Skip to main content

Haemodynamics and Oxygenation of the Tumour Microcirculation

  • Chapter
  • First Online:
Advances in Intravital Microscopy

Abstract

Abnormalities of the tumour vasculature and their consequences on the microenvironment of tumour cells impact on tumour progression and response to both blood-borne anti-cancer agents and radio-therapy, as well as making tumour blood vessels a target for therapy in their own right. Intravital microscopy of experimental tumours, most commonly grown in ‘window’ chambers, such as the dorsal skin fold chamber in mice and rats, enables investigations of tumour microcirculatory function. This is needed both to understand the molecular control of tumour vascular function and to measure the response of the vasculature to treatment. In particular, intravital microscopy enables parameters associated with blood supply, vascular permeability and oxygenation to be estimated, at high spatial and temporal resolution. In this chapter, methods used for measuring a range of these parameters, specific examples of their applications, the significance of findings and some of the limitations of the techniques are described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    A membrane marker commonly used is DiI (1,1′-dioctadecyl-3,3,3′3′-tetramethylindocarbocyanine perchlorate), an indocarbocyanine dye retained in lipid bi-layers.

References

  • Akerman S, Fisher M, Daniel RA, Lefley D, Reyes-Aldasoro CC, Lunt SJ, Harris S, Bjorndahl M, Williams LJ, Evans H, Barber PR, Prise VE, Vojnovic B, Kanthou C, Tozer GM (2013) Influence of soluble or matrix-bound isoforms of vascular endothelial growth factor-A on tumor response to vascular-targeted strategies. Int J Cancer 133(11):2563–2576. doi:10.1002/ijc.28281. Epub 2013 Jul 10

    CAS  PubMed  Google Scholar 

  • Alper T, Howard-Flanders P (1956) Role of oxygen in modifying the radiosensitivity of E. coli B. Nature 178:978–979

    Article  CAS  PubMed  Google Scholar 

  • Babilas P, Liebsch G, Schacht V, Klimant I, Wolfbeis OS, Szeimies RM, Abels C (2005) In vivo phosphorescence imaging of pO2 using planar oxygen sensors. Microcirculation 12:477–487

    Article  CAS  PubMed  Google Scholar 

  • Brizel DM, Klitzman B, Cook JM, Edwards J, Rosner G, Dewhirst MW (1993) A comparison of tumor and normal tissue microvascular hematocrits and red cell fluxes in a rat window chamber model. Int J Radiat Oncol Biol Phys 25:269–276

    Article  CAS  PubMed  Google Scholar 

  • Brurberg KG, Gaustad JV, Mollatt CS, Rofstad EK (2008) Temporal heterogeneity in blood supply in human tumor xenografts. Neoplasia 10:727–735

    PubMed Central  PubMed  Google Scholar 

  • Carmeliet P, Jain RK (2011) Principles and mechanisms of vessel normalization for cancer and other angiogenic diseases. Nat Rev Drug Discov 10:417–427

    Article  CAS  PubMed  Google Scholar 

  • Chen Q, Tong S, Dewhirst MW, Yuan F (2004) Targeting tumor microvessels using doxorubicin encapsulated in a novel thermosensitive liposome. Mol Cancer Ther 3:1311–1317

    CAS  PubMed  Google Scholar 

  • Choe SW, Acharya AP, Keselowsky BG, Sorg BS (2010) Intravital microscopy imaging of macrophage localization to immunogenic particles and co-localized tissue oxygen saturation. Acta Biomater 6:3491–3498

    Article  CAS  PubMed  Google Scholar 

  • Dewhirst M, Ong E, Braun R, Smith B, Klitzman B, Evans S, Wilson D (1999) Quantification of longitudinal tissue pO2 gradients in window chamber tumors: impact on tumor hypoxia. Br J Cancer 79:1717–1722

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Egginton S (2011) In vivo shear stress response. Biochem Soc Trans 39:1633–1638

    Article  CAS  PubMed  Google Scholar 

  • Gaustad JV, Simonsen TG, Leinaas MN, Rofstad EK (2012) Sunitinib treatment does not improve blood supply but induces hypoxia in human melanoma xenografts. BMC Cancer 12:388

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gaustad JV, Simonsen TG, Roa AM, Rofstad EK (2013) Tumors exposed to acute cyclic hypoxia show increased vessel density and delayed blood supply. Microvasc Res 85:10–15

    Article  PubMed  Google Scholar 

  • Gerlowski LE, Jain RK (1986) Microvascular permeability of normal and neoplastic tissues. Microvasc Res 31:288–305

    Article  CAS  PubMed  Google Scholar 

  • Gillies R, Freeman JE, Cancio LC, Brand D, Hopmeier M, Mansfield JR (2003) Systemic effects of shock and resuscitation monitored by visible hyperspectral imaging. Diabetes Technol Ther 5:847–855

    Article  CAS  PubMed  Google Scholar 

  • Hatakawa H, Funakoshi N, Onizuka M, Yanagi K, Ohshima N, Satoh Y, Yamamoto T, Ishikawa S (2002) Blood flow does not correlate with the size of metastasis in our new intravital observation model of Lewis lung cancer. Microvasc Res 64:32–37

    Article  PubMed  Google Scholar 

  • Helmlinger G, Yuan F, Dellian M, Jain RK (1997) Interstitial pH and pO2 gradients in solid tumors in vivo: high-resolution measurements reveal a lack of correlation. Nat Med 3:177–182

    Article  CAS  PubMed  Google Scholar 

  • Hobbs SK, Monsky WL, Yuan F, Roberts WG, Griffith L, Torchilin VP, Jain RK (1998) Regulation of transport pathways in tumor vessels: role of tumor type and microenvironment. Proc Natl Acad Sci U S A 95:4607–4612

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Intaglietta M, Tompkins WR (1973) Microvascular measurements by video image shearing and splitting. Microvasc Res 5:309–312

    Article  CAS  PubMed  Google Scholar 

  • Jain RK, Munn LL, Fukumura D (2013) Measuring angiogenesis and hemodynamics in mice. Cold Spring Harb Protoc 2013:354–358

    PubMed  Google Scholar 

  • Kamoun WS, Chae SS, Lacorre DA, Tyrrell JA, Mitre M, Gillissen MA, Fukumura D, Jain RK, Munn LL (2010) Simultaneous measurement of RBC velocity, flux, hematocrit and shear rate in vascular networks. Nat Methods 7:655–660

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kimura K, Braun RD, Ong ET, Hsu R, Secomb TW, Papahadjopoulos D, Hong K, Dewhirst MW (1996) Fluctuations in red cell flux in tumor microvessels can lead to transient hypoxia and reoxygenation in tumor parenchyma. Cancer Res 56:5522–5528

    CAS  PubMed  Google Scholar 

  • Koehl GE, Gaumann A, Geissler EK (2009) Intravital microscopy of tumor angiogenesis and regression in the dorsal skin fold chamber: mechanistic insights and preclinical testing of therapeutic strategies. Clin Exp Metastasis 26:329–344

    Article  PubMed  Google Scholar 

  • Lammertsma AA, Cunningham VJ, Deiber MP, Heather JD, Bloomfield P, Nutt J, Frackowiak RSJ, Jones T (1990) Combination of dynamic and integral methods for generating reproducible functional CBF images. J Cereb Blood Flow Metab 10:675–686

    Article  CAS  PubMed  Google Scholar 

  • Lee JA, Kozikowski RT, Sorg BS (2013) Combination of spectral and fluorescence imaging microscopy for wide-field in vivo analysis of microvessel blood supply and oxygenation. Opt Lett 38:332–334

    Article  CAS  PubMed  Google Scholar 

  • Lunt SJ, Chaudary N, Hill RP (2009) The tumor microenvironment and metastatic disease. Clin Exp Metastasis 26:19–34

    Article  PubMed  Google Scholar 

  • Mcdonald DM, Baluk P (2002) Significance of blood vessel leakiness in cancer. Cancer Res 62:5381–5385

    CAS  PubMed  Google Scholar 

  • Monsky WL, Mouta Carreira C, Tsuzuki Y, Gohongi T, Fukumura d, Jain RK (2002) Role of host microenvironment in angiogenesis and microvascular functions in human breast cancer xenografts: mammary fat pad versus cranial tumors. Clin Cancer Res 8:1008–1013

    CAS  PubMed  Google Scholar 

  • Nighswander-Rempel SP, Anthony Shaw R, Mansfield JR, Hewko M, Kupriyanov VV, Mantsch HH (2002) Regional variations in myocardial tissue oxygenation mapped by near-infrared spectroscopic imaging. J Mol Cell Cardiol 34:1195–1203

    Article  CAS  PubMed  Google Scholar 

  • Oye KS, Gulati G, Graff BA, Gaustad JV, Brurberg KG, Rofstad EK (2008) A novel method for mapping the heterogeneity in blood supply to normal and malignant tissues in the mouse dorsal window chamber. Microvasc Res 75:179–187

    Article  CAS  PubMed  Google Scholar 

  • Palmer GM, Fontanella AN, Zhang G, Hanna G, Fraser CL, Dewhirst MW (2010) Optical imaging of tumor hypoxia dynamics. J Biomed Opt 15:066021

    Article  PubMed Central  PubMed  Google Scholar 

  • Papenfuss HD, Gross JF, Intaglietta M, Treese FA (1979) A transparent access chamber for the rat dorsal skin fold. Microvasc Res 18:311–318

    Article  CAS  PubMed  Google Scholar 

  • Patlak CS, Blasberg RG, Fenstermacher JD (1983) Graphical evaluation of blood-to-brain transfer constants from multiple-time uptake data. J Cereb Blood Flow Metab 3:1–7

    Article  CAS  PubMed  Google Scholar 

  • Reyes-Aldasoro CC, Akerman S, Tozer GM (2008a) Measuring the velocity of fluorescently labelled red blood cells with a keyhole tracking algorithm. J Microsc 229:162–173

    Article  CAS  PubMed  Google Scholar 

  • Reyes-Aldasoro CC, Wilson I, Prise VE, Barber PR, Ameer-Beg SM, Vojnovic B, Cunningham VJ, Tozer GM (2008b) Estimation of apparent tumor vascular permeability from multiphoton fluorescence microscopic images of P22 rat sarcomas in vivo. Microcirculation 15:65–79

    Article  CAS  PubMed  Google Scholar 

  • Reyes-Aldasoro CC, Griffiths MK, Savas D, Tozer GM (2011) CAIMAN: an online algorithm repository for Cancer Image Analysis. Comput Methods Programs Biomed 103:97–103

    Article  PubMed  Google Scholar 

  • Ritsma L, Steller EJ, Ellenbroek SI, Kranenburg O, Borel Rinkes IH, Van Rheenen J (2013) Surgical implantation of an abdominal imaging window for intravital microscopy. Nat Protoc 8:583–594

    Article  CAS  PubMed  Google Scholar 

  • Sandison JC (1924) A new method for the microscopic study of living growing tissues by the introduction of a transparent chamber in the rabbit’s ear. Anat Rec 28:281–287

    Article  Google Scholar 

  • Semenza GL (2012) Hypoxia-inducible factors: mediators of cancer progression and targets for cancer therapy. Trends Pharmacol Sci 33:207–214

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Shan S, Sorg B, Dewhirst MW (2003) A novel rodent mammary window of orthotopic breast cancer for intravital microscopy. Microvasc Res 65:109–117

    Article  PubMed  Google Scholar 

  • Shonat RD, Wachman ES, Niu W, Koretsky AP, Farkas DL (1997) Near-simultaneous hemoglobin saturation and oxygen tension maps in mouse brain using an AOTF microscope. Biophys J 73:1223–1231

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Simonsen TG, Gaustad JV, Leinaas MN, Rofstad EK (2013) Tumor-line specific causes of intertumor heterogeneity in blood supply in human melanoma xenografts. Microvasc Res 85:16–23

    Article  PubMed  Google Scholar 

  • Sorg BS, Moeller BJ, Donovan O, Cao Y, Dewhirst MW (2005) Hyperspectral imaging of hemoglobin saturation in tumor microvasculature and tumor hypoxia development. J Biomed Opt 10:44004

    Article  PubMed  Google Scholar 

  • Sorg BS, Hardee ME, Agarwal N, Moeller BJ, Dewhirst MW (2008) Spectral imaging facilitates visualization and measurements of unstable and abnormal microvascular oxygen transport in tumors. J Biomed Opt 13:014026

    Article  PubMed  Google Scholar 

  • Stewart GN (1894) Researches on the circulation time in organs and on the influences which affect it. J Physiol (Lond) 15(Parts I-III):1–89

    Google Scholar 

  • Strieth S, Eichhorn ME, Sauer B, Schulze B, Teifel M, Michaelis U, Dellian M (2004) Neovascular targeting chemotherapy: encapsulation of paclitaxel in cationic liposomes impairs functional tumor microvasculature. Int J Cancer 110:117–124

    Article  CAS  PubMed  Google Scholar 

  • Strieth S, Eichhorn ME, Sutter A, Jonczyk A, Berghaus A, Dellian M (2006) Antiangiogenic combination tumor therapy blocking alpha(v)-integrins and VEGF-receptor-2 increases therapeutic effects in vivo. Int J Cancer 119:423–431

    Article  CAS  PubMed  Google Scholar 

  • Thomlinson RH, Gray LH (1955) The histological structure of some human lung cancers and the possible implications for radiotherapy. Br J Cancer 9:539–549

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Tofts PS, Brix G, Buckley DL, Evelhoch JL, Henderson E, Knopp MV, Larsson HB, Lee TY, Mayr NA, Parker GJ, Port RE, Taylor J, Weisskoff RM (1999) Estimating kinetic parameters from dynamic contrast-enhanced T(1)- weighted MRI of a diffusable tracer: standardized quantities and symbols. J Magn Reson Imaging 10:223–232

    Article  CAS  PubMed  Google Scholar 

  • Tozer GM, Prise VE, Wilson J, Cemazar M, Shan S, Dewhirst MW, Barber PR, Vojnovic B, Chaplin DJ (2001) Mechanisms associated with tumor vascular shut-down induced by combretastatin A-4 phosphate: intravital microscopy and measurement of vascular permeability. Cancer Res 61:6413–6422

    CAS  PubMed  Google Scholar 

  • Tozer GM, Kanthou C, Baguley BC (2005) Disrupting tumour blood vessels. Nat Rev Cancer 5:423–435

    Article  CAS  PubMed  Google Scholar 

  • Tozer GM, Prise VE, Cunningham VJ (2009) Quantitative estimation of tissue blood flow rate. Methods Mol Biol 467:271–286

    Article  CAS  PubMed  Google Scholar 

  • Tsuzuki Y, Mouta Carreira C, Bockhorn M, Xu L, Jain RK, Fukumura D (2001) Pancreas microenvironment promotes VEGF expression and tumor growth: novel window models for pancreatic tumor angiogenesis and microcirculation. Lab Invest 81:1439–1451

    Article  CAS  PubMed  Google Scholar 

  • Wankhede M, Dedeugd C, Siemann DW, Sorg BS (2010) In vivo functional differences in microvascular response of 4T1 and Caki-1 tumors after treatment with OXi4503. Oncol Rep 23:685–692

    CAS  PubMed Central  PubMed  Google Scholar 

  • Waters JC (2009) Accuracy and precision in quantitative fluorescence microscopy. J Cell Biol 185:1135–1148

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yuan F, Leunig M, Berk DA, Jain RK (1993) Microvascular permeability of albumin, vascular surface area, and vascular volume measured in human adenocarcinoma LS174T using dorsal chamber in SCID mice. Microvasc Res 45:269–289

    Article  CAS  PubMed  Google Scholar 

  • Yuan F, Salehi HA, Boucher Y, Vasthare US, Tuma RF, Jain RK (1994) Vascular permeability and microcirculation of gliomas and mammary carcinomas transplanted in rat and mouse cranial windows. Cancer Res 54:4564–4568

    CAS  PubMed  Google Scholar 

  • Yuan F, Chen Y, Dellian M, Safabakhsh N, Ferrara N, Jain RK (1996) Time-dependent vascular regression and permeability changes in established human tumor xenografts induced by an anti-vascular endothelial growth factor/vascular permeability factor antibody. Proc Natl Acad Sci U S A 93:14765–14770

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zhong J, Rajaram N, Brizel DM, Frees AE, Ramanujam N, Batinic-Haberle I, Dewhirst MW (2013) Radiation induces aerobic glycolysis through reactive oxygen species. Radiother Oncol 106:390–396

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ziemer LS, Lee WM, Vinogradov SA, Sehgal C, Wilson DF (2005) Oxygen distribution in murine tumors: characterization using oxygen-dependent quenching of phosphorescence. J Appl Physiol 98:1503–1510

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors’ research was funded by a Programme Grant from Cancer Research UK.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gillian M. Tozer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Tozer, G.M., Daniel, R., Lunt, S.J., Reyes-Aldasoro, C.C., Cunningham, V.J. (2014). Haemodynamics and Oxygenation of the Tumour Microcirculation. In: Weigert, R. (eds) Advances in Intravital Microscopy. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-9361-2_6

Download citation

Publish with us

Policies and ethics