Skip to main content

Detection of Metals and Radionuclides Using Rapid, On-site, Antibody-Based Assays

  • Conference paper
  • First Online:
Detection of Chemical, Biological, Radiological and Nuclear Agents for the Prevention of Terrorism

Abstract

This chapter introduces immunosensors as an alternative analytical tool for rapid and portable analysis of both biological and radiological threats and describes most widely used formats for these analyses. The strengths and weaknesses inherent in antibody-based procedures are discussed and common QA/QC practices for antibody-based assays are described. Finally examples of antibody-based assays for radionuclides are provided from the authors’ laboratory.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Runkle RC, Smith LE, Peurrung AJ (2009) The photon haystack and emerging radiation detection technology. J Appl Phys 106 041101-041101-21

    Google Scholar 

  2. Cester D, Nebbia G, Stevanato L, Viesti G, Neri F, Petrucci S, Selmi S, Tintori C et al (2012) Special nuclear material detection with a mobile multi-detector system. Nucl Instrum Methods Phys Res 663:55–63, Sect. A

    Article  CAS  Google Scholar 

  3. Arun KR, Nishanth T, Ravi TY, Sathish KD (2011) Biothreats – bacterial warfare agents. J Bioterrorism Biodef 2:112

    Google Scholar 

  4. Montecucco C (2012) Bioterrorism and biological toxins. Toxicon 60:99, 5

    Article  CAS  Google Scholar 

  5. Sandrin TR, Goldstein JE, Schumaker S (2013) MALDI TOF MS profiling of bacteria at the strain level: a review. Mass Spectrom Rev 32:188–217

    Article  CAS  Google Scholar 

  6. Woodring ML, Rodriguez DC, Runkle RC, Hansen RR, Milbrath BD, Ely JH (2013) A large detector laboratory for the development and testing of radiation detection systems. IEEE Trans Nucl Sci 60:1151–1155

    Article  CAS  Google Scholar 

  7. Ewert S, Honegger A, Pluckthun A (2004) Stability improvement of antibodies for extracellular and intracellular applications: CDR grafting to stable frameworks and structure-based framework engineering. Methods 34:184–199

    Article  CAS  Google Scholar 

  8. Buss NAPS, Henderson SJ, McFarlane M, Shenton JM, de Haan L (2012) Monoclonal antibody therapeutics: history and future. Curr Opin Pharmacol 12:615–622

    Article  CAS  Google Scholar 

  9. Vincent KJ, Zurini M (2012) Current strategies in antibody engineering: Fc engineering and pH-dependent antigen binding, bispecific antibodies and antibody drug conjugates. Biotechnol J 7:1444–1450

    Article  CAS  Google Scholar 

  10. Chakravarty S, Zou Y, Lai W-C, Chen RT (2012) Slow light engineering for high Q high sensitivity photonic crystal microcavity biosensors in silicon. Biosens Bioelectron 38:170–176

    Article  CAS  Google Scholar 

  11. Thakur MS, Ragavan KV (2013) Biosensors in food processing. J Food Sci Technol 50:625–641

    Article  CAS  Google Scholar 

  12. Han KN, Li CA, Seong GH (2013) Microfluidic chips for immunoassays. Annu Rev Anal Chem 6:119–141

    Article  CAS  Google Scholar 

  13. Zhang C (2012) Hybridoma technology for the generation of monoclonal antibodies. Methods Mol Biol 901:117–135

    Article  CAS  Google Scholar 

  14. Antibody Resource page. http://www.antibodyresource.com/

  15. Hansson SF, Korsgren S, Ponten F, Korsgren O (2013) Enteroviruses and the pathogenesis of type 1 diabetes revisited: cross-reactivity of enterovirus capsid protein (VP1) antibodies with human mitochondrial proteins. J Pathol 229:719–728

    Article  CAS  Google Scholar 

  16. Anagnostou VK, Welsh AW, Giltnane JM, Siddiqui S, Liceaga C, Gustavson M, Syrigos KN, Reiter JL, Rimm DL (2010) Analytic variability in immunohistochemistry biomarker studies. Cancer Epidemiol Biomarkers Prev 19:982–991

    Article  CAS  Google Scholar 

  17. Bucur O, Pennarun B, Stancu AL, Nadler M, Muraru MS, Bertomeu T, Khosravi-Far R (2013) Poor antibody validation is a challenge in biomedical research: a case study for detection of c-FLIP. Apoptosis 18:1154–1162

    Article  CAS  Google Scholar 

  18. Milner R, Wombwell H, Eckersley S, Barnes D, Warwicker J, Dorp E, Dearden S, Hughes G et al (2013) Validation of the BRCA1 antibody MS110 and the utility of BRCA1 as a patient selection biomarker in immunohistochemical analysis of breast and ovarian tumours. Virchows Arch 462:269–279

    Article  CAS  Google Scholar 

  19. Bordeaux J, Welsh AW, Agarwal S, Killiam E, Baquero MT, Hanna JA, Anagnostou VK, Rimm DL (2010) Antibody validation. BioTechniques 48:197–198, 200, 202, 204, 206, 208–209

    Article  CAS  Google Scholar 

  20. Signore M, Reeder KA (2012) Antibody validation by western blotting. Methods Mol Biol 823:139–155

    Article  CAS  Google Scholar 

  21. Ambroz K (2011) Impact of blocking and detection chemistries on antibody performance for reverse phase protein arrays. Methods Mol Biol 785:13–21

    Article  CAS  Google Scholar 

  22. Mandell JW (2008) Immunohistochemical assessment of protein phosphorylation state: the dream and the reality. Histochem Cell Biol 130:465–471

    Article  CAS  Google Scholar 

  23. Björling E, Uhlén M (2008) Antibodypedia, a portal for sharing antibody and antigen validation data. Mol Cell Proteomics 7:2028–2037

    Article  Google Scholar 

  24. Blake DA, Chakrabarti P, Khosraviani M, Hatcher FM, Westhoff CM, Goebel P, Wylie DE, Blake RC 2nd (1996) Metal binding properties of a monoclonal antibody directed toward metal-chelate complexes. J Biol Chem 271:27677–27685

    Article  CAS  Google Scholar 

  25. Blake RC 2nd, Pavlov AR, Blake DA (1999) Automated kinetic exclusion assays to quantify protein binding interactions in homogeneous solution. Anal Biochem 272:123–134

    Article  CAS  Google Scholar 

  26. Blake RC 2nd, Blake DA (2003) Kinetic exclusion assay to study high-affinity binding interactions in homogeneous solutions. In: Lo BCK (ed) Antibody engineering: methods and protocols. Humana Press, Totowa, pp 417–430

    Chapter  Google Scholar 

  27. Kusterbeck AW, Blake DA (2008) Flow immunosensors. In: Ligler FL, Taitt CR (eds) Optical biosensors, 2nd edn. Elsevier, Amsterdam, pp 243–285

    Chapter  Google Scholar 

  28. Blake RC 2nd, Li X, Yu H, Blake DA (2007) Covalent and noncovalent modifications induce allosteric binding behavior in a monoclonal antibody. Biochemistry 46:1573–1586

    Article  CAS  Google Scholar 

  29. Lopez MAM, Pons J, Blake DA, Merkoci A (2013) High sensitive gold-nanoparticle based lateral flow Immunodevice for Cd2+ detection in drinking waters. Biosens Bioelectron 47:190–198

    Article  Google Scholar 

  30. Blake RC 2nd, Blake DA (2012) Electrospray ionization-ion mobility spectrometry identified monoclonal antibodies that bind exclusively to either the monomeric or a dimeric form of prostate specific antigen. Anal Chem 84:6899–6906

    Article  CAS  Google Scholar 

  31. Blake DA, Blake RC 2nd, Abboud ER, Li X, Yu H, Kriegel AM, Khosraviani M, Darwish IA (2007) Antibodies to heavy metals: isolation, characterization and incorporation into microplate-based assays and immunosensors. In: Van Emon JM (ed) Immunoassay and other bioanalytical techniques. Taylor & Francis, Boca Ratan, pp 93–111

    Google Scholar 

  32. Blake RC 2nd, Pavlov AR, Khosraviani M, Ensley HE, Kiefer GE, Yu H, Li X, Blake DA (2004) Novel monoclonal antibodies with specificity for chelated uranium(VI): isolation and binding properties. Bioconjug Chem 15:1125–1136

    Article  CAS  Google Scholar 

  33. Zhu X, Kriegel AM, Boustany CA, Blake DA (2011) Single-chain variable fragment (scFv) antibodies optimized for environmental analysis of uranium. Anal Chem 83:3717–3724

    Article  CAS  Google Scholar 

  34. Khosraviani M, Blake RC 2nd, Pavlov AR, Lorbach SC, Yu H, Delehanty JB, Brechbiel MW, Blake DA (2000) Binding properties of a monoclonal antibody directed toward lead-chelate complexes. Bioconjug Chem 11:267–277

    Article  CAS  Google Scholar 

  35. Roundhill DM (2001) Extraction of metals from soils and water. Kluwer Academic/Plenum Publishers, New York

    Book  Google Scholar 

  36. Kriegel AM, Soliman AS, Zhang Q, El-Ghawalby N, Ezzat F, Soultan A, Abdel-Wahab M, Fathy O et al (2006) Serum cadmium levels in pancreatic cancer patients from the East Nile Delta region of Egypt. Environ Health Perspect 114:113–119

    Article  CAS  Google Scholar 

  37. Velanki S, Kelly S, Thundat T, Blake DA, Ji HF (2007) Detection of Cd(II) using antibody-modified microcantilever sensors. Ultramicroscopy 107:1123–1128

    Article  CAS  Google Scholar 

  38. Blake RC 2nd, Blake DA (2005) Quantitative analysis of antibody-antigen interactions using immobilized ligands: Kinetic exclusion assays are more accurate than surface plasmon resonance. In: Simons MA (ed) Progress in antibody research. Nova Science, Hauppauge, pp 1–36

    Google Scholar 

  39. Glass TR, Saiki H, Blake DA, Blake RC 2nd, Lackie SJ, Ohmura N (2004) Use of excess solid-phase capacity in immunoassays: advantages for semicontinuous, near-real-time measurements and for analysis of matrix effects. Anal Chem 76:767–772

    Article  CAS  Google Scholar 

  40. Sasaki K, Oguma S, Glass T, Namiki Y, Sugiyama H, Ohmura N, Blake DA (2008) Simple method to reduce interference from excess magnesium in cadmium immunoassays. J Agric Food Chem 56:7613–7616

    Article  CAS  Google Scholar 

  41. Glass TR, Ohmura N, Saiki H (2007) Least detectable concentration and dynamic range of three immunoassay systems using the same antibody. Anal Chem 79:1954–1960

    Article  CAS  Google Scholar 

  42. Fisher RA, Melton SJ, Blake DA (2011) A submersible immunosensor. Int J Environ Anal Chem 91:123–137

    Article  CAS  Google Scholar 

  43. Melton SJ, Yu H, Williams KH, Morris SA, Long PE, Blake DA (2009) Field-based detection and monitoring of uranium in contaminated groundwater using two immunosensors. Environ Sci Technol 43:6703–6709

    Article  CAS  Google Scholar 

  44. Yu H, Jones RM, Blake DA (2005) An immunosensor for autonomous in-line detection of heavy metals: validation for hexavalent uranium. Int J Environ Anal Chem 85:817–830

    Article  CAS  Google Scholar 

  45. Brina R, Miller AG (1993) Determination of uranium and lanthanides in real-world samples by kinetic phosphorescence analysis. Spectroscopy Duluth MN United States 8:25–28, 30–21

    CAS  Google Scholar 

  46. Lopez MAM, Pons J, Blake DA, Merkoci A (2013) All-integrated and highly sensitive paper based device with sample treatment platform for Cd2+ immunodetection in drinking/tap waters. Anal Chem 85:3532–3538

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the National Science Foundation (OISE-1253272).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Diane A. Blake .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Blake, D.A., Ban, B. (2014). Detection of Metals and Radionuclides Using Rapid, On-site, Antibody-Based Assays. In: Banoub, J. (eds) Detection of Chemical, Biological, Radiological and Nuclear Agents for the Prevention of Terrorism. NATO Science for Peace and Security Series A: Chemistry and Biology. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-9238-7_13

Download citation

Publish with us

Policies and ethics