Skip to main content

Nanomedicine: The Promise and Challenges in Cancer Chemotherapy

  • Chapter
  • First Online:
Nanomaterial

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 811))

Abstract

Cancer is a leading cause of death worldwide. Conventional chemotherapy has drawbacks ranging from limited effectiveness, chemoresistance, and treatment-related side-effects and damages to healthy tissues. The idea of drug targeting started to emerge as early as 1906. As outlined by Danhier et al., the challenge ahead is about how to find proper targets, to develop a drug that exploits the targets, and finally to design the proper delivery system (carrier) for the drug [1]. Cancer nanomedicine is the use of nano-sized entities (10–200 nm) to diagnose, prevent, or treat cancer. These entities can be loaded with chemotherapeutics, nucleic acids, radiosensitizers, diagnostic agents and/or probes. This chapter displays an updated review of several nano-carrier platforms, their common features, and applications, followed by a discussion of the major mechanisms by which nano-carriers are targeted to cancer cells. Finally it discusses barriers that hinder the applications of nanomedicine in cancer chemotherapy, and how the rational design of the nanomedicine may overcome these barriers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ABC transporter:

ATP-binding cassette transporter

ADC:

Antibody drug conjugate

AELs:

Anticancer etherlipids

BBB:

Blood brain barrier

BBTB:

Blood brain tumor barrier

bFGF:

basic fibroblast growth factor

CAFs:

Cancer associated fibroblasts

CMC:

Critical micelle concentration

CSF-1:

Colony stimulating factor 1

DAR:

Drug : antibody ratio

dFdCTP:

difluorodeoxycytidine triphosphate

dFdU:

difluorodeoxyuridine

DOPE:

Dioleoyl phosphoethanolamine

DSPE:

1,2-distearoyl-sn-glycero-3-phosphoethanolamine

DSPG:

1,2-distearoyl-glycero-3-phosphocholine

ECM:

Extracellular matrix

EGFR:

Epithelial growth factor receptor

EPR:

Enhanced permeation and retention

FAR:

Folic acid receptor

GemC18:

4(N)-stearoyl gemcitabine

GEMM:

Genetically engineered mouse model

GLUT:

d-glucose transporter protein

HA:

Hyaluronic acid

hENT:

human equilibrative nucleoside transporter

HER-2:

Human endothelial growth factor receptor-2

Hh:

Hedgehog pathway

HIF1α:

Hypoxia-inducible factor 1α

HPMA:

N-(2-hydroxypropyl) methacrylamide

HYAL:

Hyaluronidase

IFP:

Interstitial fluid pressure

LOX:

Lysyl oxidase

mAb:

monoclonal antibody

MCP-1:

Monocyte chemoattractant protein-1

MDR:

Multidrug resistance

MIP-1 α:

Macrophage inflammatory protein-1α

MMP:

Matrix metalloprotease

MPS:

Mononuclear phagocyte system

nab :

nanoparticles-albumin bound

NO:

Nitric oxide

NSCLC:

Non-small cell lung cancer

oHA:

oligo-fragments of hyaluronic acid

PCL:

Poly-ε-caprolactone

PDAC:

Pancreatic ductal adenocarcinoma

PDGF:

Platelet-derived growth factor

PEG:

Polyethylene glycol

PEI:

Polyethylene imine

PEO:

Polyethylene oxide

P-gp:

P-glycoprotein

PLA:

Poly-lactic acid

PLGA:

Poly (lactic-co-glycolic) acid

PPO:

Polypropylene oxide

PRINT:

Particle replication in non-wetting templates

proAEL:

phosphorylated prodrugs of anticancer etherlipids

PSMA:

Prostate-specific membrane antigen

RGD:

Argentine-glycine-aspartic acid

siRNA:

short-interfering RNA

SLN:

Solid lipid nanoparticles

SMANCS:

Neocarzinostatin-styrene-maleic acid conjugate

Smo:

Smoothened

SPARC:

Specific protein, acidic and rich in cysteine

sPLA2:

secretory phospholipase A2

TAMs:

Tumor-associated macrophages

VEGF:

Vascular endothelial growth factor

VEGFR:

Vascular endothelial growth factor receptor

VIP:

Human vasoactive intestinal peptide

α-SMA:

α-smooth muscle actin

References

  1. Danhier F, Feron O, Preat V (2010) To exploit the tumor microenvironment: passive and active tumor targeting of nanocarriers for anti-cancer drug delivery. J Control Release 148:135–146

    Article  CAS  PubMed  Google Scholar 

  2. Bangham AD, Standish MM, Watkins JC (1965) Diffusion of univalent ions across the lamellae of swollen phospholipids. J Mol Biol 13:238–252

    Article  CAS  PubMed  Google Scholar 

  3. Bangham AD, Horne RW (1964) Negative staining of phospholipids and their structural modification by surface-active agents as observed in the electron microscope. J Mol Biol 8:660–668

    Article  CAS  PubMed  Google Scholar 

  4. Haley B, Frenkel E (2008) Nanoparticles for drug delivery in cancer treatment. Urol Oncol 26:57–64

    Article  CAS  PubMed  Google Scholar 

  5. Rodriguez BL, Li X, Kiguchi K, DiGiovanni J, Unger EC, Cui Z (2012) Control of solid tumor growth in mice using EGF receptor-targeted RNA replicase-based plasmid DNA. Nanomedicine (Lond) 7:475–491

    Article  CAS  Google Scholar 

  6. Alexis F, Pridgen EM, Langer R, Farokhzad OC (2010) Nanoparticle technologies for cancer therapy. Handb Exp Pharmacol 197:55–86

    Google Scholar 

  7. Torchilin VP (2005) Recent advances with liposomes as pharmaceutical carriers. Nat Rev Drug Discov 4:145–160

    Article  CAS  PubMed  Google Scholar 

  8. Arias JL (2013) Liposomes in drug delivery: a patent review (2007 – present). Expert Opin Ther Pat 23:1399–1414

    Article  CAS  PubMed  Google Scholar 

  9. Immordino ML, Dosio F, Cattel L (2006) Stealth liposomes: review of the basic science, rationale, and clinical applications, existing and potential. Int J Nanomedicine 1:297–315

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Klibanov AL, Maruyama K, Torchilin VP, Huang L (1990) Amphipathic polyethyleneglycols effectively prolong the circulation time of liposomes. FEBS Lett 268:235–237

    Article  CAS  PubMed  Google Scholar 

  11. Banerjee R, Tyagi P, Li S, Huang L (2004) Anisamide-targeted stealth liposomes: a potent carrier for targeting doxorubicin to human prostate cancer cells. Int J Cancer 112:693–700

    Article  CAS  PubMed  Google Scholar 

  12. Li SD, Huang L (2006) Targeted delivery of antisense oligodeoxynucleotide and small interference RNA into lung cancer cells. Mol Pharm 3:579–588

    Article  CAS  PubMed  Google Scholar 

  13. Rodriguez BL, Blando JM, Lansakara P, Kiguchi Y, DiGiovanni J, Cui Z (2013) Antitumor activity of tumor-targeted RNA replicase-based plasmid that expresses interleukin-2 in a murine melanoma model. Mol Pharm 10:2404–2415

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Raju A, Muthu MS, Feng SS (2013) Trastuzumab-conjugated vitamin E TPGS liposomes for sustained and targeted delivery of docetaxel. Expert Opin Drug Deliv 10:747–760

    Article  CAS  PubMed  Google Scholar 

  15. Gao J, Sun J, Li H, Liu W, Zhang Y, Li B, Qian W, Wang H, Chen J, Guo Y (2010) Lyophilized HER2-specific PEGylated immunoliposomes for active siRNA gene silencing. Biomaterials 31:2655–2664

    Article  CAS  PubMed  Google Scholar 

  16. Wu XS, Wang N (2001) Synthesis, characterization, biodegradation, and drug delivery application of biodegradable lactic/glycolic acid polymers. Part II: biodegradation. J Biomater Sci Polym Ed 12:21–34

    Article  CAS  PubMed  Google Scholar 

  17. Wu XS (2004) Synthesis, characterization, biodegradation, and drug delivery application of biodegradable lactic/glycolic acid polymers: part III. Drug delivery application. Artif Cells Blood Substit Immobil Biotechnol 32:575–591

