D., Wolfe B.B., Gibson J.J. and Hammarlund D. 2004. Use of water isotope tracers in high-latitude hydrology and paleohydrology. In: Pienitz R., Douglas M.S.V. and Smol J.P. (eds), Long-Term Environmental Change in Arctic and Antarctic Lakes. Springer, Dordrecht, The Netherlands.

    Google Scholar 

  • Edwards T.W.D., Wolfe B.B. and MacDonald G.M. 1996. Influence of changing atmospheric circulation on precipitation δ18O-temperature relations in Canada during the Holocene. Quaternary Res. 46: 211–218.

    Article  Google Scholar 

  • Eicher U. and Siegenthaler U. 1976. Palynological and oxygen isotope investigations on Late-Glacial sediment cores from Swiss lakes. Boreas 5: 109–117.

    Google Scholar 

  • Epstein S., Buchsbaum R., Lowenstam H.A. and Urey H.C. 1953. Revised carbonate water isotopic temperature scale. Geol. Soc. Am. Bull. 64: 1315–1326.

    CAS  Google Scholar 

  • Fogel M.L. and Cifuentes L.A. 1993. Isotope fractionation during primary production. In: Engel, M.H. and Macko S.A. (eds), Organic Geochemistry. Plenum Press, New York, pp. 73–98.

    Google Scholar 

  • Freeman K.H., Hayes J.M., Trendel J.M. and Albrecht P. 1990. Evidence from carbon-isotope measurements for diverse origin of sedimentary hydrocarbons. Nature 343: 254–256.

    Article  CAS  Google Scholar 

  • Friedman I. and O'Neil J.R. 1977. Compilation of stable isotope fractionation factors of geochemical interest. In: Fleischer M. (ed.), Data of Geochemistry. Sixth edition. Geological Survey professional paper 440-KK, US government printing office, Washington, pp. 1–40.

    Google Scholar 

  • Fritz P. and Poplawski S. 1974. 18O and 13C in the shells of freshwater molluscs and their environments. Earth Planet. Sc. Lett. 24: 91–98.

    CAS  Google Scholar 

  • Fritz P., Anderson T.W. and Lewis C.F.M. 1975. Late-Quaternary climatic trends and history of Lake Erie from stable isotope studies. Science 190: 267-269.

    Google Scholar 

  • Frogley M.R., Tzedakis P.C. and Heaton T.H.E. 1999. Climate variability in Northwest Greece during the last Interglacial. Science 285: 1886–1889.

    Article  CAS  Google Scholar 

  • Gasse F. 2000. Hydrological changes in the African tropics since the Last Glacial Maximum. Quaternary Sci. Rev. 19: 189–211.

    Article  Google Scholar 

  • Gasse F. and Fontes J-C. 1989. Palaeoenvironments and palaeohydrology of a tropical closed lake (Lake Asal, Djibouti) since 10,000 yr B.P. Palaeogeogr. Palaeocl. 69: 67–102.

    Google Scholar 

  • Gasse F. and Fontes J-C. 1992. Climatic changes in northwest Africa during the last deglaciation (16 - 7 ka B.P.) In: Bard E. and Broeker W. (eds), The last deglaciation: Absolute and radiocarbon chronologies. NATO ASI series 12, Kluwer Academic Publishers, Dordrecht, The Netherlands, pp. 295–325.

    Google Scholar 

  • Gasse F. and van Campo E. 1994. Abrupt post-glacial climate events in West Asia and North Africa monsoon domains. Earth Planet. Sc. Lett. 126: 435–456.

    Google Scholar 

  • Gat J.R. 1980. Isotope hydrology of very saline lakes. In: Nissenbaum A. (ed.), Hypersaline Brines and Evaporitic Environments. Elsevier, Amsterdam, pp. 1–8.

    Google Scholar 

  • Gat J.R. 1995. Stable isotopes of fresh and saline lakes. In: Lerman A., Imboden D.M. and Gat J.R. (eds), Physics and Chemistry of Lakes. Springer, Berlin, pp. 139–165.

    Google Scholar 

  • Gibson J.J., Edwards T.W.D. and Prowse T.D. 1996. Development and validation of an isotopic method for estimating lake evaporation. Hydrol. Process. 10: 1369–1382.

