Skip to main content

Quantitative Estimation of Tissue Blood Flow Rate

  • Protocol
  • First Online:
Angiogenesis Protocols

Abstract

Tissue blood flow rate (F) is a critical parameter for assessing functional efficiency of a blood vessel network following angiogenesis. This chapter aims to provide the principles behind estimation of F and a practical approach to its determination in laboratory animals using small, readily diffusible, and metabolically inert radiotracers. The methods described require relatively nonspecialized equipment. However, the analytical descriptions apply equally to complementary techniques involving sophisticated noninvasive imaging. Two techniques are described for the quantitative estimation of F using the tissue uptake following intravenous administration of radioactive iodoantipyrine (or other suitable radiotracer). The tissue equilibration technique is the classical approach, and the indicator fractionation technique, which is simpler to perform, is a practical alternative in many cases. The experimental procedures and analytical methods for both techniques are given, as well as guidelines for choosing the most appropriate method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Stewart, G. N. (1894) Researches on the circulation time in organs and on the influenced which affect it. J Physiol (London) 15, parts I–III.

    Google Scholar 

  2. Stern, M. D. (1975) In vivo evaluation of microcirculation by coherent light scattering. Nature 254, 56–58.

    Article  PubMed  CAS  Google Scholar 

  3. Smith, K. A., Hill, S. A., Begg, A. C., Denekamp, J. (1988) Validation of the fluorescent dye Hoechst 33342 as a vascular space marker in tumours. Br J Cancer 57, 247–253.

    Article  PubMed  CAS  Google Scholar 

  4. Hill, S. A., Tozer, G. M., Chaplin, D. J. (2002) Preclinical evaluation of the antitumour activity of the novel vascular targeting agent Oxi 4503. Anticancer Res 22, 1453–1458.

    PubMed  CAS  Google Scholar 

  5. Chalkley, H. W. (1943) Method for quantitative morphologic analysis of tissues. J Natl Cancer Inst 4, 47–53.

    Google Scholar 

  6. Vermeulen, P. B., Gasparini, G., Fox, S. B., (2002) Second international consensus on the methodology and criteria of evaluation of angiogenesis quantification in solid human tumours. Eur J Cancer 38, 1564–1579.

    Article  PubMed  CAS  Google Scholar 

  7. Weiskoff, R. M. (1993) Pitfalls in MR measurement of tissue blood flow with intravascular tracers: which mean transit time? Magn Reson Med 29, 553–559.

    Article  Google Scholar 

  8. Messmer, K. (1979) Radioactive microspheres for regional blood flow measurements. Actual state and perspectives. Bibl Anat 18, 194–197.

    PubMed  Google Scholar 

  9. Jirtle, R. L. (1980) Blood flow to lymphatic metastases in conscious rats. Eur J Cancer 17, 53–60.

    Google Scholar 

  10. Jirtle, R. L., Hinshaw, W. M. (1981) Estimation of malignant tissue blood flow with radioactively labelled microspheres. Eur J Cancer Clin Oncol 17, 1353–1355.

    Article  PubMed  CAS  Google Scholar 

  11. Sapirstein, L. A. (1958) Regional blood flow by fractional distribution of indicators. Am J. Physiol 193, 161–168.

    PubMed  CAS  Google Scholar 

  12. Obrist, W. D., Thompson, H. K., King, C. H., Wang, H. S. (1967) Determination of regional cerebral blood flow by inhalation of 133-xenon. Circ Res 20, 124–135.

    PubMed  CAS  Google Scholar 

  13. Young, W. (1980) H2 clearance measurement of blood flow: a review of technique and polarographic principles. Stroke 11, 552–564.

    PubMed  CAS  Google Scholar 

  14. Sakurada, O., Kennedy, C., Lehle, J., Brown, J. D., Carbin, J. L., Sokoloff, L. (1978) Measurement of local cerebral blood flow with iodo [14C] antipyrine. Am J Physiol 234, H59–H66.

    PubMed  CAS  Google Scholar 

  15. Tozer, G. M., Shaffi, K. M. (1993) Modification of tumour blood flow using the hypertensive agent, angiotensin II. Br J Cancer 67, 981–988.

    Article  PubMed  CAS  Google Scholar 

  16. Trivedi, M. A. (1996) A rapid method for the synthesis of 4-iodoantipyrine. J Labelled Comp Radiopharm 38, 489–496.

    Article  CAS  Google Scholar 

  17. Kety, S. S. (1960) Theory of blood tissue exchange and its application to measurements of blood flow. Methods Med Res 8, 223–227.

    Google Scholar 

  18. Tozer, G. M., Shaffi, K. M., Prise, V. E., Cunningham, V. J. (1994) Characterisation of tumour blood flow using a “tissue-isolated” preparation. Br J Cancer 70, 1040–1046.

    Article  PubMed  CAS  Google Scholar 

  19. Tozer, G. M., Morris, C. (1990) Blood flow and blood volume in a transplanted rat fibrosarcoma: comparison with various normal tissues. Radiother Oncol 17, 153–166.

    Article  PubMed  CAS  Google Scholar 

  20. Patlak, C. S., Blasberg, R. G., Fenstermacher, J. D. (1984) An evaluation of errors in the determination of blood flow by the indicator fractionation and tissue equilibration (Kety) methods. J Cerebr Blood Flow Metab 4, 47–60.

    Article  CAS  Google Scholar 

  21. Goldman, H., Sapirstein, L. A. (1973) Brain blood flow in the conscious and anaesthetized rat. Am J Physiol 224, 122–126.

    PubMed  CAS  Google Scholar 

  22. Gjedde, S. B., Gjedde, A. (1980) Organ blood flow rates and cardiac output of the Balb/c mouse. Comp Biochem Physiol 67A, 671–674.

    Article  Google Scholar 

  23. Herrero, P., Kim, J., Sharp, T. L., (2006) Assessment of myocardial blood flow using 15O-water and 1–11C-acetate in rats with small-animal PET. J Nucl Med 47, 477–485.

    PubMed  CAS  Google Scholar 

  24. Tozer, G. M., Prise, V. E., Wilson, J., (1999) Combretastatin A-4 phosphate as a tumor vascular-targeting agent: early effects in tumors and normal tissues. Cancer Res 59, 1626–1634.

    PubMed  CAS  Google Scholar 

  25. Richardson, C. A., Flecknell, P. A. (2005) Anaesthesia and post-operative analgesia following experimental surgery in laboratory rodents: are we making progress? Altern Lab Anim 33, 119–127.

    PubMed  CAS  Google Scholar 

  26. Meyer, E. (1989) Simultaneous correction for tracer arrival delay and dispersion in CBF measurements by the H215O autoradiographic method and dynamic PET. J Nucl Med 30, 1069–1078.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Tozer, G., Prise, V., Cunningham, V. (2009). Quantitative Estimation of Tissue Blood Flow Rate. In: Murray, C., Martin, S. (eds) Angiogenesis Protocols. Methods in Molecular Biology, vol 467. Humana Press. https://doi.org/10.1007/978-1-59745-241-0_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-241-0_16

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-907-9

  • Online ISBN: 978-1-59745-241-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics