Skip to main content

Intravital Multiphoton Imaging of the Kidney: Tubular Structure and Metabolism

  • Protocol
  • First Online:
Kidney Research

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1397))

Abstract

Multiphoton microscopy (MPM) allows the visualization of dynamic pathophysiological events in real time in live animals. Intravital imaging can be applied to investigate novel mechanisms and treatments of different forms of kidney disease as well as improve our understanding of normal kidney physiology. Using rodent models, in conjunction with endogenous fluorescence and infused exogenous fluorescent dyes, measurement can be made of renal processes such as glomerular permeability, juxtaglomerular apparatus function, interactions of the tubulointerstitium, tubulovascular interactions, vascular flow rate, and the renin-angiotensin-aldosterone system. Subcellular processes including mitochondrial dynamics, reactive oxygen species production, cytosolic ion concentrations, and death processes of apoptosis and necrosis can also be seen and measured by MPM. The current methods chapter presents an overview of MPM with a focus on techniques for intravital kidney imaging and gives examples of instances where intravital MPM has been utilized to study renal pathophysiology. Suggestions are provided for MPM methods within the confines of intravital microscopy and selected kidney structure. MPM is undoubtedly a powerful new technique for application in experimental nephrology, and we believe it will continue to create new paradigms for understanding and treating kidney disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Small DM, Sanchez WY, Roy S et al (2014) Multiphoton fluorescence microscopy of the live kidney in health and disease. J Biomed Opt 19:020901

    Article  PubMed  Google Scholar 

  2. Thorling CA, Liu X, Burczynski FJ et al (2013) Intravital multiphoton microscopy can model uptake and excretion of fluorescein in hepatic ischemia-reperfusion injury. J Biomed Opt 18:101306

    Article  PubMed  Google Scholar 

  3. Yuryev M, Khiroug L (2012) Dynamic longitudinal investigation of individual nerve endings in the skin of anesthetized mice using in vivo two-photon microscopy. J Biomed Opt 17:046007

    Article  PubMed  Google Scholar 

  4. Li JL, Goh CC, Keeble JL et al (2012) Intravital multiphoton imaging of immune responses in the mouse ear skin. Nat Protoc 7:221–234

    Article  CAS  PubMed  Google Scholar 

  5. Sanchez WY, Obispo C, Ryan E et al (2013) Changes in the redox state and endogenous fluorescence of in vivo human skin due to intrinsic and photo-aging, measured by multiphoton tomography with fluorescence lifetime imaging. J Biomed Opt 18:061217

    Article  PubMed  Google Scholar 

  6. Honda M, Takeichi T, Asonuma K et al (2013) Intravital imaging of neutrophil recruitment in hepatic ischemia-reperfusion injury in mice. Transplantation 95:551–558

    Article  PubMed  Google Scholar 

  7. Sutton TA, Fisher CJ, Molitoris BA (2002) Microvascular endothelial injury and dysfunction during ischemic acute renal failure. Kidney Int 62:1539–1549

    Article  CAS  PubMed  Google Scholar 

  8. Hall AM, Rhodes GJ, Sandoval RM et al (2013) In vivo multiphoton imaging of mitochondrial structure and function during acute kidney injury. Kidney Int 83:72–83

    Article  CAS  PubMed  Google Scholar 

  9. Peti-Peterdi J, Sipos A (2010) A high-powered view of the filtration barrier. J Am Soc Nephrol 21:1835–1841

    Article  PubMed  PubMed Central  Google Scholar 

  10. Kang JJ, Toma I, Sipos A et al (2008) The collecting duct is the major source of prorenin in diabetes. Hypertension 51:1597–1604

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Zipfel WR, Williams RM, Christie R et al (2003) Live tissue intrinsic emission microscopy using multiphoton-excited native fluorescence and second harmonic generation. Proc Natl Acad Sci U S A 100:7075–7080

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Hall AM, Unwin RJ, Parker N et al (2009) Multiphoton imaging reveals differences in mitochondrial function between nephron segments. J Am Soc Nephrol 20:1293–1302

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Huang S, Heikal AA, Webb WW (2002) Two-photon fluorescence spectroscopy and microscopy of NAD(P)H and flavoprotein. Biophys J 82:2811–2825

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Sanchez WY, Prow TW, Sanchez WH et al (2010) Analysis of the metabolic deterioration of ex vivo skin from ischemic necrosis through the imaging of intracellular NAD(P)H by multiphoton tomography and fluorescence lifetime imaging microscopy. J Biomed Opt 15:046008