    Article  Google Scholar 

  • Gibson J.J., Edwards T.W.D. and Prowse T.D. 1999. Pan-derived isotopic composition of atmospheric water vapour and its variability in northern Canada. J. Hydrol. 217: 55–74.

    Article  Google Scholar 

  • Gibson J.J., Prepas E.E. and McEachern P. 2002. Quantitative comparison of lake throughflow, residency, and catchment runoff using stable isotopes: modelling and results from a regional survey of Boreal lakes. J. Hydrol. 262: 128–144.

    Article  Google Scholar 

  • Gonfiantini R. 1986. Environmental isotopes in lake studies. In: Fritz P. and Fontes J.C.(eds.) Handbook of Environmental Isotope Geochemistry. Elsevier, Amsterdam, pp. 113–168.

    Google Scholar 

  • Grossman E. 1982. Stable isotope analysis in live benthic foraminifera from the Southern California Borderland. PhD thesis, University of Southern California, Los Angeles.

    Google Scholar 

  • Grossman E.L. and Ku T.L. 1986. Oxygen and carbon isotope fractionation in biogenic aragonite - temperature effects. Chem. Geol. 59: 59–74.

    Article  CAS  Google Scholar 

  • Hammarlund D. 1993. A distinct delta-C decline in organic lake sediments at the Pleistocene-Holocene transition in Southern Sweden. Boreas 22: 236–243.

    Google Scholar 

  • Hammarlund D., Aravena R., Barnekow L., Buchardt B. and Possnert G. 1997. Multi-component carbon isotope evidence of early Holocene environmental change and carbon-flow pathways from a hard-water lake in northern Sweden. J. Paleolimnol. 18: 219–233.

    Article  Google Scholar 

  • Hammarlund D., Barnekow L., Birks H.J.B., Buchardt B. and Edwards T.W.D. 2002. Holocene changes in atmospheric circulation recorded in the oxygen-isotope stratigraphy of lacustrine carbonates from northern Sweden. Holocene 12: 339–351.

    Article  Google Scholar 

  • Handley L.L., Austin A.T., Robinson D., Scrimgeour C.M., Raven J.A., Heaton T.H.E., Schmidt S. and Stewart G.R. 1999. The 15N natural abundance (δ15N) of ecosystem samples reflects measures of water availability. Aust. J. Plant Physiol. 26: 185–199.

    Article  Google Scholar 

  • Hassan K.M. and Spalding R.F. 2001. Hydrogen isotope values in lacustrine kerogen. Chem. Geol. 175: 713–721.

    Article  CAS  Google Scholar 

  • Heaton T.H.E. 1986. Isotopic studies of nitrogen pollution in the hydrosphere and atmosphere: a review. Chem. Geol. 59: 87–102.

    Article  CAS  Google Scholar 

  • Heaton T.H.E. 1987. The 15N/14N ratios of plants in South Africa and Namibia: relationship to climate and coastal/saline environments. Oecologia 74: 236–246.

    Article  Google Scholar 

  • Heaton T.H.E., Wynn P. and Tye A. 2004. Low 15N/14N ratios for nitrate in snow in the High Arctic (79°N). Atmos. Environ. 38: 5611–5621.

    Article  CAS  Google Scholar 

  • Henderson A.C.G. 2004. Late Holocene environmental change on the NE Tibetan Plateau: a palaeolimnological study of Lake Qinghai and Lake Gahai, based on stable isotopes. PhD thesis, University of London, London.

    Google Scholar 

  • Henderson A.C.G., Holmes J.A., Zhang J.W., Leng M.J. and Carvalho L.R. 2003. A carbon-and oxygen-isotope record of recent environmental change from Qinghai Lake, NE Tibetan Plateau. Chinese Sci. Bull. 48:1463–1468.

    CAS  Google Scholar 

  • Hoffmann G., Jouzel J. and Masson V. 2000. Stable water isotopes in atmospheric general circulation models. Hydrol. Process. 14: 1385–1406.

    Article  Google Scholar 

  • Holmes J.A. and Chivas A.R. 2002. Ostracod shell chemistry - overview. In: Holmes J.A. and Chivas A.R. (eds), The Ostracoda: Applications in Quaternary Research. Geophysical Monograph 131, American Geophysical Union, Washington D.C. pp. 185–204.

    Google Scholar 

  • Hostetler S.W. and Benson L.V. 1994. Stable isotopes of oxygen and hydrogen in the Truckee River-Pyramid Lake surface-water system. 2. A predictive model of δ18O and δ2H in Pyramid Lake. Limnol. Oceanogr. 39: 356–364.

    CAS  Google Scholar 

  • Huang Y., Freeman K.H., Eglinton T.I. and Street-Perrott F.A. 1999. δ13C analyses of individual lignon phenols in Quaternary lake sediments: A novel proxy for deciphering past terrestrial vegetation changes. Geology 27: 471–474.

    Article  CAS  Google Scholar 

  • Huang Y., Shuman B., Wang Y. and Webb III T. 2002. Hydrogen isotope ratios of palmitic acid in lacustrine sediments record late Quaternary climate variations. Geology 30: 1103-1106.

    Article  CAS  Google Scholar 

  • Huang Y., Shuman B., Wang Y. and Webb III T. 2004. Hydrogen isotope ratios of individual lipids in lake sediments as novel tracers of climatic and environmental change: a surface sediment test. J. Paleolimnol. 31: 363–375.

    Article  Google Scholar 

  • Huang Y., Street-Perrott F.A., Perrott R.A. and Eglinton G. 1995. Molecular and carbon isotopic stratigraphy of a glacial/interglacial sediment sequence from a tropical freshwater lake: Sacred Lake, Mt. Kenya. In: Grimalt J.O. and Dorronsoro C. (eds),Organic Geochemistry: Developments and Applications to Energy, Climate, Environment and Human History. Pergamon, Oxford, pp. 826–829.

    Google Scholar 

  • IAEA/WMO 2001. Global Network of Isotopes in Precipitation. The GNIP Database. Accessible at: http://isohis.iaea.org

    Google Scholar 

  • Ito E. 2001. Application of stable isotope techniques to inorganic and biogenic carbonates. In: Last W. M. and Smol J.P. (eds), Tracking Environmental Change Using Lake Sediments. Volume 2: Physical and Geochemical Techniques. Kluwer Academic Publishers, Dordrecht, The Netherlands, pp. 351–371.

    Google Scholar 

  • Jasper J.P. and Hayes J.M. 1990. A carbon isotope record of CO2 levels during the late Quaternary. Nature 347: 462–464.

    Article  CAS  Google Scholar 

  • Johnson T.C., Halfman J.D. and Showers W.J. 1991. Paleoclimate of the past 4000 years at Lake Turkana, Kenya, based on the isotopic composition of authigenic calcite. Palaeogeogr. Palaeocl. 85: 189–198.

    Google Scholar 

  • Jones R.I., King L., Dent M.M., Maberly S.C. and Gibson C.E. 2004. Nitrogen stable isotope ratios in surface sediments, epilithon and macrophytes from upland lakes with different nutrient status. Freshwater Biol. 49: 382–391.

    CAS  Google Scholar 

  • Jones V.J., Leng M.J., Solovieva N., Sloane H.J. and Tarasov P. 2004. Holocene climate on the Kola Peninsula; evidence from the oxygen isotope record of diatom silica. Quaternary Sci. Rev. 23: 833–839.

    Article  Google Scholar 

  • Juillet-Leclerc A. and Labeyrie L. 1987. Temperature dependence of the oxygen isotopic fractionation between diatom silica and water. Earth Planet. Sc. Lett. 84: 69–74.

    Google Scholar 

  • Keatings K.W., Heaton T.H.E. and Holmes J.A. 2002. Carbon and oxygen isotope fractionation in non-marine ostracods: results from a ‘natural culture’ environment. Geochim. Cosmochim. Ac. 66: 1701–1711.

    Article  CAS  Google Scholar 

  • Keeley J.E. and Sandquist D.R. 1992. Carbon -freshwater plants. Plant Cell Environ. 15: 1021 – 1035.

    CAS  Google Scholar 

  • Kendall C. 1998. Tracing nitrogen sources and cycling in catchments. In: Kendall C. and McDonnell J.J. (eds), Isotope Tracers in Catchment Hydrology. Elsevier, Amsterdam, pp. 519–576.

    Google Scholar 

  • Kim S.T. and O'Neil J.R. 1997. Equilibrium and nonequilibrium oxygen isotope effects in synthetic carbonates. Geochim. Cosmochim. Ac. 61: 3461–3475.

    CAS  Google Scholar 

  • Krishnamurthy R.V., Syrup K.A., Baskaran M. and Long A. 1995. Late glacial climate record of midwestern United States from the hydrogen isotope ratio of lake organic matter. Nature 269: 1565–1567.

    CAS  Google Scholar 

  • Labeyrie L.D. 1974. New approach to surface seawater palaeotemperatures using 18O/16O ratios in silica of diatom frustules. Nature 248: 40–42.

    Article  CAS  Google Scholar 

  • Labeyrie L.D. and Juillet A. 1982. Oxygen isotopic exchangeability of diatom valve silica; interpretation and consequences for paleoclimatic studies. Geochim. Cosmochim. Ac. 46: 967–975.

    Article  CAS  Google Scholar 

  • Lamb A.L., Leng M.J., Lamb H.F., Telford R.J. and Mohammed M.U. 2004. Holocene climate and vegetation change in the Main Ethiopian Rift Valley, inferred from the composition (C/N and δ13C) of lacustrine organic matter. Quaternary Sci. Rev. 23: 881–891.

    Article  Google Scholar 

  • Lamb A.L., Leng M.J., Lamb H.F. and Umer M. 2000. A 9,000-year oxygen and carbon isotope record of hydrological change in a small Ethiopian crater lake. Holocene 10: 167–177.

    Article  Google Scholar 

  • Land L.S. 1980. The isotopic and trace element geochemistry of dolomite: the state of the art. In: Zenger D.H., Dunham J.B. and Ethington R.L. (eds), Concepts and Models of Dolomitisation. Society of Economic Paleontologists and Mineralogists Special Publication No. 28, pp. 87–110.

    Google Scholar 

  • Last W.M. and Smol J.P. (eds). 2001a. Tracking Environmental Change Using Lake Sediments. Volume 1: Basin Analysis, Coring, and Chronological Techniques. Kluwer Academic Publishers, Dordrecht, The Netherlands, 548 pp.

    Google Scholar 

  • Last W.M. and Smol J.P. (eds). 2001b. Tracking Environmental Change Using Lake Sediments. Volume 2: Physical and Geochemical Methods. Kluwer Academic Publishers, Dordrecht, The Netherlands, 504 pp.

    Google Scholar 

  • Lehmann M.F., Bernasconi S.M., Barbieri A. and McKenzie J.A. 2002. Preservation of organic matter and alteration of its carbon and nitrogen isotope composition during simulated and in situ early sedimentary diagenesis. Geochim. Cosmochim. Ac. 66: 3573–3584.

    Article  CAS  Google Scholar 

  • Lemke G. and Sturm M. 1997. δ18O and trace element measurements as proxy for the reconstruction of climate changes at Lake Van (Turkey): Preliminary results. In: Dalfes N.D. (ed.), Third Millennium BC Climate Change and Old World Collapse, NATO ASI Series. 149, 653–678.

    Google Scholar 

  • Leng M.J., Barker P., Greenwood P., Roberts N. and Reed J.M. 2001. Oxygen isotope analysis of diatom silica and authigenic calcite from Lake Pinarbasi, Turkey. J. Paleolimnol. 25: 343–349.

    Article  Google Scholar 

  • Leng M.J., Lamb A.L., Lamb H.F. and Telford R.J. 1999. Palaeoclimatic implications of isotopic data from modern and early Holocene shells of the freshwater snail Melanoides tuberculata, from lakes in the Ethiopian Rift Valley. J. Paleolimnol. 21: 97–106.

    Article  Google Scholar 

  • Leng M.J. and Marshall J.D. 2004. Palaeoclimate interpretation of stable isotope data from lake sediment archives. Quaternary Sci. Rev. 23: 811–831.

    Google Scholar 

  • Li H.-C. and Ku T.-L. 1997. δ13C-δ18O covariance as a paleohydrological indicator for closed-basin lakes. Palaeogeogr. Palaeocl. 133: 69–80.

    Google Scholar 

  • Li H.-C., Ku T.-L., Stott L.D. and Anderson R.F. 1997. Stable isotope studies on Mono Lake (California). 1. δ18O in lake sediments as proxy for climatic change during the last 150 years. Limnol. Oceanogr. 42: 230–238.

    CAS  Google Scholar 

  • Lister G.S., Kelts K., Zao C.K., Yu J.K. and Niessen K. 1991. Lake Qinghai, China: closed basin lake levels and the oxygen isotope record for ostracoda since the Late Pleistocene. Palaeogeogr. Palaeocl. 84: 141–162.

    Google Scholar 

  • Lucas W.J. 1983. Photosynthetic assimilation of exogenous HCO3 - by aquatic plants. Ann. Rev. Plant Physio. 34: 71–104.

    CAS  Google Scholar 

  • McCrea J.M. 1950. On the isotopic chemistry of carbonates and palaeo-temperature scale. J. Chem. Phys. 18: 849–857.

    Article  CAS  Google Scholar 

  • McKenzie J.A. 1985. Carbon isotopes and productivity in the lacustrine and marine environment. In: W. Stumm (ed.), Chemical Processes in Lakes. Wiley, New York, pp. 99–118.

    Google Scholar 

  • McKenzie J.A. and Hollander D.J. 1993. Oxygen-isotope record in recent carbonate sediments from Lake Greifen, Switzerland (1750-1986): application of continental isotopic indicator for evaluation of changes in climate and atmospheric circulation patterns. In Swart P.K., Lohmann J., McKenzie J. and Savin S. (eds), Climate Change in Continental Isotopic Records. Geophysical Monograph 78, pp. 101–111.

    Google Scholar 

  • Matheney R.K. and Knauth L.P. 1989. Oxygen-isotope fractionation between marine biogenic silica and seawater. Geochim. Cosmochim. Ac. 53: 3207–3214.

    Article  CAS  Google Scholar 

  • Marshall J.D., Jones R.T., Crowley S.F., Oldfield F., Nash S. and Bedford A. 2002. A high resolution late glacial isotopic record from Hawes Water Northwest England. Climatic oscillations: calibration and comparison of palaeotemperature proxies. Palaeogeogr. Palaeocl. 185: 25–40.

    Google Scholar 

  • Meyers P.A. and Ishiwatari R. 1993. Lacustrine organic geochemistry - an overview of indicators of organic matter sources and diagenesis in lake sediments. Org. Geochem. 20: 867–900.

    CAS  Google Scholar 

  • Meyers P.A. and Lallier-Verges E. 1999. Lacustrine sedimentary organic matter records of Late Quaternary paleoclimates. J. Paleolimnol. 21: 345–372.

    Article  Google Scholar 

  • Meyers P.A. and Teranes J.L. 2001. Sediment organic matter. In: Last W. M. and Smol J.P. (eds), Tracking Environmental Change Using Lake Sediments. Volume 2: Physical and Geochemical Techniques. Kluwer Academic Publishers, Dordrecht, The Netherlands, pp. 239–269.

    Google Scholar 

  • Noon P.E., Leng M.J. and Jones V.J. 2003. Oxygen isotope (δ18O) evidence of hydrological change through the mid-to late-Holocene (c. 6000 14C BP to present day) at Signey Island, maritime Antarctic. Holocene 13: 153–160.

    Article  Google Scholar 

  • Nuñez R., Spiro B., Pentecost A., Kim A. and Coletta P. 2002. Organic-geochemical and stable isotope indicators of environmental change in a marl lake, Malham Tarn, North Yorkshire, U.K. J. Paleolimnol. 28: 403–417.

    Google Scholar 

  • Ogawa N.O., Koitabashi T., Oda H., Nakamura T., Ohkouchi N. and Wada E. 2001. Fluctuations of nitrogen isotope ratio of gobiid fish (Isaza) specimens and sediments in Lake Biwa, Japan, during the 20th century. Limnol. Oceanogr. 46: 1228–1236.

    Article  Google Scholar 

  • Rau G. H. 1978. Carbon-13 depletion in a subalpine lake: Carbon flow implications. Science 201: 901–902.

    CAS  Google Scholar 

  • Ricketts R.D. and Anderson R.F. 1998. A direct comparison between the historical record of lake level and the δ18O signal in carbonate sediments from Lake Turkana, Kenya. Limnol. Oceanogr. 43: 811–822.

    Article  CAS  Google Scholar 

  • Ricketts R.D. and Johnson T.C. 1996. Climate change in the Turkana basin as deduced from a 4000 year long δ18O record. Earth Planet. Sc. Lett. 142: 7-–7.

    CAS  Google Scholar 

  • Roberts N., Reed J., Leng M.J., Kuzucuoglu C., Fontugne M., Bertaux J., Woldring H., Bottema S., Black S., Hunt E. and Karabiyikoglu M. 2001. The tempo of Holocene climatic change in the eastern Mediterranean region: new high-resolution crater-lake sediment data from central Turkey. Holocene 11: 721–736.

    Google Scholar 

  • Rosenbaum J. and Sheppard S.M.F. 1986. An isotopic study of siderites, dolomites and ankerites at high temperatures. Geochim. Cosmochim. Ac. 50: 1147–1150.

    Article  CAS  Google Scholar 

  • Russell K.M., Galloway J.N., Macko S.A., Moody J.L. and Scudlark J.R. 1998. Sources of nitrogen in wet deposition to the Cheasapeake Bay region. Atmos. Environ. 32: 2453–2465.

    Article  CAS  Google Scholar 

  • Sauer P.E., Eglinton T.I., Hayes J.M., Schimmelmann A. and Sessions A.L. 2001. Compound-specific D/H ratios of lipid biomarkers from sediments as a proxy for environmental and climatic conditions. Geochim. Cosmochim. Ac. 65: 213-222.

    Article  CAS  Google Scholar 

  • Schwalb A. 2003. Lacustrine ostracods as stable isotope recorders of late-glacial and Holocene environmental dynamics and climate. J. Palaeolimnol. 29: 265–351.

    Article  Google Scholar 

  • Shemesh A., Charles C.D. and Fairbanks R.G. 1992. Oxygen isotopes in biogenic silica - global changes in ocean temperature and isotopic composition. Science 256: 1434–1436.

    CAS  Google Scholar 

  • Shemesh A., Burckle L.H. and Hays J.D. 1995. Late Pleistocene oxygen isotope records of biogenic silica from the Atlantic sector of the Southern Ocean. Paleoceanography 10: 179–196.

    Article  Google Scholar 

  • Shemesh A., Rosqvist G., Rietti-Shati M., Rubensdotter L., Bigler C., Yam R. and Karlen W. 2001. Holocene climate change in Swedish Lapland inferred from an oxygen isotope record of lacustrine biogenic silica. Holocene 11: 447–454.

    Article  Google Scholar 

  • Siegenthaler U. and Eicher U. 1986. Stable oxygen and carbon isotope analyses. In Berglund, B.E. (ed.), Handbook of Holocene Palaeoecology and Palaeohydrology. John Wiley and Sons Ltd, London, pp. 407–422.

    Google Scholar 

  • Smith F.A. and Walker N.A. 1980. Photosynthesis by aquatic plants: effects of unstirred layers in - relation to assimilation of CO2 and HCO3 - and to carbon isotopic discrimination. New Phytol. 86: 245–259.

    CAS  Google Scholar 

  • Smol J.P., Birks H.J.B. and Last W.M. 2001a. Tracking Environmental Change Using Lake Sediments. Volume 3: Terrestrial, Algal, and Siliceous Indicators. Kluwer Academic Publishers, Dordrecht, The Netherlands, 371 pp.

    Google Scholar 

  • Smol J.P., Birks H.J.B. and Last W.M. 2001b. Tracking Environmental Change Using Lake Sediments. Volume 4: Zoological Indicators. Kluwer Academic Publishers, Dordrecht, The Netherlands, 217 pp.

    Google Scholar 

  • Sternberg L.S.L. 1989. Oxygen and hydrogen isotope ratios in plant cellulose: Mechanisms and applications. In: Rundel P.W., Ehleringer J.R. and Nagy K.A. (eds), Stable Isotopes in Ecological Research. Springer-Verlag, New York, pp. 124–141.

    Google Scholar 

  • Street F.A. 1980. The relative importance of climate and local hydrogeological factors in influencing lake-level fluctuations. Palaeoecol. Afr. 12: 137–158.

    Google Scholar 

  • Street-Perrott F.A., Holmes J.A., Waller M.P., Allen M.J., Barber N.G.H., Fothergill P.A., Harkness D.D., Ivanovich M., Kroon D. and Perrott R.A. 2000. Drought and dust deposition in the West African Sahel: a 5500-year record from Kajemarum Oasis, northeastern Nigeria. Holocene 10: 293–302.

    Article  Google Scholar 

  • Street-Perrott F.A., Marchand D.S., Roberts N. and Harrison S.P. 1989. Global lake-level fluctuations from 18,000 to 0 years ago: a palaeoclimatic analysis. U.S. Department of Energy, Office of Energy Research, DOE/ER/60304-H1.

    Google Scholar 

  • Street-Perrott F.A., Ficken K.J., Huang Y. and Eglinton G. 2004. Late Quaternary changes in carbon cycling on Mt. Kenya, East Africa: an overview of the δ13C record in lacustrine organic matter. Quaternary Sci. Rev. 23, 861–879.

    Article  Google Scholar 

  • Stuiver M. 1970. Oxygen and carbon isotope ratios of fresh-water carbonates as climatic indicators. J. Geophys. Res. 75: 5247–5257.

    CAS  Google Scholar 

  • Talbot M.R. 1990. A review of the palaeohydrological interpretation of carbon and oxygen isotopic ratios in primary lacustrine carbonates. Chem. Geol. 80: 261–79.

    CAS  Google Scholar 

  • Talbot M.R. 2001. Nitrogen isotopes in palaeolimnology. In: Last W.M. and Smol J.P. (eds), Tracking Environmental Change Using Lake Sediments. Volume 2: Physical and Geochemical Techniques. Kluwer Academic Publishers, Dordrecht, The Netherlands, pp. 401–439.

    Google Scholar 

  • Talbot M.R. and Johannessen T. 1992. A high resolution palaeoclimatic record for the last 27,500 years in tropical West Africa from the carbon and nitrogen isotopic composition of lacustrine organic matter. Earth Planet. Sci. Lett. 110: 23–37.

    Article  CAS  Google Scholar 

  • Talbot M.R. and Kelts K. 1986. Primary and diagenetic carbonates in the anoxic sediments of Lake Bosumtwi, Ghana. Geology 14: 912–916.

    Article  CAS  Google Scholar 

  • Talbot M.R., Livingston D.A., Palmer P.A., Maley J., Melack J.M., Delibrias G. and Gulliksen S. 1984. Preliminary results from sediment cores from Lake Bosumtwi, Ghana. Paleoecol. Afr. 16: 173–192.

    Google Scholar 

  • Tarutani T., Clayton R.N. and Mayeda T. 1969. The effect of polymorphism and magnesium substitution on oxygen isotope fractionation between calcium carbonate and water. Geochim. Cosmochim. Ac. 33: 987–996.

    Article  CAS  Google Scholar 

  • Teranes J.L. and Bernasconi S.M. 2000. The record of nitrate utilization and productivity limitation provided by δ15N values in lake organic matter -a study of sediment trap and core sediments from Baldeggersee, Switzerland. Limnol. Oceanog. 45: 801–803.

    Article  CAS  Google Scholar 

  • Teranes J.L. and McKenzie J.A. 2001. Lacustrine oxygen isotope record of 20th-century climate change in central Europe: evaluation of climatic controls on oxygen isotopes in precipitation. J. Paleolimnol. 26: 131–146.

    Article  Google Scholar 

  • Turney C.S.M. 1999. Lacustrine bulk organic δ13C in the British Isles during the last glacial-Holocene transition (14-9 ka C-14 BP). Arct. Antarct. Alp. Res. 31: 71–81.

    Google Scholar 

  • Urey H.C., Lowenstam H.A., Epstein S. and McKinney C.R. 1951. Measurement of palaeotemperatures and temperatures of the Upper Cretaceous of England, Denmark and Southeastern United States. Geol. Soc. Am. Bull. 62: 399–416.

    CAS  Google Scholar 

  • von Grafenstein U., Erlenkeuser H., Muller J., Trimborn P. and Alefs J. 1996. A 200 year mid-European air temperature record preserved in lake sediments: an extension of the δ18Op-air temperature relation into the past. Geochim. Cosmochim. Ac. 60: 4025–4036.

    Google Scholar 

  • von Grafenstein U., Erlenkeuser H. and Trimborn P. 1999. Oxygen and carbon isotopes in modern fresh-water ostracod valves: assessing vital offsets and autecological effects of interest for palaeoclimate studies. Palaeogeogr. Palaeocl. 148: 133–152.

    Google Scholar 

  • Wang C.H. and Yeh H.W. 1985. Oxygen isotopic composition of DSDP Site 480 diatoms: implications and applications. Geochim. Cosmochim. Ac. 49: 1469–1478.

    Google Scholar 

  • Watanabe T., Naraoka H., Nishimura M. and Kawai T. 2004. Biological and environmental changes in Lake Baikal during the late Quaternary infreed from carbon, nitrogen and sulphur isotopes. Earth Planet. Sc. Lett. 222: 285–299.

    CAS  Google Scholar 

  • Wolfe B.B., Aravena R., Abbott M.B., Seltzer G.O. and Gibson J.J. 2001a. Reconstruction of paleohydrology and paleohumidity from oxygen isotope records in the Bolivian Andes. Palaeogeogr. Palaeocl. 176: 177–192.

    Google Scholar 

  • Wolfe B.B. and Edwards T.W.D. 1997. Hydrologic control on the oxygen-isotope relation between sediment cellulose and lake water, Taimyr Peninsula, Russia: Implications for the use of surface-sediment calibrations in paleolimnology. J. Paleolimnol. 18: 83–291.

    Google Scholar 

  • Wolfe B.B., Edwards T.W.D., Aravena R. and MacDonald G.M. 1996. Rapid Holocene hydrologic change along boreal treeline revealed by δ13C and δ18O in organic lake sediments, Northwest Territories, Canada. J. Paleolimnol. 15: 171–181.

    Google Scholar 

  • Wolfe B.B., Edwards T.W.D., Aravena R., Forman S.L., Warner B.G., Velichko A.A. and MacDonald G.M. 2000. Holocene paleohydrology and paleoclimate at treeline, north-central Russia, inferred from oxygen isotope records in lake sediment cellulose. Quaternary Res. 53: 319–329.

    Article  CAS  Google Scholar 

  • Wolfe B.B., Edwards T.W.D., Elgood R.J. and Beuning K.R.M. 2001b. Carbon and oxygen isotope analysis of lake sediment cellulose: methods and applications. In: Last W.M. and Smol J.P. (eds), Tracking Environmental Change Using Lake Sediments: Physical and Chemical Techniques. Kluwer Academic Publishers, Dordrecht, The Netherlands, pp. 373–400.

    Google Scholar 

  • Wolfe B.B., Edwards T.W.D. and Hall R.I. 2002. Past and present ecohydrology of the Peace-Athabasca Delta, northern Alberta, Canada: water isotope tracers lead the way. PAGES News 10: 16–17.

    Google Scholar 

  • Wooller M.J., Francis D., Fogel M.L., Miller G.H., Walker I.R. and Wolfe A.P. 2004. Quantitative paleotemperature estimates from δ18O of chironomid head capsules preserved in Arctic lake sediments. J. Paleolimnol. 31: 267–274.

    Article  Google Scholar 

  • Xia J., Ito E. and Engstrom D.R. 1997. Geochemistry of ostracode calcite: Part 1: An experimental determination of oxygen isotope fractionation. Geochim. Cosmochim. Ac. 61: 377–382.

    CAS  Google Scholar 

  • Yakir D. 1992. Potential use of O-18 and C-13 in cellulose for estimating the impact of terrestrial photosynthesis on atmospheric CO2. Photosyn. Res. 34: 108–108.

    Google Scholar 

  • Yu Z.C., Ito E., Engstrom D.R. and Fritz S.C. 2002. A 2100-year trace-element and stable-isotope record at decadal resolution from Rice Lake in the Northern Great Plains, USA. Holocene 12: 605–617.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer

About this chapter

Cite this chapter

LENG, M.J. et al. (2006). ISOTOPES IN LAKE SEDIMENTS. In: Leng, M.J. (eds) Isotopes in Palaeoenvironmental Research. Developments in Paleoenvironmental Research, vol 10. Springer, Dordrecht. https://doi.org/10.1007/1-4020-2504-1_04

Download citation

Publish with us

Policies and ethics