Skip to main content

Fluorescent Dextrans in Intravital Multi-Photon Microscopy

  • Chapter
  • First Online:
Advances in Intravital Microscopy

Abstract

Intravital Multi-photon microscopy stands unique among investigative tools because of the rich and dynamic information that can be rapidly collected and quickly analyzed. Additionally, data gathered from an intact in vivo subject in many cases is more meaningful than that derived from isolated in vitro methods that lack the complex interactions only found within intact organs. There are numerous fluorescent compounds that have been utilized in intravital microscopy studies to delineate compartments and label organelles. Dextrans are unique in that they are inert, are polymers and as such available in various sizes, and are easily modified to accept fluorophores. Here we describe how dextrans can be used to label different compartments within the kidney based solely on molecular weight. Parameters such as microvascular flow rates and vascular integrity, vesicular trafficking, and renal function can be studied using established techniques. Despite their broad versatility, precautions must be taken when using specified molecular weight sizes because preparations with a broad heterogeneity of their polymer sizes can lead to misinterpretation of data in parameters such as membrane integrity and renal function.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Arfors KE, Hint H (1971) Studies of the microcirculation using fluorescent dextran. Microvasc Res (3):440–444

    Google Scholar 

  • Benninger RK, Hao M, Piston DW (2008) Multi-photon excitation imaging of dynamic processes in living cells and tissues. Rev Physiol Biochem Pharmacol 160:71–92

    Article  CAS  PubMed  Google Scholar 

  • de Belder A, Granath K (1973) Preparation and properties of fluorescein-labelled dextrans. Carbohydr Res 30:375–378

    Article  Google Scholar 

  • Dunn KW, McGraw TE, Maxfield FR (1989) Iterative fractionation of recycling receptors from lysosomally destined ligands in an early sorting endosome. J Cell Biol 109:3303–3314

    Article  CAS  PubMed  Google Scholar 

  • Dunn KW et al (2002) Functional studies of the kidney of living animals using multicolor two-photon microscopy. Am J Physiol Cell Physiol 283(3):C905–C916

    Article  CAS  PubMed  Google Scholar 

  • Gilbert RG, Hess M, Jenkins AD, Jones RG, Kratochvil P, Stepto RFT (2009) Dispersity in polymer science. Pure Appl Chem 81(2):351–353

    CAS  Google Scholar 

  • Hall M, Ricketts CR (1952) The use of dextran sulphate as a blood anticoagulant in biological research. J Clin Pathol 5(4):366

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Helmchen F, Denk W (2005) Deep tissue two-photon microscopy. Nat Methods 2(12):932–940

    Article  CAS  PubMed  Google Scholar 

  • Hrabovsky E, Petersen SL (2002) Increased concentrations of radioisotopically-labeled complementary ribonucleic acid probe, dextran sulfate, and dithiothreitol in the hybridization buffer can improve results of in situ hybridization histochemistry. J Histochem Cytochem 50(10):1389–1400

    Article  Google Scholar 

  • Inman JK (1975) Thymus-independent antigens: the preparation of covalent, hapten-ficoll conjugates. J Immunol 114(2 Pt 1):704–709

    CAS  PubMed  Google Scholar 

  • Ioan CE, Aberle T, Burchard W (2000) Structure properties of Dextran. 2. Dilute solution. Macromolecules 33:5730–5739

    Article  CAS  Google Scholar 

  • Masedunskas A et al (2012) Intravital microscopy: a practical guide on imaging intracellular structures in live animals. Bioarchitecture 2(5):143–157

    Article  PubMed Central  PubMed  Google Scholar 

  • Molitoris BA, Sandoval RM (2006) Pharmacophotonics: utilizing multi-photon microscopy to quantify drug delivery and intracellular trafficking in the kidney. Adv Drug Deliv Rev 58(7):809–823

    Article  CAS  PubMed  Google Scholar 

  • Molitoris BA et al (2008) Technology insight: biomarker development in acute kidney injury – what can we anticipate? Nat Clin Pract Nephrol 4(3):154–165

    Article  CAS  PubMed  Google Scholar 

  • Niesner RA, Hauser AE (2011) Recent advances in dynamic intravital multi-photon microscopy. Cytometry A 79(10):789–798

    Article  PubMed  Google Scholar 

  • Pari GS, Xu Y (2004) Gene transfer into mammalian cells using calcium phosphate and DEAE-dextran. Methods Mol Biol 245:25–32

    CAS  PubMed  Google Scholar 

  • Peti-Peterdi J, Burford JL, Hackl MJ (2012) The first decade of using multiphoton microscopy for high-power kidney imaging. Am J Physiol Renal Physiol 302(2):F227–F233

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Probes M (2003) Amine-reactive probes (technical protocol), Lifetechnologies

    Google Scholar 

  • Richter W (1975) Effect of substitution on reactivity of B 512 dextran fractions with anti-B 512 dextran in heterologous passive cutaneous anaphylaxis. Int Arch Allergy Appl Immunol 48(4):505–512

    Article  CAS  PubMed  Google Scholar 

  • Sandoval RM, Molitoris BA (2008) Quantifying endocytosis in vivo using intravital two-photon microscopy. Methods Mol Biol 440:389–402

    Article  CAS  PubMed  Google Scholar 

  • Sandoval RM, M BA (2013) Quantifying glomerular permeability of fluorescent macromolecules using 2-photon microscopy in Munich Wistar rats. J Vis Exp 74. doi:10.3791/50052.

  • Sandoval RM et al (2012) Multiple factors influence glomerular albumin permeability in rats. J Am Soc Nephrol 23(3):447–457

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sandoval RM, Wang E, Molitoris BA (2013) Finding the bottom and using it Offsets and sensitivity in the detection of low intensity values in vivo with 2-photon microscopy. Intravital 2(1):1–9

    Article  Google Scholar 

  • Schwartz GJ et al (2006) Glomerular filtration rate via plasma iohexol disappearance: pilot study for chronic kidney disease in children. Kidney Int 69(11):2070–2077

    Article  CAS  PubMed  Google Scholar 

  • Sharfuddin AA, Sandoval RM, Molitoris BA (2008) Imaging techniques in acute kidney injury. Nephron Clin Pract 109(4):c198–c204

    Article  PubMed  Google Scholar 

  • Sharfuddin AA et al (2009) Soluble thrombomodulin protects ischemic kidneys. J Am Soc Nephrol 20(3):524–534

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sipos A et al (2007) Advances in renal (patho)physiology using multiphoton microscopy. Kidney Int 72(10):1188–1191

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sutton TA, Horbelt M, Sandoval RM (2006) Imaging vascular pathology. Nephron Physiol 103(2):p82–p85

    Article  PubMed  Google Scholar 

  • Tanner GA, Sandoval RM, Dunn KW (2004) Two-photon in vivo microscopy of sulfonefluoresceinsecretion in normal and cystic rat kidneys. Am J Physiol Renal Physiol 286(1):F152–F160

    Google Scholar 

  • Thorball N (1981) FITC-dextran tracers in microcirculatory and permeability studies using combined fluorescence stereo microscopy, fluorescence light microscopy and electron microscopy. Histochemistry 71(2):209–233

    Article  CAS  PubMed  Google Scholar 

  • van Weert AW et al (1995) Transport from late endosomes to lysosomes, but not sorting of integral membrane proteins in endosomes, depends on the vacuolar proton pump. J Cell Biol 130(4):821–834

    Article  PubMed  Google Scholar 

  • Wang Y-L, Taylor DL (1989) Fluorescene microscopy of living cells in culture, part A. Fluorescent analogs, labeling cells, and basic microscopy. Methods Cell Biol 29:iii–xiv, 1–333

    Google Scholar 

  • Wang E et al (2010) Rapid diagnosis and quantification of acute kidney injury using fluorescent ratio-metric determination of glomerular filtration rate in the rat. Am J Physiol Renal Physiol 299(5):F1048–F1055

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wang E et al (2012) A portable fiberoptic ratiometric fluorescence analyzer provides rapid point-of-care determination of glomerular filtration rate in large animals. Kidney Int 81(1):112–117

    Article  PubMed  Google Scholar 

  • Wyckoff J et al (2011) High-resolution multiphoton imaging of tumors in vivo. Cold Spring Harb Protoc 2011(10):1167–1184

    PubMed Central  PubMed  Google Scholar 

  • Zipfel WR, Williams RM, Webb WW (2003) Nonlinear magic: multiphoton microscopy in the biosciences. Nat Biotechnol 21(11):1369–1377

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by grants to BAM from the National Institute of Health (DK091623, 079312, 088934, 093274), and support from the Veterans Administration through a Merit Review Award.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruben M. Sandoval .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Sandoval, R.M., Molitoris, B.A. (2014). Fluorescent Dextrans in Intravital Multi-Photon Microscopy. In: Weigert, R. (eds) Advances in Intravital Microscopy. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-9361-2_10

Download citation

Publish with us

Policies and ethics