    Article  PubMed  Google Scholar 

  15. Becker W (2012) Fluorescence lifetime imaging--techniques and applications. J Microsc 247:119–136

    Article  CAS  PubMed  Google Scholar 

  16. Skala MC, Riching KM, Gendron-Fitzpatrick A et al (2007) In vivo multiphoton microscopy of NADH and FAD redox states, fluorescence lifetimes, and cellular morphology in precancerous epithelia. Proc Natl Acad Sci U S A 104:19494–19499

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Bird DK, Yan L, Vrotsos KM et al (2005) Metabolic mapping of MCF10A human breast cells via multiphoton fluorescence lifetime imaging of the coenzyme NADH. Cancer Res 65:8766–8773

    Article  CAS  PubMed  Google Scholar 

  18. Lakowicz JR, Szmacinski H, Nowaczyk K et al (1992) Fluorescence lifetime imaging of free and protein-bound NADH. Proc Natl Acad Sci U S A 89:1271–1275

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Chance B, Schoener B, Oshino R et al (1979) Oxidation-reduction ratio studies of mitochondria in freeze-trapped samples. NADH and flavoprotein fluorescence signals. J Biol Chem 254:4764–4771

    CAS  PubMed  Google Scholar 

  20. Abulrob A, Brunette E, Slinn J et al (2007) In vivo time domain optical imaging of renal ischemia-reperfusion injury: discrimination based on fluorescence lifetime. Mol Imaging 6:304–314

    CAS  PubMed  Google Scholar 

  21. Yu JS, Guo HW, Wang CH et al (2011) Increase of reduced nicotinamide adenine dinucleotide fluorescence lifetime precedes mitochondrial dysfunction in staurosporine-induced apoptosis of HeLa cells. J Biomed Opt 16:036008

    Article  PubMed  Google Scholar 

  22. Helmchen F, Svoboda K, Denk W et al (1999) In vivo dendritic calcium dynamics in deep-layer cortical pyramidal neurons. Nat Neurosci 2:989–996

    Article  CAS  PubMed  Google Scholar 

  23. Kleinfeld D, Mitra PP, Helmchen F et al (1998) Fluctuations and stimulus-induced changes in blood flow observed in individual capillaries in layers 2 through 4 of rat neocortex. Proc Natl Acad Sci U S A 95:15741–15746

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Young PA, Clendenon SG, Byars JM et al (2011) The effects of spherical aberration on multiphoton fluorescence excitation microscopy. J Microsc 242:157–165

    Article  CAS  PubMed  Google Scholar 

  25. Young PA, Clendenon SG, Byars JM et al (2011) The effects of refractive index heterogeneity within kidney tissue on multiphoton fluorescence excitation microscopy. J Microsc 242:148–156

    Article  CAS  PubMed  Google Scholar 

  26. Small DM, Sanchez WH, Roy SF et al (2014) Progression to chronic kidney disease after acute kidney injury involves prolonged oxidative stress and persistent tubular metabolic alterations. Nephrology (Carlton) 19:1–104

    Google Scholar 

  27. Dunn KW, Sutton TA, Sandoval RM (2012) Live-animal imaging of renal function by multiphoton microscopy. Curr Protoc Cytom Chapter 14:Unit12 19

    Google Scholar 

  28. Khoury CC, Khayat MF, Yeo TK et al (2012) Visualizing the mouse podocyte with multiphoton microscopy. Biochem Biophys Res Commun 427:525–530

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Devi S, Li A, Westhorpe CL et al (2013) Multiphoton imaging reveals a new leukocyte recruitment paradigm in the glomerulus. Nat Med 19:107–112

    Article  CAS  PubMed  Google Scholar 

  30. Steinhausen M, Snoei H, Parekh N et al (1983) Hydronephrosis: a new method to visualize vas afferens, efferens, and glomerular network. Kidney Int 23:794–806

    Article  CAS  PubMed  Google Scholar 

  31. Schiessl IM, Bardehle S, Castrop H (2013) Superficial nephrons in BALB/c and C57BL/6 mice facilitate in vivo multiphoton microscopy of the kidney. PLoS One 8:e52499

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Glenda C. Gobe .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Small, D.M., Sanchez, W.Y., Gobe, G.C. (2016). Intravital Multiphoton Imaging of the Kidney: Tubular Structure and Metabolism. In: Hewitson, T., Smith, E., Holt, S. (eds) Kidney Research. Methods in Molecular Biology, vol 1397. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3353-2_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3353-2_12

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3351-8

  • Online ISBN: 978-1-4939-3353-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics