Skip to main content

Context, Quantification, and Measurement Guide for Non-Photochemical Quenching of Chlorophyll Fluorescence

  • Chapter
  • First Online:
Non-Photochemical Quenching and Energy Dissipation in Plants, Algae and Cyanobacteria

Part of the book series: Advances in Photosynthesis and Respiration ((AIPH,volume 40))

Summary

In this chapter, we (i) place photoprotective thermal dissipation of excess light into the context of the many adjustments plants employ to maximize photosynthesis and growth while minimizing the destructive potential of excess light and (ii) describe the historical development of key measures of thermal energy dissipation and related processes (e.g., common coefficients and other quantification of non-photochemical quenching, or NPQ, of chlorophyll a fluorescence and chlorophyll a fluorescence transients), emphasizing the theoretical and practical advantages and limitations surrounding the use of NPQ as a measure of dissipation of excitation energy from singlet excited state of chlorophyll a as “harmless” heat. Furthermore, we provide guidance on the proper measurement of NPQ and advise readers of the methodological issues that, if not avoided, can render measures of this parameter non-interpretable.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

Chl:

Chlorophyll

F:

Fluorescence

Fo, F o :

Minimal chlorophyll fluorescence in the dark- and light-adapted state, respectively

Fm, F m :

Maximal chlorophyll fluorescence in the dark- and light-adapted state, respectively

Fs :

Steady-state chlorophyll fluorescence emission during illumination

Fv, F v :

Variable chlorophyll fluorescence in the dark-adapted (Fm − Fo) and light-adapted (F m  − F o ) state, respectively

Fv/Fm, F v /F m :

Interpreted to be intrinsic efficiency (or quantum yield) of photosystem II in the dark- and light-adapted state, respectively (equivalent to Φ PS II)

NPQ:

Non-photochemical quenching of chlorophyll fluorescence

OJIP:

One-letter names associated with phases of the chlorophyll fluorescence transient curve upon onset of illumination; O is for the initial minimum level, P for peak, and J and I are inflections between the two

PAM:

Pulse-amplitude modulated (fluorescence or fluorometer)

PS I:

Photosystem I

PS II:

Photosystem II

Φ NPQ :

Quantum yield of the regulated portion of thermal dissipation of the singlet excited state of Chl a

Φ PS II :

Quantum yield (intrinsic efficiency) of photosystem II photochemistry (equivalent to Fv/Fm)

qE, qI, qN, qP:

Quenching coefficients for energy-dependent (E), photoinhibitory (I), non-photochemical (N), and photochemical (P) quenching of chlorophyll fluorescence, respectively; VAZ cycle – the xanthophyll cycle involving the carotenoids violaxanthin, antheraxanthin, and zeaxanthin

References

  • Adams WW III, Barker DH (1998) Seasonal changes in xanthophyll cycle-dependent energy dissipation in Yucca glauca Nuttall. Plant Cell Environ 21:501–512

    Article  CAS  Google Scholar 

  • Adams WW III, Demmig-Adams B, Winter K, Schreiber U (1990) The ratio of variable to maximum chlorophyll fluorescence from photosystem II, measured in leaves at ambient temperature and at 77 K, as an indicator of the photon yield of photosynthesis. Planta 180:166–174

    Article  CAS  PubMed  Google Scholar 

  • Adams WW III, Demmig-Adams B, Verhoeven AS, Barker DH (1995a) ‘Photoinhibition’ during winter stress: involvement of sustained xanthophyll cycle-dependent energy dissipation. Aust J Plant Physiol 22:261–276

    Article  CAS  Google Scholar 

  • Adams WW III, Hoehn A, Demmig-Adams B (1995b) Chilling temperatures and the xanthophyll cycle. A comparison of warm-grown and overwintering spinach. Aust J Plant Physiol 22:75–85

    Article  CAS  Google Scholar 

  • Adams WW III, Demmig-Adams B (2004) Chlorophyll fluorescence as a tool to monitor plant response to the environment. In: Papageorgiou GC, Govindjee (eds) Chlorophyll a Fluorescence: A Signature of Photosynthesis. Advances in Photosynthesis and Respiration, Volume 19. Springer, Dordrecht, pp 583–604

    Chapter  Google Scholar 

  • Adams WW III, Zarter CR, Ebbert V, Demmig-Adams B (2004) Photoprotective strategies of overwintering evergreens. Bioscience 54:41–49

    Google Scholar 

  • Adams WW III, Zarter CR, Mueh KE, Amiard V, Demmig-Adams B (2006) Energy dissipation and photoinhibition: a continuum of photoprotection. In: Demmig-Adams B, Adams WW III, Mattoo AK (eds) Photoprotection, Photoinhibition, Gene Regulation, and Environment. Advances in Photosynthesis and Respiration, Volume 21. Springer, Dordrecht, pp 49–64

    Google Scholar 

  • Adams WW III, Muller O, Cohu CM, Demmig-Adams B (2013) May photoinhibition be a consequence, rather than a cause, of limited plant productivity? Photosynth Res 117:31–44

    Article  CAS  PubMed  Google Scholar 

  • Allen JF (1992) Protein phosphorylation in regulation of photosynthesis. Biochim Biophys Acta 1098:275–335

    Article  CAS  PubMed  Google Scholar 

  • Aro E-M, Andersson B (eds) (2001) Regulation of Photosynthesis. Advances in Photosynthesis and Respiration, Volume 11. Springer, Dordrecht

    Google Scholar 

  • Asada K (1999) The water-water cycle in chloroplasts: scavenging of active oxygens and dissipation of excess photons. Annu Rev Plant Physiol Plant Mol Biol 50:601–639

    Article  CAS  PubMed  Google Scholar 

  • Badger MR, von Caemmerer S, Ruuska S, Nakano H (2000) Electron flow to oxygen in higher plants and algae: rates and control of direct photoreduction (Mehler reaction) and rubisco oxygenase. Phil Trans Roy Soc Lond Ser B 355:1433–1446

    Article  CAS  Google Scholar 

  • Baker NR (ed) (1996) Photosynthesis and the Environment. Advances in Photosynthesis, Volume 5. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Baker NR, Long SP (eds) (1986) Photosynthesis in Contrasting Environments. Elsevier, Amsterdam

    Google Scholar 

  • Baker NR, Oxborough K (2004) Chlorophyll fluorescence as a probe in photosynthetic productivity. In: Papageorgiou GC, Govindjee (eds) Chlorophyll a Fluorescence: A Signature of Photosynthesis. Advances in Photosynthesis and Respiration, Volume 19. Springer, Dordrecht, pp 65–82

    Chapter  Google Scholar 

  • Barber J, Baker NR (eds) (1985) Photosynthetic Mechanisms and the Environment. Elsevier, Amsterdam

    Google Scholar 

  • Barker DH, Seaton GGR, Robinson SA (1997) Internal and external photoprotection in developing leaves of the CAM plant Cotyledon orbiculata. Plant Cell Environ 20:617–624

    Article  CAS  Google Scholar 

  • Bilger W, Björkman O (1990) Role of the xanthophyll cycle in photoprotection elucidated by measurements of light-induced absorbance changes, fluorescence and photosynthesis in leaves of Hedera canariensis. Photosynth Res 25:173–185

    Article  CAS  PubMed  Google Scholar 

  • Bilger W, Schreiber U, Bock M (1995) Determination of the quantum efficiency of photosystem II and of nonphotochemical quenching of chlorophyll fluorescence in the field. Oecologia 102:425–432

    Article  Google Scholar 

  • Blankenship RE (2014) Molecular mechanisms of photosynthesis. Wiley Blackwell Publishers, Oxford

    Google Scholar 

  • Bradbury M, Baker NR (1981) Analysis of the slow phases of the in vivo chlorophyll fluorescence induction curve: changes in the redox state of photosystem II electron acceptors and fluorescence emission from photosystems I and II. Biochim Biophys Acta 635:542–551

    Article  CAS  PubMed  Google Scholar 

  • Brugnoli E, Björkman O (1992) Chloroplast movements in leaves: influence on chlorophyll fluorescence and measurements of light-induced absorbance changes related to ΔpH and zeaxanthin formation. Photosynth Res 32:23–35

    Google Scholar 

  • Buschmann C, Kocsányi L (1989) Correlation between the induction kinetics of heat dissipation and that of chlorophyll fluorescence and its quenching mechanisms. Photosynth Res 21:129–136

    CAS  PubMed  Google Scholar 

  • Cessna S, Adams WW III, Demmig-Adams B (2010) Exploring photosynthesis and plant stress using inexpensive chlorophyll fluorometers. J Nat Resour Life Sci Educ 39:22–30

    Article  Google Scholar 

  • Chow WS, Anderson JM (1987) Photosynthetic responses of Pisum sativum to an increase in irradiance during growth II. Thylakoid membrane components. Aust J Plant Physiol 14:9–19

    Article  CAS  Google Scholar 

  • Demmig-Adams B, Adams WW III (2006) Photoprotection in an ecological context: the remarkable complexity of thermal energy dissipation. New Phytol 172:11–21

    Article  CAS  PubMed  Google Scholar 

  • Demmig-Adams B, Adams WW III, Barker DH, Logan BA, Bowling DR, Verhoeven AS (1996) Using chlorophyll fluorescence to assess the fraction of absorbed light allocated to thermal dissipation of excess excitation. Physiol Plant 98:253–264

    Google Scholar 

  • Demmig-Adams B, Adams WW III, Mattoo A (eds) (2006) Photoprotection, Photoinhibition, Gene Regulation and Environment. Advances in Photosynthesis and Respiration, Volume 21. Springer, Dordrecht

    Google Scholar 

  • Demmig-Adams B, Cohu CM, Muller O, Adams WW III (2012) Modulation of photosynthetic energy conversion efficiency in nature: from seconds to seasons. Photosynth Res 113:75–88

    Article  CAS  PubMed  Google Scholar 

  • Ehleringer J, Björkman O (1978) Pubescence and leaf spectral characteristics in a desert shrub, Encelia farinosa. Oecologia 36:151–162

    Article  Google Scholar 

  • Ehleringer J, Forseth I (1980) Solar tracking by plants. Science 210:1094–1098

    Article  CAS  PubMed  Google Scholar 

  • Eyletters M, Lannoye R (1992) Photoacoustically monitored energy dissipation and xanthophyll cycle compared in two durum wheat varieties exposed to a high-light treatment. In: Bicanic D (ed) Photoacoustic and Photothermal Phenomena III. Springer Series in Optical Sciences, Volume 69. Springer, Heidelberg, pp 62–64

    Chapter  Google Scholar 

  • Forseth IN, Ehleringer JR (1983) Ecophysiology of 2 solar tracking desert winter annuals 4. Effects of leaf orientation on calculated daily carbon gain and water-use efficiency. Oecologia 58:10–18

    Article  Google Scholar 

  • Franck F, Juneau P, Popovic R (2002) Resolution of the photosystem I and photosystem II contributions to chlorophyll fluorescence of intact leaves at room temperature. Biochim Biophys Acta 1556:239–246

    Article  CAS  PubMed  Google Scholar 

  • Frank HA, Young AJ, Britton G, Cogdell RJ (eds) (1999) The Photochemistry of Carotenoids. Advances in Photosynthesis and Respiration, Volume 8. Springer, Dordrecht

    Google Scholar 

  • Givnish TJ (1988) Adaptations to sun and shade: a whole plant perspective. Aust J Plant Physiol 15:63–92

    Article  Google Scholar 

  • Golbeck JH (ed) (2006) Photosystem I: The Light-driven Plastocyanin: Ferredoxin Oxidoreductase. Advances in Photosynthesis and Respiration, Volume 24. Springer, Dordrecht

    Google Scholar 

  • Gould KS, Kuhn DN, Lee DW, Oberbauer SF (1995) Why leaves are sometimes red. Nature 378:241–242

    Article  CAS  Google Scholar 

  • Govindjee (1995) Sixty-three years since Kautsky: chlorophyll a fluorescence. Aust J Plant Physiol 22:131–160

    Article  CAS  Google Scholar 

  • Govindjee (2004) Chlorophyll fluorescence: a bit of basics and history. In: Papageorgiou GC, Govindjee (eds) Chlorophyll a Fluorescence: A Signature of Photosynthesis. Advances in Photosynthesis and Respiration, Volume 19. Springer, Dordrecht, pp 1–42

    Chapter  Google Scholar 

  • Govindjee, Björn LO (2012) Dissecting oxygenic photosynthesis: the evolution of the “Z”-scheme for thylakoid reactions. In: Itoh S, Mohanty P, Guruprasad KN (eds) Photosynthesis: Overviews on Recent Progress and Future Perspective. I.K. Publishers, New Delhi, pp 1–27

    Google Scholar 

  • Grace SC, Logan BA (1996) Acclimation of foliar antioxidant systems to growth irradiance in three broad-leaved evergreen species. Plant Physiol 112:1631–1640

    CAS  PubMed Central  PubMed  Google Scholar 

  • Greer DH, Thorpe MR (2009) Leaf photosynthetic and solar-tracking responses of mallow, Malva parviflora, to photon flux density. Plant Physiol Biochem 47:946–953

    Article  CAS  PubMed  Google Scholar 

  • Haupt W, Scheuerlein R (1990) Chloroplast movement. Plant Cell Environ 13:595–614

    Article  Google Scholar 

  • Havaux M, Tardy F (1997) Photoacoustically monitored thermal energy dissipation and xanthophyll cycle carotenoids in higher plant leaves. J Photochem Photobiol B 40:68–75

    Article  CAS  PubMed  Google Scholar 

  • Havaux M, Gruszecki WI, Dupont I, Leblanc RM (1991) Increased heat emission and its relationship to the xanthophyll cycle in pea leaves exposed to strong light stress. J Photochem Photobiol B 8:361–370

    Article  CAS  Google Scholar 

  • Hendrickson L, Furbank RT, Chow WS (2004) A simple alternative approach to assessing the fate of absorbed light energy using chlorophyll fluorescence. Photosynth Res 82:73–81

    Article  CAS  PubMed  Google Scholar 

  • Hughes NM, Morley CB, Smith WK (2007) Coordination of anthocyanin decline and photosynthetic maturation in juvenile leaves of three deciduous tree species. New Phytol 175:675–685

    Article  CAS  PubMed  Google Scholar 

  • Itoh S, Sugiura K (2004) Fluorescence of photosystem I. In: Papageorgiou GC, Govindjee (eds) Chlorophyll a Fluorescence: A Signature of Photosynthesis. Advances in Photosynthesis and Respiration, Volume 19. Springer, Dordrecht, pp 231–250

    Google Scholar 

  • Jahns P, Holzwarth AR (2012) The role of the xanthophyll cycle and of lutein in photoprotection of photosystem II. Biochim Biophys Acta 1817:182–193

    Article  CAS  PubMed  Google Scholar 

  • Kalaji HM, Goltsev V, Bosa K, Allakhverdiev S, Strasser RJ, Govindjee (2012) Experimental in vivo measurements of light emission in plants: a perspective dedicated to David Walker. Photosynth Res 114:69–96

    Article  CAS  PubMed  Google Scholar 

  • Kao WY, Forseth IN (1991) The effects of nitrogen, light and water availability on tropic leaf movements in soybean (Glycine max). Plant Cell Environ 14:187–293

    Article  Google Scholar 

  • Kao WY, Forseth IN (1992a) Responses of gas exchange and phototropic leaf orientation in soybean to soil water availability, leaf water potential, air temperature, and photosynthetic photon flux. Environ Exp Bot 32:152–161

    Google Scholar 

  • Kao WY, Forseth IN (1992b) Diurnal leaf movement, chlorophyll fluorescence and carbon assimilation in soybean grown under different nitrogen and water availabilities. Plant Cell Environ 15:703–710

    Article  CAS  Google Scholar 

  • Kasahara M, Kagawa T, Oikawa K, Suetsugu N, Miyao M, Wada M (2002) Chloroplast avoidance movement reduces photodamage in plants. Nature 420:829–832

    Article  CAS  PubMed  Google Scholar 

  • Kitajima M, Butler WL (1975) Quenching of chlorophyll fluorescence and primary photochemistry in chloroplasts by dibromothymoquinone. Biochim Biophys Acta 376:105–115

    Article  CAS  PubMed  Google Scholar 

  • Kornyeyev D, Logan BA, Holaday AS (2010) Excitation pressure as a measure of the sensitivity of photosystem II to photoinactivation. Funct Plant Biol 37:943–951

    Article  CAS  Google Scholar 

  • Kozaki A, Takeba G (1996) Photorespiration protects C3 plants from photooxidation. Nature 384:557–560

    Article  CAS  Google Scholar 

  • Kramer DM, Johnson G, Kiirats O, Edwards GE (2004) New fluorescence parameters for the determination of QA redox state and excitation energy fluxes. Photosynth Res 79(2):209–218

    Article  CAS  PubMed  Google Scholar 

  • Krause GH, Jahns P (2004) Non-photochemical energy dissipation determined by chlorophyll fluorescence quenching: characterization and function. In: Papageorgiou GC, Govindjee (eds) Chlorophyll a Fluorescence: A Signature of Photosynthesis. Advances in Photosynthesis and Respiration, Volume 19. Springer, Dordrecht, pp 463–495

    Google Scholar 

  • Krause GH, Weis E (1991) Chlorophyll fluorescence and photosynthesis: the basics. Annu Rev Plant Physiol Plant Mol Biol 42:313–349

    Article  CAS  Google Scholar 

  • Kyle DJ, Osmond CB, Arntzen CJ (eds) (1987) Photoinhibition. Elsever, Amsterdam

    Google Scholar 

  • Lichtenthaler HK (1992) The Kautsky effect: 60 years of chlorophyll fluorescence induction kinetics. Photosynthetica 27:45–55

    CAS  Google Scholar 

  • Logan BA, Demmig-Adams B, Adams WW III, Grace SC (1998a) Antioxidation and xanthophyll cycle-dependent energy dissipation in Cucurbita pepo and Vinca major acclimated to four growth irradiances in the field. J Exp Bot 49:1869–1879

    Article  CAS  Google Scholar 

  • Logan BA, Grace SC, Adams WW III, Demmig-Adams B (1998b) Seasonal differences in xanthophyll cycle characteristics and antioxidants in Mahonia repens growing in different light environments. Oecologia 116:9–17

    Google Scholar 

  • Logan BA, Demmig-Adams B, Adams WW III, Rosenstiel TN (1999) Effect of nitrogen limitation on foliar antioxidants in relationship to other metabolic characteristics. Planta 209:213–220

    Article  CAS  PubMed  Google Scholar 

  • Logan BA, Adams WW, Demmig-Adams B (2007) Avoiding common pitfalls of chlorophyll fluorescence analysis under field conditions. Funct Plant Biol 34:853–859

    Article  CAS  Google Scholar 

  • Loriaux SD, Avenson TJ, Welles JM, McDermott DK, Eckles RD, Riensche B, Genty B (2013) Closing in on maximum yield of chlorophyll fluorescence using a single multiphase flash of sub-saturating intensity. Plant Cell Environ 36:755–770

    Article  Google Scholar 

  • Ludlow MM, Björkman O (1984) Paraheliotropic leaf movement in Siratro as a protective mechanism against drought-induced damage to primary photosynthetic reactions: damage by excessive light and heat. Planta 161:505–518

    Article  CAS  PubMed  Google Scholar 

  • Malkin S, Canaani O (1994) The use and characteristics of the photoacoustic method in the study of photosynthesis. Annu Rev Plant Physiol Plant Mol Biol 45:493–526

    Article  CAS  Google Scholar 

  • Marias DE “Assessing light capture and photosynthesis in sun and shade Abies blasamea branches using a three-dimensional canopy model.” Undergraduate thesis, Bowdoin College, 2010

    Google Scholar 

  • McMillen GG, McClendon JH (1979) Leaf angle: an adaptive feature of sun and shade leaves. Bot Gaz 140:437–442

    Article  Google Scholar 

  • Mehler AH (1951) Studies on the reaction of illuminated chloroplasts. I. Mechanism of the reduction of oxygen and other Hill reagents. Archiv Biochem Biophys 33:65–77

    Article  CAS  Google Scholar 

  • Melis A (1999) Photosystem II damage and repair cycle in chloroplasts: what modulates the rate of photodamage in vivo? Trends Plant Sci 4:130–135

    Article  PubMed  Google Scholar 

  • Merzlyak MN, Chivkunova OB, Solovchenko AE, Naqvi KR (2008) Light absorption by anthocyanins in juvenile, stressed, and senescing leaves. J Exp Bot 59:3903–3911

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mooney HA, Ehleringer J, Björkman O (1977) The leaf energy balance of leaves of the evergreen desert shrub Atriplex hymenelytra. Oecologia 29:301–310

    Article  Google Scholar 

  • Nilsen ET (2008) Thermonastic leaf movements: a synthesis of research with Rhododendron. Bot J Linn Soc 110:205–233

    Article  Google Scholar 

  • Öquist G, Huner NPA (2003) Photosynthesis of overwintering evergreen plants. Annu Rev Plant Biol 54:329–355

    Google Scholar 

  • Papageorgiou GC, Govindjee (eds) (2004) Chlorophyll a Fluorescence: A Signature of Photosynthesis. Advances in Photosynthesis and Respiration, Volume 19. Springer, Dordrecht

    Google Scholar 

  • Papageorgiou GC, Govindjee (2011) Photosystem II fluorescence: slow changes – scaling from the past. J Photochem Photobiol B Biol 104:258–270

    Article  CAS  Google Scholar 

  • Park YI, Chow WS, Anderson JM (1996) Chloroplast movement in the shade plant Tradescantia albiflora helps protect photosystem II against light stress. Plant Physiol 111:867–875

    CAS  PubMed Central  PubMed  Google Scholar 

  • Pfündel E (1998) Estimating the contribution of photosystem I to total leaf chlorophyll fluorescence. Photosynth Res 56:185–195

    Article  Google Scholar 

  • Rabinowitch EI, Govindjee (1969) Photosynthesis. Wiley, New York, http://www.life.illinois.edu/govindjee/photosynBook.html and at <http://www.life.illinois.edu/govindjee/g/Books.html>

    Google Scholar 

  • Rizhsky L, Liang HJ, Mittler R (2003) The water-water cycle is essential for chloroplast protection in the absence of stress. J Biol Chem 278:38921–38925

    Article  CAS  PubMed  Google Scholar 

  • Rosa LM, Dillenburg LR, Forseth IN (1991) Responses of soybean leaf angle, photosynthesis and stomatal conductance to leaf and soil water potential. Ann Bot 67:51–58

    Google Scholar 

  • Ruban AV, Johnson MP, Duffy CDP (2012) The photoprotective molecular switch in the photosystem II antenna. Biochim Biophys Acta 1817:167–181

    Article  CAS  PubMed  Google Scholar 

  • Schreiber U (2004) Pulse-amplitude-modulation (PAM) fluorometry and saturation pulse method: an overview. In: Papageorgiou GC, Govindjee (eds) Chlorophyll a Fluorescence: A Signature of Photosynthesis. Advances in Photosynthesis and Respiration, Volume 19. Springer, Dordrecht, pp 279–319

    Chapter  Google Scholar 

  • Schreiber U, Neubauer C (1987) The polyphasic rise of chlorophyll fluorescence upon onset of strong continuous illumination: II. Partial control by the photosystem II donor side and possible ways of interpretation. Z Naturforsch 42c:1255–1264

    Google Scholar 

  • Schreiber U, Schliwa U, Bilger W (1986) Continuous recording of photochemical and nonphotochemical chlorophyll fluorescence quenching with a new type of modulation fluorometer. Photosynth Res 10:51–62

    Article  CAS  PubMed  Google Scholar 

  • Schreiber U, Klughammer C, Kolbowski J (2012) Assessment of wavelength-dependent parameters of photosynthetic electron transport with a new type of multi-color PAM chlorophyll fluorometer. Photosynth Res 113:127–144

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Stirbet A, Govindjee (2012) Chlorophyll a fluorescence induction: a personal perspective of the thermal phase, the J-I-P rise. Photosynth Res 113:15–61

    Article  CAS  PubMed  Google Scholar 

  • Strasser RJ, Tsimilli-Michael M, Srivastava A (2004) Analysis of the chlorophyll a fluorescence transient. In: Papageorgiou GC, Govindjee (eds) Chlorophyll a Fluorescence: A Signature of Photosynthesis. Advances in Photosynthesis and Respiration, Volume 19. Springer, Dordrecht, pp 321–362

    Chapter  Google Scholar 

  • Takagi S (2003) Actin based photo-orientation movement of chloroplasts in plant cells. J Exp Biol 206:1963–1969

    Article  CAS  PubMed  Google Scholar 

  • Takahashi S, Murata N (2008) How do environmental stresses accelerate photoinhibition? Trends Plant Sci 13:178–182

    Article  CAS  PubMed  Google Scholar 

  • Tikkanen M, Aro E-M (2012) Thylakoid protein phosphorylation in dynamic regulation of photosystem II in higher plants. Biochim Biophys Acta 1817:232–238

    Article  CAS  PubMed  Google Scholar 

  • Tikkanen M, Suorsa M, Gollan PJ, Aro E-M (2012) Post-genomic insight into thylakoid membrane lateral heterogeneity and redox balance. FEBS Lett 586:2911–2916

    Article  CAS  PubMed  Google Scholar 

  • Valladares F, Pearcy RW (1998) The functional ecology of shoot architecture in sun and shade plants of Heteromeles arbutifolia M. Roem., a Californian chaparral shrub. Oecologia 114:1–10

    Article  Google Scholar 

  • Valladares F, Wright SJ, Lasso E, Kitajima K, Pearcy RW (2000) Plastic phenotypic response to light of 16 congeneric shrubs from a Panamanian rainforest. Ecology 81:1925–1936

    Article  Google Scholar 

  • Verhoeven AS, Demmig-Adams B, Adams WW III (1997) Enhanced employment of the xanthophyll cycle and thermal energy dissipation in spinach exposed to high light and nitrogen stress. Plant Physiol 113:817–824

    CAS  PubMed Central  PubMed  Google Scholar 

  • Walker DA (1981) Secondary fluorescence kinetics of spinach leaves in relation to the onset of photosynthetic carbon assimilation. Planta 153:273–278

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Arora R, Homer HT, Krebs SL (2008) Structural adaptations in overwintering leaves of thermonastic and nonthermonastic Rhododendron species. J Amer Soc Hort Sci 133:768–776

    Google Scholar 

  • Wang X, Peng YH, Singer JW, Fessehale A, Krebs SL, Arora R (2009) Seasonal changes in antioxidant systems and ELIP expression in a thermonastic and non-thermonastic Rhododendron species: a comparison of photoprotective strategies in overwintering plants. Plant Sci 177:607–617

    Article  CAS  Google Scholar 

  • Williams WE, Gorton HL, Witiak SM (2003) Chloroplast movements in the field. Plant Cell Environ 26:2005–2014

    Article  Google Scholar 

  • Williams WP, Allen JF (1987) State 1/State 2 changes in higher plants and algae. Photosynth Res 13:19–45

    Article  CAS  PubMed  Google Scholar 

  • Wingler A, Lea PJ, Quick WP, Leegood RC (2000) Photorespiration: metabolic pathways and their role in stress protection. Phil Trans Roy Soc B 355:1517–1529

    Article  CAS  Google Scholar 

  • Wydrzynski T, Satoh K (eds) (2005) Photosystem II: The Light-driven Water: Plastoquinone Oxidoreductase. Advances in Photosythesis and Respiration, Volume 22. Springer, Dordrecht

    Google Scholar 

Download references

Acknowledgments

Work presented in this chapter was supported by the University of Colorado. We thank Dr. Christopher Cohu and Mr. Jared Stewart for assistance with the generation of the figures and George Papageorgiou and Govindjee for constructive comments on this chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Barry A. Logan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Logan, B.A., Demmig-Adams, B., Adams, W.W., Bilger, W. (2014). Context, Quantification, and Measurement Guide for Non-Photochemical Quenching of Chlorophyll Fluorescence. In: Demmig-Adams, B., Garab, G., Adams III, W., Govindjee, . (eds) Non-Photochemical Quenching and Energy Dissipation in Plants, Algae and Cyanobacteria. Advances in Photosynthesis and Respiration, vol 40. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-9032-1_7

Download citation

Publish with us

Policies and ethics