Skip to main content

Part of the book series: Subcellular Biochemistry ((SCBI,volume 70))

Abstract

The nuclear retinoic acid receptors (RAR α, β and γ) and their isoforms are ligand-dependent regulators of transcription, which mediate the effects of all-trans retinoic acid (RA), the active endogenous metabolite of Vitamin A. They heterodimerize with Retinoid X Receptors (RXRs α, β and γ), and regulate the expression of a battery of target genes involved in cell growth and differentiation. During the two last decades, the description of the crystallographic structures of RARs, the characterization of the polymorphic response elements of their target genes, and the identification of the multiprotein complexes involved in their transcriptional activity have provided a wealth of information on their pleiotropic effects. However, the regulatory scenario became even more complicated once it was discovered that RARs are phosphoproteins and that RA can activate kinase signaling cascades via a pool of RARs present in membrane lipid rafts. Now it is known that these RA-activated kinases translocate to the nucleus where they phosphorylate RARs and other retinoid signaling factors. The phosphorylation state of the RARs dictates whether the transcriptional programs which are known to be induced by RA are facilitated and/or switched on. Thus, kinase signaling pathways appear to be crucial for fine-tuning the appropriate physiological activity of RARs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

CAK:

Cyclin-dependent kinase (CDK)-activating kinase

ChIP:

Chromatin immunoprecipitation

ChIP-seq:

ChIP coupled with deep sequencing

CRABP:

Cellular retinoic acid binding protein

DBD:

DNA binding domain

DR:

Direct repeat

Erks:

Extracellular-signal-regulated kinases

ES cells:

Embryonic stem cells

FABP:

Fatty acid binding protein

HAT:

Histone acetyltransferase

HDAC:

Histone deacetylase

HMT:

Histone methyl transferase

iLBP:

Intracellular lipid binding protein

IR:

Inverted repeat

LBD:

Ligand binding domain

LBP:

Ligand binding pocket

MAPK:

Mitogen activated protein kinase

MSK:

Mitogen-and stress-activated protein kinase

N-CoR:

Nuclear receptor corepressor

NMR:

Nuclear magnetic resonance

NTD:

N-terminal domain

PcG:

Polycomb group proteins

PI3K:

Phosphoinositide 3-kinase

Pin1:

Protein interacting with NIMA (never in mitosis A)

PPAR:

Peroxysome proliferator activated receptor

PRM:

Proline rich motif

RA:

Retinoic acid

RAR:

Retinoic acid receptor

RARE:

Retinoic acid response element

RNA-seq:

high throughput qPCR sequencing

RXR:

Retinoid X receptor

SAXS:

Small angle X-ray

SH3:

Src-homology-3

SRC:

Steroid receptor coactivator

SMRT:

Silencing mediator of retinoic acid receptor and thyroid hormone receptor

TBL1:

Transducin beta like

TBLR1:

TBL1-related protein 1

WW:

Tryptophan-tryptophan

References

  1. Adam-Stitah S, Penna L, Chambon P, Rochette-Egly C (1999) Hyperphosphorylation of the retinoid X receptor alpha (RXRa) by activated c-Jun N-terminal Kinases (JNKs). J Biol Chem 274:18932–18941

    CAS  PubMed  Google Scholar 

  2. Al Tanoury Z, Gaouar S, Piskunov A, Ye T, Urban S, Jost B, Keime C, Davidson I, Dierich A, Rochette-Egly C (2014) Phosphorylation of the retinoic acid receptor RARγ2 is crucial for the neuronal differentiation of mouse embryonic stem cells. J Cell Sci 127:2095–2105

    Google Scholar 

  3. Al Tanoury Z, Piskunov A, Andriamoratsiresy D, Gaouar S, Lutzing R, Ye T, Jost B, Keime C, Rochette-Egly C (2013a) Genes involved in cell adhesion and signaling: a new repertoire of retinoic acid receptors target genes in mouse embryonic fibroblasts. J Cell Sci 127:521–533

    Google Scholar 

  4. Al Tanoury Z, Piskunov A, Rochette-Egly C (2013b) Vitamin A and retinoid signaling: genomic and nongenomic effects: thematic review series: fat-soluble vitamins: vitamin A. J Lipid Res 54:1761–1775

    Google Scholar 

  5. Alsayed Y, Uddin S, Mahmud N, Lekmine F, Kalvakolanu DV, Minucci S, Bokoch G, Platanias LC (2001) Activation of Rac1 and the p38 mitogen-activated protein kinase pathway in response to all-trans-retinoic acid. J Biol Chem 276:4012–4019

    CAS  PubMed  Google Scholar 

  6. Aoto J, Nam CI, Poon MM, Ting P, Chen L (2008) Synaptic signaling by all-trans retinoic acid in homeostatic synaptic plasticity. Neuron 60:308–320

    CAS  PubMed Central  PubMed  Google Scholar 

  7. Ball LJ, Kuhne R, Schneider-Mergener J, Oschkinat H (2005) Recognition of proline-rich motifs by protein-protein-interaction domains. Angew Chem Int Ed Engl 44:2852–2869

    CAS  PubMed  Google Scholar 

  8. Balmer JE, Blomhoff R (2005) A robust characterization of retinoic acid response elements based on a comparison of sites in three species. J Steroid Biochem Mol Biol 96:347–354

    CAS  PubMed  Google Scholar 

  9. Bastien J, Adam-Stitah S, Riedl T, Egly JM, Chambon P, Rochette-Egly C (2000) TFIIH interacts with the retinoic acid receptor gamma and phosphorylates its AF-1-activating domain through cdk7. J Biol Chem 275:21896–21904

    Google Scholar 

  10. Bastien J, Rochette-Egly C (2004) Nuclear retinoid receptors and the transcription of retinoid-target genes. Gene 328:1–16

    CAS  PubMed  Google Scholar 

  11. Berry DC, Noy N (2007) Is PPARbeta/delta a retinoid receptor? PPAR Res 2007:73256

    PubMed Central  PubMed  Google Scholar 

  12. Berry DC, Noy N (2009) All-trans-retinoic acid represses obesity and insulin resistance by activating both peroxisome proliferation-activated receptor beta/delta and retinoic acid receptor. Mol Cell Biol 29:3286–3296

    CAS  PubMed Central  PubMed  Google Scholar 

  13. Bibel M, Richter J, Lacroix E, Barde YA (2007) Generation of a defined and uniform population of CNS progenitors and neurons from mouse embryonic stem cells. Nat Protoc 2:1034–1043

    CAS  PubMed  Google Scholar 

  14. Blume-Jensen P, Hunter T (2001) Oncogenic kinase signalling. Nature 411:355–365

    CAS  PubMed  Google Scholar 

  15. Bour G, Gaillard E, Bruck N, Lalevee S, Plassat JL, Busso D, Samama JP, Rochette-Egly C (2005) Cyclin H binding to the RARalpha activation function (AF)-2 domain directs phosphorylation of the AF-1 domain by cyclin-dependent kinase 7. Proc Natl Acad Sci USA 102:16608–16613

    CAS  PubMed Central  PubMed  Google Scholar 

  16. Bour G, Lalevee S, Rochette-Egly C (2007) Protein kinases and the proteasome join in the combinatorial control of transcription by nuclear retinoic acid receptors. Trends Cell Biol 17:302–309

    CAS  PubMed  Google Scholar 

  17. Bour G, Plassat JL, Bauer A, Lalevee S, Rochette-Egly C (2005) Vinexin beta Interacts with the non-phosphorylated AF-1 Domain of retinoid receptor gamma (RARg) and represses RARg-mediated transcription. J Biol Chem 280:17027–17037

    CAS  PubMed  Google Scholar 

  18. Bour G, Taneja R, Rochette-Egly C (2006) Mouse embryocarcinoma F9 cells and retinoic acid. A model to study the molecular mechanisms of endodermal differentiation. In: Taneja R (ed) Nuclear Receptors in development, vol 16. Elsevier Press Inc, Netherlands, pp 211–253

    Google Scholar 

  19. Bourguet W, Germain P, Gronemeyer H (2000) Nuclear receptor ligand-binding domains: three-dimensional structures, molecular interactions and pharmacological implications. Trends Pharmacol Sci 21:381–388

    CAS  PubMed  Google Scholar 

  20. Bourguet W, Ruff M, Chambon P, Gronemeyer H, Moras D (1995) Crystal structure of the ligand-binding domain of the human nuclear receptor RXR-alpha. Nature 375:377–382

    CAS  PubMed  Google Scholar 

  21. Bourguet W, Vivat V, Wurtz JM, Chambon P, Gronemeyer H, Moras D (2000) Crystal structure of a heterodimeric complex of RAR and RXR ligand-binding domains. Mol Cell 5:289–298

    CAS  PubMed  Google Scholar 

  22. Brelivet Y, Rochel N, Moras D (2012) Structural analysis of nuclear receptors: from isolated domains to integral proteins. Mol Cell Endocrinol 348:466–473

    CAS  PubMed  Google Scholar 

  23. Brondani V, Schefer Q, Hamy F, Klimkait T (2005) The peptidyl-prolyl isomerase Pin1 regulates phospho-Ser77 retinoic acid receptor alpha stability. Biochem Biophys Res Commun 328:6–13

    CAS  PubMed  Google Scholar 

  24. Bruck N, Bastien J, Bour G, Tarrade A, Plassat JL, Bauer A, Adam-Stitah S, Rochette-Egly C (2005) Phosphorylation of the retinoid x receptor at the omega loop, modulates the expression of retinoic-acid-target genes with a promoter context specificity. Cell Signal 17:1229–1239

    CAS  PubMed  Google Scholar 

  25. Bruck N, Vitoux D, Ferry C, Duong V, Bauer A, de The H, Rochette-Egly C (2009) A coordinated phosphorylation cascade initiated by p38MAPK/MSK1 directs RARalpha to target promoters. EMBO J 28:34–47

    CAS  PubMed Central  PubMed  Google Scholar 

  26. Budhu AS, Noy N (2002) Direct channeling of retinoic acid between cellular retinoic acid-binding protein II and retinoic acid receptor sensitizes mammary carcinoma cells to retinoic acid-induced growth arrest. Mol Cell Biol 22:2632–2641

    CAS  PubMed Central  PubMed  Google Scholar 

  27. Burns KA, Vanden Heuvel JP (2007) Modulation of PPAR activity via phosphorylation. Biochim Biophys Acta 1771:952–960

    CAS  PubMed Central  PubMed  Google Scholar 

  28. Chambon P (1996) A decade of molecular biology of retinoic acid receptors. FASEB J 10:940–954

    CAS  PubMed  Google Scholar 

  29. Chebaro Y, Amal I, Rochel N, Rochette-Egly C, Stote R, Dejaegere A (2013) Phosphorylation of the retinoic acid receptor alpha induces a mechanical allosteric regulation and changes in internal dynamics. Plos Comp Biol 9:e1003012

    CAS  Google Scholar 

  30. Chen N, Napoli JL (2008) All-trans-retinoic acid stimulates translation and induces spine formation in hippocampal neurons through a membrane-associated RARalpha. FASEB J 22:236–245

    CAS  PubMed  Google Scholar 

  31. Cheung YT, Lau WK, Yu MS, Lai CS, Yeung SC, So KF, Chang RC (2009) Effects of all-trans-retinoic acid on human SH-SY5Y neuroblastoma as in vitro model in neurotoxicity research. Neurotoxicology 30:127–135

    CAS  PubMed  Google Scholar 

  32. Delva L, Bastie JN, Rochette-Egly C, Kraiba R, Balitrand N, Despouy G, Chambon P, Chomienne C (1999) Physical and functional interactions between cellular retinoic acid binding protein II and the retinoic acid-dependent nuclear complex. Mol Cell Biol 19:7158–7167

    CAS  PubMed Central  PubMed  Google Scholar 

  33. Dey N, De PK, Wang M, Zhang H, Dobrota EA, Robertson KA, Durden DL (2007) CSK controls retinoic acid receptor (RAR) signaling: a RAR-c-SRC signaling axis is required for neuritogenic differentiation. Mol Cell Biol 27:4179–4197

    CAS  PubMed Central  PubMed  Google Scholar 

  34. Dilworth FJ, Chambon P (2001) Nuclear receptors coordinate the activities of chromatin remodeling complexes and coactivators to facilitate initiation of transcription. Oncogene 20:3047–3054

    CAS  PubMed  Google Scholar 

  35. Ding Y, Qiao A, Wang Z, Goodwin JS, Lee ES, Block ML, Allsbrook M, McDonald MP, Fan GH (2008) Retinoic acid attenuates beta-amyloid deposition and rescues memory deficits in an Alzheimer’s disease transgenic mouse model. J Neurosci 28:11622–11634

    CAS  PubMed Central  PubMed  Google Scholar 

  36. Dong D, Ruuska SE, Levinthal DJ, Noy N (1999) Distinct roles for cellular retinoic acid-binding proteins I and II in regulating signaling by retinoic acid. J Biol Chem 274:23695–23698

    CAS  PubMed  Google Scholar 

  37. Duong V, Rochette-Egly C (2011) The molecular physiology of nuclear retinoic acid receptors. From health to disease. Biochim Biophys Acta 1812:1023–1031

    CAS  PubMed  Google Scholar 

  38. Epping MT, Wang L, Edel MJ, Carlee L, Hernandez M, Bernards R (2005) The human tumor antigen PRAME is a dominant repressor of retinoic acid receptor signaling. Cell 122:835–847

    CAS  PubMed  Google Scholar 

  39. Farboud B, Hauksdottir H, Wu Y, Privalsky ML (2003) Isotype-restricted corepressor recruitment: a constitutively closed helix 12 conformation in retinoic acid receptors beta and gamma interferes with corepressor recruitment and prevents transcriptional repression. Mol Cell Biol 23:2844–2858

    CAS  PubMed Central  PubMed  Google Scholar 

  40. Ferry C, Gaouar S, Fischer B, Boeglin M, Paul N, Samarut E, Piskunov A, Pankotai-Bodo G, Brino L, Rochette-Egly C (2011) Cullin 3 mediates SRC-3 ubiquitination and degradation to control the retinoic acid response. Proc Natl Acad Sci USA 108:20603–20608

    CAS  PubMed Central  PubMed  Google Scholar 

  41. Ferry C, Gianni M, Lalevee S, Bruck N, Plassat JL, Raska I Jr, Garattini E, Rochette-Egly C (2009) SUG-1 plays proteolytic and non-proteolytic roles in the control of retinoic acid target genes via its interaction with SRC-3. J Biol Chem 284:8127–8135

    CAS  PubMed Central  PubMed  Google Scholar 

  42. Fujiki R, Chikanishi T, Hashiba W, Ito H, Takada I, Roeder RG, Kitagawa H, Kato S (2009) GlcNAcylation of a histone methyltransferase in retinoic-acid-induced granulopoiesis. Nature 459:455–459

    CAS  PubMed  Google Scholar 

  43. Gaillard E, Bruck N, Brelivet Y, Bour G, Lalevee S, Bauer A, Poch O, Moras D, Rochette-Egly C (2006) Phosphorylation by PKA potentiates retinoic acid receptor alpha activity by means of increasing interaction with and phosphorylation by cyclin H/cdk7. Proc Natl Acad Sci USA 103:9548–9553

    CAS  PubMed Central  PubMed  Google Scholar 

  44. Gaj T, Gersbach CA, Barbas CF 3rd (2013) ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering. Trends Biotechnol 31:397–405

    CAS  PubMed Central  PubMed  Google Scholar 

  45. Gaub MP, Rochette-Egly C, Lutz Y, Ali S, Matthes H, Scheuer I, Chambon P (1992) Immunodetection of multiple species of retinoic acid receptor alpha: evidence for phosphorylation. Exp Cell Res 201:335–346

    CAS  PubMed  Google Scholar 

  46. Gay F, Barath P, Desbois-Le Peron C, Metivier R, Le Guevel R, Birse D, Salbert G (2002) Multiple phosphorylation events control chicken ovalbumin upstream promoter transcription factor I orphan nuclear receptor activity. Mol Endocrinol 16:1332–1351

    Google Scholar 

  47. Gehani SS, Agrawal-Singh S, Dietrich N, Christophersen NS, Helin K, Hansen K (2010) Polycomb group protein displacement and gene activation through MSK-dependent H3K27me3S28 phosphorylation. Mol Cell 39:886–900

    CAS  PubMed  Google Scholar 

  48. Germain P, Altucci L, Bourguet W, Rochette-Egly C, Gronemeyer H (2003) Nuclear receptor superfamily: principles of signaling. Pure Appl Chem IUPAC 75:1619–1664

    CAS  Google Scholar 

  49. Germain P, Chambon P, Eichele G, Evans RM, Lazar MA, Leid M, De Lera AR, Lotan R, Mangelsdorf DJ, Gronemeyer H (2006a) International union of pharmacology. LX. Retinoic acid receptors. Pharmacol Rev 58:712–725

    Google Scholar 

  50. Germain P, Chambon P, Eichele G, Evans RM, Lazar MA, Leid M, De Lera AR, Lotan R, Mangelsdorf DJ, Gronemeyer H (2006b) International union of pharmacology. LXIII. Retinoid X receptors. Pharmacol Rev 58:760–772

    Google Scholar 

  51. Germain P, Staels B, Dacquet C, Spedding M, Laudet V (2006) Overview of nomenclature of nuclear receptors. Pharmacol Rev 58:685–704

    CAS  PubMed  Google Scholar 

  52. Gianni M, Bauer A, Garattini E, Chambon P, Rochette-Egly C (2002) Phosphorylation by p38MAPK and recruitment of SUG-1 are required for RA-induced RARγ degradation and transactivation. EMBO J 21:3760–3769

    CAS  PubMed Central  PubMed  Google Scholar 

  53. Gianni M, Boldetti A, Guarnaccia V, Rambaldi A, Parrella E, Raska I Jr, Rochette-Egly C, Del Sal G, Rustighi A, Terao M, Garattini E (2009) Inhibition of the peptidyl-prolyl-isomerase Pin1 enhances the responses of acute myeloid leukemia cells to retinoic acid via stabilization of RARalpha and PML-RARalpha. Cancer Res 69:1016–1026

    CAS  PubMed  Google Scholar 

  54. Gianni M, Parrella E, Raska I, Gaillard E, Nigro EA, Gaudon C, Garattini E, Rochette-Egly C (2006) P38MAPK-dependent phosphorylation and degradation of SRC-3/AIB1 and RARalpha-mediated transcription. EMBO J 25:739–751

    CAS  PubMed Central  PubMed  Google Scholar 

  55. Gillespie RF, Gudas LJ (2007) Retinoic acid receptor isotype specificity in F9 teratocarcinoma stem cells results from the differential recruitment of coregulators to retinoic response elements. J Biol Chem 282:33421–33434

    CAS  PubMed  Google Scholar 

  56. Gillespie RF, Gudas LJ (2007) Retinoid regulated association of transcriptional co-regulators and the polycomb group protein SUZ12 with the retinoic acid response elements of Hoxa1, RARbeta(2), and Cyp26A1 in F9 embryonal carcinoma cells. J Mol Biol 372:298–316

    CAS  PubMed Central  PubMed  Google Scholar 

  57. Glass CK, Rosenfeld MG (2000) The coregulator exchange in transcriptional functions of nuclear receptors. Genes Dev 14:121–141

    CAS  PubMed  Google Scholar 

  58. Gudas LJ, Wagner JA (2011) Retinoids regulate stem cell differentiation. J Cell Physiol 226:322–330

    CAS  PubMed Central  PubMed  Google Scholar 

  59. Gupta P, Ho PC, Huq MM, Ha SG, Park SW, Khan AA, Tsai NP, Wei LN (2008) Retinoic acid-stimulated sequential phosphorylation, PML recruitment, and SUMOylation of nuclear receptor TR2 to suppress Oct4 expression. Proc Natl Acad Sci USA 105:11424–11429

    CAS  PubMed Central  PubMed  Google Scholar 

  60. Hauksdottir H, Farboud B, Privalsky ML (2003) Retinoic acid receptors beta and gamma do not repress, but instead activate target gene transcription in both the absence and presence of hormone ligand. Mol Endocrinol 17:373–385

    CAS  PubMed  Google Scholar 

  61. Hilgeroth A, Tell V, Kramer S, Totzke F, Schachtele C (2013) Approaches to a multitargeting drug development: first profiled 3-Ethoxycarbonyl-1-aza-9-oxafluorenes representing a perspective compound class targeting alzheimer disease relevant kinases CDK1, CDK5 and GSK-3beta. Med Chem

    Google Scholar 

  62. Hu X, Chen Y, Farooqui M, Thomas MC, Chiang CM, Wei LN (2004) Suppressive effect of receptor-interacting protein 140 on coregulator binding to retinoic acid receptor complexes, histone-modifying enzyme activity, and gene activation. J Biol Chem 279:319–325

    CAS  PubMed  Google Scholar 

  63. Jetten AM, Kurebayashi S, Ueda E (2001) The ROR nuclear orphan receptor subfamily: critical regulators of multiple biological processes. Prog Nucleic Acid Res Mol Biol 69:205–247

    CAS  PubMed  Google Scholar 

  64. Jonas BA, Varlakhanova N, Hayakawa F, Goodson M, Privalsky ML (2007) Response of SMRT (silencing mediator of retinoic acid and thyroid hormone receptor) and N-CoR (nuclear receptor corepressor) corepressors to mitogen-activated protein kinase kinase kinase cascades is determined by alternative mRNA splicing. Mol Endocrinol 21:1924–1939

    CAS  PubMed Central  PubMed  Google Scholar 

  65. Kay BK, Williamson MP, Sudol M (2000) The importance of being proline: the interaction of proline-rich motifs in signaling proteins with their cognate domains. FASEB J 14:231–241

    CAS  PubMed  Google Scholar 

  66. Keriel A, Stary A, Sarasin A, Rochette-Egly C, Egly JM (2002) XPD mutations prevent TFIIH-dependent transactivation by nuclear receptors and phosphorylation of RARalpha. Cell 109:125–135

    CAS  PubMed  Google Scholar 

  67. Khetchoumian K, Teletin M, Tisserand J, Mark M, Herquel B, Ignat M, Zucman-Rossi J, Cammas F, Lerouge T, Thibault C, Metzger D, Chambon P, Losson R (2007) Loss of Trim24 (Tif1alpha) gene function confers oncogenic activity to retinoic acid receptor alpha. Nat Genet 39:1500–1506

    CAS  PubMed  Google Scholar 

  68. Kopf E, Plassat JL, Vivat V, de The H, Chambon P, Rochette-Egly C (2000) Dimerization with retinoid X receptors and phosphorylation modulate the retinoic acid-induced degradation of retinoic acid receptors alpha and gamma through the ubiquitin-proteasome pathway. J Biol Chem 275:33280–33288

    CAS  PubMed  Google Scholar 

  69. Kruse SW, Suino-Powell K, Zhou XE, Kretschman JE, Reynolds R, Vonrhein C, Xu Y, Wang L, Tsai SY, Tsai MJ, Xu HE (2008) Identification of COUP-TFII orphan nuclear receptor as a retinoic acid-activated receptor. PLoS Biol 6:e227

    PubMed Central  PubMed  Google Scholar 

  70. Lalevee S, Bour G, Quinternet M, Samarut E, Kessler P, Vitorino M, Bruck N, Delsuc MA, Vonesch JL, Kieffer B, Rochette-Egly C (2010) Vinexinss, an atypical “sensor” of retinoic acid receptor gamma signaling: union and sequestration, separation, and phosphorylation. FASEB J 24:4523–4534

    CAS  PubMed  Google Scholar 

  71. Lalevee S, Ferry C, Rochette-Egly C (2010) Phosphorylation control of nuclear receptors. Methods Mol Biol 647:251–266

    CAS  PubMed  Google Scholar 

  72. Lane MA, Bailey SJ (2005) Role of retinoid signalling in the adult brain. Prog Neurobiol 75:275–293

    CAS  PubMed  Google Scholar 

  73. Laudet V, Gronemeyer H (2001) Nuclear receptor factsbook. Academic Press, London

    Google Scholar 

  74. Lavery DN, McEwan IJ (2005) Structure and function of steroid receptor AF1 transactivation domains: induction of active conformations. Biochem J 391:449–464

    CAS  PubMed Central  PubMed  Google Scholar 

  75. Le Douarin B, Zechel C, Garnier JM, Lutz Y, Tora L, Pierrat P, Heery D, Gronemeyer H, Chambon P, Losson R (1995) The N-terminal part of TIF1, a putative mediator of the ligand-dependent activation function (AF-2) of nuclear receptors, is fused to B-raf in the oncogenic protein T18. EMBO J 14:2020–2033

    PubMed Central  PubMed  Google Scholar 

  76. le Maire A, Teyssier C, Erb C, Grimaldi M, Alvarez S, de Lera AR, Balaguer P, Gronemeyer H, Royer CA, Germain P, Bourguet W (2010) A unique secondary-structure switch controls constitutive gene repression by retinoic acid receptor. Nat Struct Mol Biol 17:801–807

    PubMed  Google Scholar 

  77. Le May N, Mota-Fernandes D, Velez-Cruz R, Iltis I, Biard D, Egly JM (2010) NER factors are recruited to active promoters and facilitate chromatin modification for transcription in the absence of exogenous genotoxic attack. Mol Cell 38:54–66

    PubMed  Google Scholar 

  78. Le May N, Iltis I, Amé J, Zhovner A, Biard D, Egly JM, Schreiber V, Coin F (2012) Poly (ADP-ribose) glycohydrolase regulates retinoic acid receptor-mediated gene expression. Mol Cell 48:785–798

    PubMed  Google Scholar 

  79. Lee HY, Suh YA, Robinson MJ, Clifford JL, Hong WK, Woodgett JR, Cobb MH, Mangelsdorf DJ, Kurie JM (2000) Stress pathway activation induces phosphorylation of retinoid X receptor. J Biol Chem 275:32193–32199

    CAS  PubMed  Google Scholar 

  80. Lee MG, Villa R, Trojer P, Norman J, Yan KP, Reinberg D, Di Croce L, Shiekhattar R (2007) Demethylation of H3K27 regulates polycomb recruitment and H2A ubiquitination. Science 318:447–450

    CAS  PubMed  Google Scholar 

  81. Lefebvre P, Martin PJ, Flajollet S, Dedieu S, Billaut X, Lefebvre B (2005) Transcriptional activities of retinoic acid receptors. Vitam Horm 70:199–264

    CAS  PubMed  Google Scholar 

  82. Losel R, Wehling M (2003) Nongenomic actions of steroid hormones. Nat Rev Mol Cell Biol 4:46–56

    PubMed  Google Scholar 

  83. Luconi M, Cantini G, Serio M (2010) Peroxisome proliferator-activated receptor gamma (PPARgamma): is the genomic activity the only answer? Steroids 75:585–594

    CAS  PubMed  Google Scholar 

  84. Macias MJ, Wiesner S, Sudol M (2002) WW and SH3 domains, two different scaffolds to recognize proline-rich ligands. FEBS Lett 513:30–37

    CAS  PubMed  Google Scholar 

  85. Mahony S, Mazzoni EO, McCuine S, Young RA, Wichterle H, Gifford DK (2011) Ligand-dependent dynamics of retinoic acid receptor binding during early neurogenesis. Genome Biol 12:R2

    CAS  PubMed Central  PubMed  Google Scholar 

  86. Mark M, Ghyselinck NB, Chambon P (2009) Function of retinoic acid receptors during embryonic development. Nucl Recept Signal 7:e002

    PubMed Central  PubMed  Google Scholar 

  87. Masia S, Alvarez S, de Lera AR, Barettino D (2007) Rapid, nongenomic actions of retinoic acid on phosphatidylinositol-3-kinase signaling pathway mediated by the retinoic acid receptor. Mol Endocrinol 21:2391–2402

    CAS  PubMed  Google Scholar 

  88. Matsushima-Nishiwaki R, Okuno M, Adachi S, Sano T, Akita K, Moriwaki H, Friedman SL, Kojima S (2001) Phosphorylation of retinoid X receptor alpha at serine 260 impairs its metabolism and function in human hepatocellular carcinoma. Cancer Res 61:7675–7682

    CAS  PubMed  Google Scholar 

  89. Mendoza-Parra MA, Walia M, Sankar M, Gronemeyer H (2011) Dissecting the retinoid-induced differentiation of F9 embryonal stem cells by integrative genomics. Mol Syst Biol 7:538

    PubMed Central  PubMed  Google Scholar 

  90. Mengeling BJ, Goodson ML, Bourguet W, Privalsky ML (2012) SMRTepsilon, a corepressor variant, interacts with a restricted subset of nuclear receptors, including the retinoic acid receptors alpha and beta. Mol Cell Endocrinol 351:306–316

    CAS  PubMed Central  PubMed  Google Scholar 

  91. Moutier E, Ye T, Choukrallah MA, Urban S, Osz J, Chatagnon A, Delacroix L, Langer D, Rochel N, Moras D, Benoit G, Davidson I (2012) Retinoic acid receptors recognise the mouse genome through binding elements with diverse spacing and topology. J Biol Chem 287:26328–26341

    CAS  PubMed Central  PubMed  Google Scholar 

  92. Osz J, Brelivet Y, Peluso-Iltis C, Cura V, Eiler S, Ruff M, Bourguet W, Rochel N, Moras D (2012) Structural basis for a molecular allosteric control mechanism of cofactor binding to nuclear receptors. Proc Natl Acad Sci USA 109:E588–E594

    PubMed Central  PubMed  Google Scholar 

  93. Pan J, Kao YL, Joshi S, Jeetendran S, Dipette D, Singh US (2005) Activation of Rac1 by phosphatidylinositol 3-kinase in vivo: role in activation of mitogen-activated protein kinase (MAPK) pathways and retinoic acid-induced neuronal differentiation of SH-SY5Y cells. J Neurochem 93:571–583

    CAS  PubMed  Google Scholar 

  94. Perissi V, Aggarwal A, Glass CK, Rose DW, Rosenfeld MG (2004) A corepressor/coactivator exchange complex required for transcriptional activation by nuclear receptors and other regulated transcription factors. Cell 116:511–526

    CAS  PubMed  Google Scholar 

  95. Perissi V, Jepsen K, Glass CK, Rosenfeld MG (2010) Deconstructing repression: evolving models of co-repressor action. Nat Rev Genet 11:109–123

    CAS  PubMed  Google Scholar 

  96. Perissi V, Rosenfeld MG (2005) Controlling nuclear receptors: the circular logic of cofactor cycles. Nat Rev Mol Cell Biol 6:542–554

    CAS  PubMed  Google Scholar 

  97. Perissi V, Scafoglio C, Zhang J, Ohgi KA, Rose DW, Glass CK, Rosenfeld MG (2008) TBL1 and TBLR1 phosphorylation on regulated gene promoters overcomes dual CtBP and NCoR/SMRT transcriptional repression checkpoints. Mol Cell 29:755–766

    CAS  PubMed Central  PubMed  Google Scholar 

  98. Perissi V, Staszewski LM, McInerney EM, Kurokawa R, Krones A, Rose DW, Lambert MH, Milburn MV, Glass CK, Rosenfeld MG (1999) Molecular determinants of nuclear receptor-corepressor interaction. Genes Dev 13:3198–3208

    CAS  PubMed Central  PubMed  Google Scholar 

  99. Piskunov A, Rochette-Egly C (2011) MSK1 and nuclear receptor signaling. In: MSKs, Arthur S, Vermeulen L (eds) Landes Biosciences, Austin

    Google Scholar 

  100. Piskunov A, Rochette-Egly C (2012) A retinoic acid receptor RARalpha pool present in membrane lipid rafts forms complexes with G protein alphaQ to activate p38MAPK. Oncogene 31:3333–3345

    CAS  PubMed  Google Scholar 

  101. Poon MM, Chen L (2008) Retinoic acid-gated sequence-specific translational control by RARalpha. Proc Natl Acad Sci USA 105:20303–20308

    CAS  PubMed Central  PubMed  Google Scholar 

  102. Privalsky ML (2004) The role of corepressors in transcriptional regulation by nuclear hormone receptors. Annu Rev Physiol 66:315–360

    CAS  PubMed  Google Scholar 

  103. Renaud JP, Rochel N, Ruff M, Vivat V, Chambon P, Gronemeyer H, Moras D (1995) Crystal structure of the RAR-gamma ligand-binding domain bound to all-trans retinoic acid. Nature 378:681–689

    CAS  PubMed  Google Scholar 

  104. Rochel N, Ciesielski F, Godet J, Moman E, Roessle M, Peluso-Iltis C, Moulin M, Haertlein M, Callow P, Mely Y, Svergun DI, Moras D (2011) Common architecture of nuclear receptor heterodimers on DNA direct repeat elements with different spacings. Nat Struct Mol Biol 18:564–570

    CAS  PubMed  Google Scholar 

  105. Rochette-Egly C (2003) Nuclear receptors: integration of multiple signalling pathways through phosphorylation. Cell Signal 15:355–366

    CAS  PubMed  Google Scholar 

  106. Rochette-Egly C, Adam S, Rossignol M, Egly JM, Chambon P (1997) Stimulation of RAR alpha activation function AF-1 through binding to the general transcription factor TFIIH and phosphorylation by CDK7. Cell 90:97–107

    CAS  PubMed  Google Scholar 

  107. Rochette-Egly C, Gaub MP, Lutz Y, Ali S, Scheuer I, Chambon P (1992) Retinoic acid receptor-beta: immunodetection and phosphorylation on tyrosine residues. Mol Endocrinol 6:2197–2209

    CAS  PubMed  Google Scholar 

  108. Rochette-Egly C, Germain P (2009) Dynamic and combinatorial control of gene expression by nuclear retinoic acid receptors. Nucl Recept Signal 7:e005

    PubMed Central  PubMed  Google Scholar 

  109. Rochette-Egly C, Lutz Y, Saunders M, Scheuer I, Gaub MP, Chambon P (1991) Retinoic acid receptor gamma: specific immunodetection and phosphorylation. J Cell Biol 115:535–545

    CAS  PubMed  Google Scholar 

  110. Rochette-Egly C, Oulad-Abdelghani M, Staub A, Pfister V, Scheuer I, Chambon P, Gaub MP (1995) Phosphorylation of the retinoic acid receptor-alpha by protein kinase A. Mol Endocrinol 9:860–871

    CAS  PubMed  Google Scholar 

  111. Rosenfeld MG, Lunyak VV, Glass CK (2006) Sensors and signals: a coactivator/corepressor/epigenetic code for integrating signal-dependent programs of transcriptional response. Genes Dev 20:1405–1428

    CAS  PubMed  Google Scholar 

  112. Samarut E, Amal I, Markov G, Stote R, Dejaegere A, Laudet V, Rochette-Egly C (2011) Evolution of nuclear retinoic acid receptors alpha (RARa) phosphorylation sites. Serine gain provides fine-tuned regulation. Mol Biol Evol 28:2125–2137

    Google Scholar 

  113. Samarut E, Rochette-Egly C (2012) Nuclear retinoic acid receptors: conductors of the retinoic acid symphony during development. Mol Cell Endocrinol 348:348–360

    CAS  PubMed  Google Scholar 

  114. Santos NC, Kim KH (2010) Activity of retinoic acid receptor-alpha is directly regulated at its protein kinase A sites in response to follicle-stimulating hormone signaling. Endocrinology 151:2361–2372

    CAS  PubMed Central  PubMed  Google Scholar 

  115. Schoenfelder S, Sexton T, Chakalova L, Cope NF, Horton A, Andrews S, Kurukuti S, Mitchell JA, Umlauf D, Dimitrova DS, Eskiw CH, Luo Y, Wei CL, Ruan Y, Bieker JJ, Fraser P (2010) Preferential associations between co-regulated genes reveal a transcriptional interactome in erythroid cells. Nat Genet 42:53–61

    CAS  PubMed Central  PubMed  Google Scholar 

  116. Schug TT, Berry DC, Shaw NS, Travis SN, Noy N (2007) Opposing effects of retinoic acid on cell growth result from alternate activation of two different nuclear receptors. Cell 129:723–733

    CAS  PubMed Central  PubMed  Google Scholar 

  117. Schug TT, Berry DC, Toshkov IA, Cheng L, Nikitin AY, Noy N (2008) Overcoming retinoic acid-resistance of mammary carcinomas by diverting retinoic acid from PPARbeta/delta to RAR. Proc Natl Acad Sci USA 105:7546–7551

    CAS  PubMed Central  PubMed  Google Scholar 

  118. Sims RJ 3rd, Reinberg D (2008) Is there a code embedded in proteins that is based on post-translational modifications? Nat Rev Mol Cell Biol 9:815–820

    CAS  PubMed  Google Scholar 

  119. Slamon DJ, Clark GM, Wong SG, Levin WJ, Ullrich A, McGuire WL (1987) Human breast cancer: correlation of relapse and survival with amplification of the HER-2/neu oncogene. Science 235:177–182

    CAS  PubMed  Google Scholar 

  120. Sodhi RK, Singh N (2013) All-trans retinoic acid rescues memory deficits and neuropathological changes in mouse model of streptozotocin-induced dementia of Alzheimer’s type. Prog Neuropsychopharmacol Biol Psychiatry 40:38–46

    CAS  PubMed  Google Scholar 

  121. Srinivas H, Juroske DM, Kalyankrishna S, Cody DD, Price RE, Xu XC, Narayanan R, Weigel NL, Kurie JM (2005) c-Jun N-terminal kinase contributes to aberrant retinoid signaling in lung cancer cells by phosphorylating and inducing proteasomal degradation of retinoic acid receptor alpha. Mol Cell Biol 25:1054–1069

    Google Scholar 

  122. Srinivas H, Xia D, Moore NL, Uray IP, Kim H, Ma L, Weigel NL, Brown PH, Kurie JM (2006) Akt phosphorylates and suppresses the transactivation of retinoic acid receptor alpha. Biochem J 395:653–662

    CAS  PubMed Central  PubMed  Google Scholar 

  123. Stavridis MP, Collins BJ, Storey KG (2010) Retinoic acid orchestrates fibroblast growth factor signalling to drive embryonic stem cell differentiation. Development 137:881–890

    CAS  PubMed Central  PubMed  Google Scholar 

  124. Stehlin-Gaon C, Willmann D, Zeyer D, Sanglier S, Van Dorsselaer A, Renaud JP, Moras D, Schule R (2003) All-trans retinoic acid is a ligand for the orphan nuclear receptor ROR beta. Nat Struct Biol 10:820–825

    CAS  PubMed  Google Scholar 

  125. Taneja R, Rochette-Egly C, Plassat JL, Penna L, Gaub MP, Chambon P (1997) Phosphorylation of activation functions AF-1 and AF-2 of RAR alpha and RAR gamma is indispensable for differentiation of F9 cells upon retinoic acid and cAMP treatment. EMBO J 16:6452–6465

    CAS  PubMed Central  PubMed  Google Scholar 

  126. Tansey WP (2001) Transcriptional activation: risky business. Genes Dev 15:1045–1050

    CAS  PubMed  Google Scholar 

  127. Tari AM, Lim SJ, Hung MC, Esteva FJ, Lopez-Berestein G (2002) Her2/neu induces all-trans retinoic acid (ATRA) resistance in breast cancer cells. Oncogene 21:5224–5232

    CAS  PubMed  Google Scholar 

  128. Tarrade A, Bastien J, Bruck N, Bauer A, Gianni M, Rochette-Egly C (2005) Retinoic acid and arsenic trioxide cooperate for apoptosis through phosphorylated RXR alpha. Oncogene 24:2277–2288

    CAS  PubMed  Google Scholar 

  129. Varlakhanova N, Hahm JB, Privalsky ML (2011) Regulation of SMRT corepressor dimerization and composition by MAP kinase phosphorylation. Mol Cell Endocrinol 332:180–188

    CAS  PubMed Central  PubMed  Google Scholar 

  130. Wang A, Alimova IN, Luo P, Jong A, Triche TJ, Wu L (2010) Loss of CAK phosphorylation of RAR{alpha} mediates transcriptional control of retinoid-induced cancer cell differentiation. FASEB J: Official Publ Fed Am Soc Exp Biol 24:833–843

    Google Scholar 

  131. Warnmark A, Treuter E, Wright AP, Gustafsson JA (2003) Activation functions 1 and 2 of nuclear receptors: molecular strategies for transcriptional activation. Mol Endocrinol 17:1901–1909

    PubMed  Google Scholar 

  132. Wei LN, Hu X, Chandra D, Seto E, Farooqui M (2000) Receptor-interacting protein 140 directly recruits histone deacetylases for gene silencing. J Biol Chem 275:40782–40787

    CAS  PubMed  Google Scholar 

  133. Westin S, Rosenfeld MG, Glass CK (2000) Nuclear receptor coactivators. Adv Pharmacol 47:89–112

    CAS  PubMed  Google Scholar 

  134. Wilson V, Olivera-Martinez I, Storey KG (2009) Stem cells, signals and vertebrate body axis extension. Development 136:1591–1604

    CAS  PubMed  Google Scholar 

  135. Wulf G, Finn G, Suizu F, Lu KP (2005) Phosphorylation-specific prolyl isomerization: is there an underlying theme? Nat Cell Biol 7:435–441

    CAS  PubMed  Google Scholar 

  136. Zarrinpar A, Lim WA (2000) Converging on proline: the mechanism of WW domain peptide recognition. Nat Struct Biol 7:611–613

    CAS  PubMed  Google Scholar 

  137. Zechel C, Shen XQ, Chambon P, Gronemeyer H (1994) Dimerization interfaces formed between the DNA binding domains determine the cooperative binding of RXR/RAR and RXR/TR heterodimers to DR5 and DR4 elements. EMBO J 13:1414–1424

    CAS  PubMed Central  PubMed  Google Scholar 

  138. Zechel C, Shen XQ, Chen JY, Chen ZP, Chambon P, Gronemeyer H (1994) The dimerization interfaces formed between the DNA binding domains of RXR, RAR and TR determine the binding specificity and polarity of the full-length receptors to direct repeats. EMBO J 13:1425–1433

    CAS  PubMed Central  PubMed  Google Scholar 

  139. Zhao Y, Lang G, Ito S, Bonnet J, Metzger E, Sawatsubashi S, Suzuki E, Le Guezennec X, Stunnenberg HG, Krasnov A, Georgieva SG, Schule R, Takeyama K, Kato S, Tora L, Devys D (2008) A TFTC/STAGA module mediates histone H2A and H2B deubiquitination, coactivates nuclear receptors, and counteracts heterochromatin silencing. Mol Cell 29:92–101

    CAS  PubMed  Google Scholar 

  140. Zhou XE, Suino-Powell KM, Xu Y, Chan CW, Tanabe O, Kruse SW, Reynolds R, Engel JD, Xu HE (2011) The orphan nuclear receptor TR4 is a vitamin A-activated nuclear receptor. J Biol Chem 286:2877–2885

    CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

Funds from the Agence Nationale pour la Recherche (ANR-05-BLAN-0390-02 and ANR-09-BLAN-0297-01), the Foundation pour la Recherche Medicale (FRM, DEQ20090515423), the Institut National du Cancer (INCa-PLO7-96099 and PL09-194) and the Association pour la Recherche sur le Cancer (ARC 3169, ARC SL220110603474) supported this work. This study was also supported by the grant ANR-10-LABX-0030-INRT, a French State fund managed by the ANR under the frame programme Investissements d'Avenir labelled ANR-10-IDEX-0002-02. INCA supported ZA while FRM and the lady TATA Memorial Trust supported AP.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cécile Rochette-Egly .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Piskunov, A., Al Tanoury, Z., Rochette-Egly, C. (2014). Nuclear and Extra-Nuclear Effects of Retinoid Acid Receptors: How They Are Interconnected. In: Asson-Batres, M., Rochette-Egly, C. (eds) The Biochemistry of Retinoic Acid Receptors I: Structure, Activation, and Function at the Molecular Level. Subcellular Biochemistry, vol 70. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-9050-5_6

Download citation

Publish with us

Policies and ethics