Advertisement

Protistan Skeletons: A Geologic History of Evolution and Constraint

  • Andrew H. KnollEmail author
  • Benjamin Kotrc
Chapter
Part of the Biologically-Inspired Systems book series (BISY, volume 6)

Abstract

The tests and scales formed by protists may be the epitome of lightweight bioconstructions in nature. Skeletal biomineralization is widespread among eukaryotes, but both predominant mineralogy and stratigraphic history differ between macroscopic and microscopic organisms. Among animals and macroscopic algae, calcium minerals, especially carbonates, predominate in skeleton formation, with most innovations in skeletal biomineralization concentrated in and around the Cambrian Period. In contrast, amorphous silica is widely used in protistan skeletons, and a majority of the geologically recorded origins of silica biomineralization took place in the Mesozoic and early Cenozoic eras. Amorphous silica may be favored in protist biomineralization because of the material properties of both silica itself and the organic molecules that template its precipitation. The predominace of carbonates and phosphates in macroscopic skeletons may, in turn, reflect the low quantities of dissolved silica in fresh and marine waters. The evolutionary success of diatoms has depleted silica levels in surficial waters since the Cretaceous Period, and fossils show that other biological participants in the silica cycle have responded both through altered habitat preferences and reduced use of silica in test construction. These natural instances of doing more with less might serve to inspire continuing innovations in biomimetic design.

Keywords

Protists Evolution Earth history Skeletal biomineralization, Functional morphology Diatoms Radiolaria Silica Calcite Calcium phosphate 

References

  1. Allison CW, Hilgert JW (1986) Scale microfossils from the early Cambrian of northwest Canada. J Paleontol 60:973–1015Google Scholar
  2. Andersen RA (2004) Biology and systematics of heterokont and haptophyte algae. Amer J Bot 91:1508–1522CrossRefGoogle Scholar
  3. Anderson OR (1983) Radiolaria. Springer, New YorkCrossRefGoogle Scholar
  4. Antcliffe JB, Callow RHT, Brasier MD (2014) Giving the early fossil record of sponges a squeeze. Biol Rev. doi:10.1111/brv.12090Google Scholar
  5. Armstrong H, Brasier M (2005) Microfossils. Blackwell Publishing, MaldenGoogle Scholar
  6. Barron J, Baldauf J (1995) Cenozoic marine diatom biostratigraphy and applications to paleoclimatology and paleoceanography. (In: Blome CD, Whalen PM, Reed KM (eds) Siliceous Microfossils.) Paleontol Soc Short Courses Paleontol 8:107–118Google Scholar
  7. Bengtson S, Conway Morris S (1992) Early radiation of biomineralizing phyla. In: Lipps JH, Signor PW (eds) Origin and early evolution of the Metazoa. Plenum, New York, pp 447–481Google Scholar
  8. Bentov S, Brownlee C, Erez J (2009) The role of seawater endocytosis in the biomineralization process in calcareous foraminifera. Proc Nat Acad Sci USA 51:21500–21504CrossRefGoogle Scholar
  9. Bentov S, Zaslansky P, Al-Sawalmih A et al (2012) Enamel-like apatite crown covering amorphous mineral in a crayfish mandible. Nature Comm 3:839. doi:10.1038/ncomms1839CrossRefGoogle Scholar
  10. Berney C, Pawlowski J (2006) A molecular time-scale for eukaryote evolution recalibrated with the continuous microfossil record. Proc R Soc Lond Ser B 273:1867–1872CrossRefGoogle Scholar
  11. Brown JW, Sorhannus U (2010) A molecular genetic timescale for the diversification of autotrophic stramenopiles (Ochrophyta): Substantive underestimation of putative fossil ages. PLOS ONE 5(9). doi:10.1371/journal.pone.0012759Google Scholar
  12. Bukry D (1981) Synthesis of silicoflagellate stratigraphy for Maestrichtian to Quaternary marine sediment. Soc of Econ Paleont Min Spec Pub 32:433–444Google Scholar
  13. Burki F, Shalchian-Tabrizi K, Pawlowski J (2008) Phylogenomics reveals a new ‘megagroup’ including most photosynthetic eukaryotes. Biology Lett 4:366–369CrossRefGoogle Scholar
  14. Carrera MG, Botting JR (2008) Evolutionary history of cambrian spiculate sponges: implications for the Cambrian evolutionary fauna. Palaios 23:124–138CrossRefGoogle Scholar
  15. Creveling JC, Knoll AH, Fernández Remolar D et al (2013) Geobiology of a Lower Cambrian carbonate platform, Pedroche Formation, Spain. Palaeogeogr Palaeoclimatol Palaeoecol 386:459–478CrossRefGoogle Scholar
  16. Cohen PA, Knoll AH (2012) Neoproterozoic scale microfossils from the Fifteen Mile Group, Yukon Territory. J Paleontol 86:775–800CrossRefGoogle Scholar
  17. Cohen PA, Schopf JW, Butterfield NJ et al (2011) Phosphate biomineralization in mid-Neoproterozoic protists. Geology 39:539–542CrossRefGoogle Scholar
  18. Cuif J-P, Dauphin Y, Sorauf JE (2011) Biominerals and fossils through time. Cambridge University Press, CambridgeGoogle Scholar
  19. Debrenne F (2007) Lower Cambrian archaeocyathan bioconstructions. Comptes Rendus Palevol 6:5–19CrossRefGoogle Scholar
  20. Decelle J, Suzuki N, Mahe F et al (2012) Molecular phylogeny and morphological evolution of the Acantharia (Radiolaria). Protist 163:435–450CrossRefGoogle Scholar
  21. Decelle J, Martin P, Paborstava K et al (2013) Diversity, ecology and biogeochemistry of cyst-forming Acantharia (Radiolaria) in the oceans. PLoS ONE 8:(Article Number)e53598CrossRefGoogle Scholar
  22. De Decker P (2004) On the celestite-secreting Acantharia and their effects on seawater strontium to calcium ratios. Hydrobiologia 517:1–13CrossRefGoogle Scholar
  23. Domozych D, Wells B, Shaw P (1991) Basket scales of the green-alga, Mesostigma viride—chemistry and ultrastructure. J Cell Sci 100:397–407Google Scholar
  24. Ehrlich H (2010) Chitin and collagen as universal and alternative templates in biomineralization. Int Geol Rev 52:661–699CrossRefGoogle Scholar
  25. Erez J (2003) The source of ions for biomineralization in foraminifera and their implications for paleoceanographic proxies. Rev Mineral Geochem 54:115–149CrossRefGoogle Scholar
  26. Ernissee JJ, McCartney K (1992) Ebridians. In: Lipps JH (ed) Fossil prokaryotes and protists. Blackwell Scientific, Oxford, pp 131–140Google Scholar
  27. Falkowski P, Knoll H (eds) (2007) The evolution of primary producers in the sea. Elsevier, BurlingtonGoogle Scholar
  28. Falkowski PG, Katz ME, Knoll AH et al (2004) The evolution of modern eukaryotic phytoplankton. Science 305:354–360CrossRefGoogle Scholar
  29. Finkel ZV, Kotrc B (2010) Silica use through time: macroevolutionary change in the morphology of the diatom fustule. Geomicrobiol J 27:596–608CrossRefGoogle Scholar
  30. Finkel ZV, Matheson KA, Regan KS et al (2010) Genotypic and phenotypic variation in diatom silicification under paleo-oceanographic conditions. Geobiology 8:433–445CrossRefGoogle Scholar
  31. Foissner W, Weissenbacher B, Krautgartner W-D et al (2009) A cover of glass: first report of biomineralized silicon in a ciliate, Maryna umbrellata (Ciliophora: Colpodea). J Euk Microbiol 56:519–530CrossRefGoogle Scholar
  32. Fowler S, Fisher N (1983) Viability of marine phytoplankton in zooplankton fecal pellets. Deep-Sea Res 30:963–969CrossRefGoogle Scholar
  33. Frankel RB, Bazylinski DA, Schüler D (1998) Biomineralization of magnetic iron minerals in magnetotactic bacteria. J. Supramol Sci 5:383–390CrossRefGoogle Scholar
  34. Gong N, Wiens M, Schröder HC et al (2010) Biosilicification of loricate choanoflagellate: organic composition of the nanotubular siliceous costal strips of Stephanoeca diplocostata. J Exp Biol 213:3575–3585CrossRefGoogle Scholar
  35. Gordon R, Losic D, Tiffany MA et al (2009) The glass menagerie: diatoms for novel applications in nanotechnology. Trends Biotechnol 27:116–127CrossRefGoogle Scholar
  36. Grenne, T, Slack, JF (2003) Paleozoic and Mesozoic silica-rich seawater: evidence from hematitic chert (jasper) deposits. Geology 31:319–322CrossRefGoogle Scholar
  37. Grotzinger JP, Watters, Knoll AH (2000) Calcareous metazoans in thrombolitic bioherms of the terminal Proterozoic Nama Group, Namibia. Paleobiology 26:334–359Google Scholar
  38. Groussin M, Pawlowski J, Yang Z (2011) Bayesian relaxed clock estimation of divergence times in foraminifera. Mol Phyl Evol 61:157–166CrossRefGoogle Scholar
  39. Haeckel E (1887) Report on the Radiolaria collected by H.M.S. Challenger during the years 1873–1876. Rep Sci Results, Challenger, Zool. 18:clxxxviii + 1803 pGoogle Scholar
  40. Hamm CE (2005) The evolution of advanced mechanical defenses and potential technological applications of diatom shells. J Nanosci Nanotechnol 5:108–199CrossRefGoogle Scholar
  41. Hamm CE, Merkel R, Springer O et al (2003) Architecture and material properties of diatom shells provide effective mechanical protection. Nature 421:841–843CrossRefGoogle Scholar
  42. Harper HE Jr, Knoll AH (1975) Silica, diatoms, and Cenozoic radiolarian evolution. Geology 3:175–177CrossRefGoogle Scholar
  43. Hedley R, Ogden C, Mordan N (1977) Biology and fine structure of Cryptodifflugia oviformis (Rhizopdea: Protozoa). Bull Br Mus Nat Hist (Zool.) 30:313–328Google Scholar
  44. Hildebrand M (2000) Silicic acid transport and its control during cell wall silicification in diatoms. In: Bäuerlein E (ed) Biomineralization. Springer, Weinheim, pp 171–188Google Scholar
  45. Hoppenrath M, Leander BS (2006) Ebriid phylogeny and the expansion of the Cercozoa. Protist 157:279–290CrossRefGoogle Scholar
  46. Knoll AH (1994) Proterozoic and Early Cambrian protists: evidence for accelerating evolutionary tempo. Proc Nat Acad Sci USA 91:6743–6750CrossRefGoogle Scholar
  47. Knoll AH (2003) Biomineralization and evolutionary history. Rev Mineral Geochem 54:329–356CrossRefGoogle Scholar
  48. Knoll AH (2013) Systems paleobiology. Geol Soc Am Bull 125:3–13CrossRefGoogle Scholar
  49. Knoll AH, Fischer WW (2011) Skeletons and ocean chemistry: the long view. In: Gattuso JP, Hansson L (eds) Ocean acidification. Oxford University Press, Oxofrd, pp 67–82Google Scholar
  50. Konhauser KO, Riding R (2012) Bacterial biomineralization. In: Knoll AH, Canfield DE, Konhauser KO (eds) Fundamentals of geobiology. Wiley-Blackwell, Chichester, pp 105–130CrossRefGoogle Scholar
  51. Kooistra WHCF, Gersonde R, Medlin LK et al (2007) The origin and evolution of the diatoms: their adaptation to a planktonic existence. In: Falkowski P, Knoll AH (eds) The evolution of primary producers in the sea. Elsevier, Burlington, pp 207–249Google Scholar
  52. Krabberød AK, Brate J, Dolven JK et al (2011) Radiolaria divided into Polycystina and Spasmaria in combined 18S and 28S rDNA phylogeny. PLoS ONE 6:e23526CrossRefGoogle Scholar
  53. Kröger N, Poulsen N (2008) Diatoms-from cell wall biogenesis to nanotechnology. Ann Rev Genet 42:83–107CrossRefGoogle Scholar
  54. Kröger N, Sumper M (2004) Silica formation in diatoms: the function of long-chain polyamines and silaffins. J Mater Chem 14:2059–2065CrossRefGoogle Scholar
  55. Kunitomo Y, Sarashina I, Iijima M et al (2006) Molecular phylogeny of acantharian and polycystine radiolarians based on ribosomal DNA sequences, and some comparisons with data from the fossil record. European J Protistol 42:143–153CrossRefGoogle Scholar
  56. Lazarus DB, Kotrc B, Wulf G et al (2009) Radiolarians decreased silicification as an evolutionary response to reduced Cenozoic ocean silica availability. Proc Nat Acad Sci USA 106:9333–9338CrossRefGoogle Scholar
  57. Lipps JH (1973) Test structure in Foraminifera. Ann Rev Microbiol 27:471–488CrossRefGoogle Scholar
  58. Maldonado M, Carmona MC, Uriz MJ et al (1999) Decline in Mesozoic reef-building sponges explained by silicon limitation. Nature 401:785–788CrossRefGoogle Scholar
  59. Maldonado M, Riesgo A, Bucci A et al (2010) Revisiting silicon budgets at a tropical continental shelf: Silica standing stocks in sponges surpass those in diatoms. Limnol Oceanogr 55:2001–2010CrossRefGoogle Scholar
  60. Maldonado M, Navarro L, Grasa A et al (2011) Silicon uptake by sponges: a twist to understanding nutrient cycling on continental margins. Nature Sci Rep 1:1–8Google Scholar
  61. Maldonado M, Cao H, Cao X et al (2012) Experimental silicon demand by the sponge Hymeniacidon perlevis reveals chronic limitation in field populations. Hydrobiologia 687:251–257CrossRefGoogle Scholar
  62. Maliva R, Knoll AH, Siever R (1989) Secular change in chert distribution: a reflection of evolving biological participation in the silica cycle. Palaios 4:519–532CrossRefGoogle Scholar
  63. Maloof AC, Porter SM, Moore JL et al (2010) The earliest Cambrian record of animals and ocean geochemical change. Geol Soc Am Bull 122:1731–1774CrossRefGoogle Scholar
  64. Marron AO, Alston MJ, Heavens D, Akam M, Caccamo M, Holland PWH, Walker G (2013) A family of diatom-like silicon transporters in the siliceous loricate choanoflagellates. Proc Roy Soc Biol Sci 280:20122543Google Scholar
  65. Marsh ME (2003) Regulation of CaCO3 formation in coccolithophores. Comp Biochem Physiol B Biochem Mol Biol 136:743–754CrossRefGoogle Scholar
  66. Matsuoka A (2007) Living radiolarian feeding mechanisms: new light on past marine ecosystems. Swiss J Geosci 100:273–279CrossRefGoogle Scholar
  67. McIlroy D, Green OR, Brasier MD (2001) Palaeobiology and evolution of the earliest agglutinated Foraminifera: Platysolenites, Spirosolenites and related forms. Lethaia 34:13–29CrossRefGoogle Scholar
  68. Müller WEG, Li J, Schröder HC et al (2007) The unique skeleton of siliceous sponges (Porifera; Hexactinellida and Demospongiae) that evolved first from the Urmetazoa during the Proterozoic: a review. Biogeosciences 4:219–232CrossRefGoogle Scholar
  69. Parfrey LW, Grant J, Tekle YI et al (2010) Broadly sampled multigene analyses yield a well- resolved eukaryotic tree of life. Syst Biol 59:518–533CrossRefGoogle Scholar
  70. Park T-Y, Woo J, Lee D-J et al (2011) A stem-group cnidarian described from the mid-Cambrian of China and its significance for cnidarian evolution. Nature Comm. doi:10.1038/ncomms1457Google Scholar
  71. Paasche E (2002) A review of the coccolithophorid Emiliania huxleyi (Prymnesiophyceae), with particular reference to growth, coccolith formation and calcification—photosynthesis interactions. Phycologia 40:503–529CrossRefGoogle Scholar
  72. Porter SM (2010) Calcite and aragonite seas and the de novo acquisition of carbonate skeletons. Geobiology 8:256–277CrossRefGoogle Scholar
  73. Porter SM, Meisterfeld R, Knoll AH (2003) Vase-shaped microfossils from the Neoproterozoic Chuar Group, Grand Canyon: A classification guided by modern testate amoebae. J Paleontol 77:409–429CrossRefGoogle Scholar
  74. Pouille L, Obut O, Danelian T et al (2011) Lower Cambrian (Botomian) polycystine radiolaria from the Altai Mountains (southern Siberia, Russia). Comptes rendus Palevol 10:627–633CrossRefGoogle Scholar
  75. Preisig HR (1994) Siliceous structures and silicification in flagellated protists. Protoplasma 181:29–42CrossRefGoogle Scholar
  76. Pruss SA, Finnegan S, Fischer WW et al (2010) Carbonates in skeleton-poor seas: new insights from Cambrian and Ordovician strata of Laurentia. Palaios 25:73–84CrossRefGoogle Scholar
  77. Pruss SA, Clemente H, LaFlamme M (2012) Early (Series 2) Cambrian archaeocyathan reefs of southern Labrador as a locus for skeletal carbonate production. Lethaia 45:401–410CrossRefGoogle Scholar
  78. Racki G, Cordey F (2000) Radiolarian palaeoecology and radiolarites: is the present the key to the past? Earth-Sci Rev 52:83–120CrossRefGoogle Scholar
  79. Raven JA (1983) The transport and function of silicon in plants. Biol Rev 58:179–207CrossRefGoogle Scholar
  80. Raven JA, Giordano M (2009) Biomineralization by photosynthetic organisms: evidence of coevolution of the organisms and their environment? Geobiology 7:140–154CrossRefGoogle Scholar
  81. Raven JA, Knoll AH (2010) Non-skeletal biomineralization in protists: matters of moment and gravity. Geomicrobiol J 27:1–13CrossRefGoogle Scholar
  82. Raven JA, Waite AM (2004) The evolution of silicification in diatoms: inescapable sinking and sinking as escape? New Phytol 162:45–61CrossRefGoogle Scholar
  83. Richter FM, Rowley DB, Depaolo DJ (1992) Sr isotope evolution of seawater—the role of tectonics. Earth Planet Sci Lett 109:11–23CrossRefGoogle Scholar
  84. Round FE, Crawford RM, Mann DG (1990) The diatoms: biology & morphology of the genera. Cambridge Univ Press, CambridgeGoogle Scholar
  85. Siever R (1992) The silica cycle in the Precambrian. Geochim Cosmochim Acta 56:3265–3272CrossRefGoogle Scholar
  86. Sperling EA, Robinson JM, Pisani D et al (2010) Where’s the glass? Biomarkers, molecular clocks, and microRNAs suggest a 200-Myr missing Precambrian fossil record of siliceous sponge spicules. Geobiology 8:24–36CrossRefGoogle Scholar
  87. Strathern P (2005) A brief history of medicine: from Hippocrates’ four humours to Crick and Watson’s double helix. Robinson, LondonGoogle Scholar
  88. Thomas RDK, Shearman RM, Stewart CW (2000) Evolutionary exploitation of design options by the first animals with hard skeletons. Science 288:239–1242CrossRefGoogle Scholar
  89. Ujiié Y, Kimoto K, Pawlowski J (2008) Molecular evidence for an independent origin of modern triserial planktonic foraminifera from benthic ancestors. Mar Microapelontol 69:334–340CrossRefGoogle Scholar
  90. van Tol HM, Irwin AJ, Finkel ZV (2012) Macroevolutionary trends in silicoflagellate skeletal morphology: the costs and benefits of silicification. Paleobiology 38:391–402CrossRefGoogle Scholar
  91. Vermeij GJ (1977) The Mesozoic marine revolution: evidence from snails, predators and grazers. Paleobiology 3:245–258Google Scholar
  92. Vidal G, MoczydlowskaVidal M (1997) Biodiversity, speciation, and extinction trends of Proterozoic and Cambrian phytoplankton. Paleobiology 23:230–246Google Scholar
  93. Walker G, Dorrell RG, Schlacht A, Dacks JB (2011) Eukaryotic systematics: a user’s guide for cell biologists and parasitologists. Parasitology 138:1638–1663Google Scholar
  94. Wallace AF, Wang D, Hamm LM et al (2012) Skeletal formation in eukaryotes. In: Knoll AH, Canfield DE, Konhauser K (eds) Fundamentals of geobiology. Wiley-Blackwell, Chichester, pp 150–187Google Scholar
  95. Weiner S, Dove PM (2003) An overview of biomineralization processes and the problem of the vital effect. Rev Mineral Geochem 54:1–29CrossRefGoogle Scholar
  96. Won M-Z, Iams WJ (2011) Earliest Arenig radiolarians from the Cow Head Group, western Newfoundland. J Paleontol 85:156–177CrossRefGoogle Scholar
  97. Wood RA, Grotzinger JP, Dickson JAD (2002) Proterozoic modular biomineralized metazoan from the Nama Group, Namibia. Science 296:2383–2386CrossRefGoogle Scholar
  98. Yoshida M, Noel M, Nakayama T et al (2006) A haptophyte bearing siliceous scales: ultrastructure and phylogenetic position of Hyalolithus neolepis gen. et sp. nov. (Prymnesiophyceae, Haptophyta). Protist 157:213–234CrossRefGoogle Scholar
  99. Young J, Henriksen K (2003) Mineralization within vesicles: the calcite of coccoliths. Rev Mineral Geochem 54:189–215CrossRefGoogle Scholar
  100. Zeebe RE, Westbroek P (2003) A simple model for the CaCO3 saturation state of the ocean: the “Strangelove”, the “Neritan”, and the “Cretan” ocean. Geochem Geophy Geosystems. doi:10.1029/2003GC000538Google Scholar
  101. Zhuravlev AYu, Wood RA (2008) Eve of biomineralization: controls on skeletal mineralogy. Geology 36:923–926CrossRefGoogle Scholar
  102. Zlatogursky VV (2012) Raphidiophrys heterophryoidea sp nov (Centrohelida: Raphidiophryidae), the first heliozoan species with a combination of siliceous and organic skeletal elements. Eur J Protistol 48:9–16CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  1. 1.Department of Earth and Planetary SciencesHarvard UniversityCambridgeUSA

Personalised recommendations