    Article  CAS  PubMed  Google Scholar 

  18. Nair LS, Laurencin CT (2007) Biodegradable polymers as biomaterials. Prog Polym Sci 32:762–798

    Article  CAS  Google Scholar 

  19. Gopferich A (1996) Mechanisms of polymer degradation and erosion. Biomaterials 17:103–114

    Article  CAS  PubMed  Google Scholar 

  20. Chandra R, Rustgi R (1998) Biodegradable polymers. Prog Polym Sci 23:1273–1335

    Article  CAS  Google Scholar 

  21. von Burkersroda F, Schedl L, Gopferich A (2002) Why degradable polymers undergo surface erosion or bulk erosion. Biomaterials 23:4221–4231

    Article  Google Scholar 

  22. Gref R, Minamitake Y, Peracchia MT, Trubetskoy V, Torchilin V, Langer R (1994) Biodegradable long-circulating polymeric nanospheres. Science 263:1600–1603

    Article  CAS  PubMed  Google Scholar 

  23. Pradhan R, Poudel BK, Ramasamy T, Choi HG, Yong CS, Kim JO (2013) Docetaxel-loaded polylactic acid-co-glycolic acid nanoparticles: formulation, physicochemical characterization and cytotoxicity studies. J Nanosci Nanotechnol 13:5948–5956

    Article  CAS  PubMed  Google Scholar 

  24. Jagani HV, Josyula VR, Palanimuthu VR, Hariharapura RC, Gang SS (2013) Improvement of therapeutic efficacy of PLGA nanoformulation of siRNA targeting anti-apoptotic Bcl-2 through chitosan coating. Eur J Pharm Sci 48:611–618

    Article  CAS  PubMed  Google Scholar 

  25. Pinto RC, Neufeld RJ, Ribeiro AJ, Veiga F (2006) Nanoencapsulation I. Methods for preparation of drug-loaded polymeric nanoparticles. Nanomedicine 2:8–21

    Article  CAS  Google Scholar 

  26. Beck-Broichsitter M, Rytting E, Lebhardt T, Wang X, Kissel T (2010) Preparation of nanoparticles by solvent displacement for drug delivery: a shift in the “ouzo region” upon drug loading. Eur J Pharm Sci 41:244–253

    Article  CAS  PubMed  Google Scholar 

  27. Jensen DM, Cun D, Maltesen MJ, Frokjaer S, Nielsen HM, Foged C (2010) Spray drying of siRNA-containing PLGA nanoparticles intended for inhalation. J Control Release 142:138–145

    Article  PubMed  CAS  Google Scholar 

  28. Byrappa K, Ohara S, Adschiri T (2008) Nanoparticles synthesis using supercritical fluid technology – towards biomedical applications. Adv Drug Deliv Rev 60:299–327

    Article  CAS  PubMed  Google Scholar 

  29. Perry JL, Herlihy KP, Napier ME, Desimone JM (2011) PRINT: a novel platform toward shape and size specific nanoparticle theranostics. Acc Chem Res 44:990–998

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Kam KR, Desai TA (2013) Nano- and microfabrication for overcoming drug delivery challenges. J Mater Chem B Mater Biol Med 1:1878–1884

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. Yoo JW, Doshi N, Mitragotri S (2011) Adaptive micro and nanoparticles: temporal control over carrier properties to facilitate drug delivery. Adv Drug Deliv Rev 63:1247–1256

    Article  CAS  PubMed  Google Scholar 

  32. Saxena V, Hussain MD (2012) Poloxamer 407/TPGS mixed micelles for delivery of gambogic acid to breast and multidrug-resistant cancer. Int J Nanomedicine 7:713–721

    PubMed Central  CAS  PubMed  Google Scholar 

  33. Kim SC, Kim DW, Shim YH, Bang JS, Oh HS, Wan KS, Seo MH (2001) In vivo evaluation of polymeric micellar paclitaxel formulation: toxicity and efficacy. J Control Release 72:191–202

    Article  CAS  PubMed  Google Scholar 

  34. Ostacolo L, Marra M, Ungaro F, Zappavigna S, Maglio G, Quaglia F, Abbruzzese A, Caraglia M (2010) In vitro anticancer activity of docetaxel-loaded micelles based on poly(ethylene oxide)-poly(epsilon-caprolactone) block copolymers: do nanocarrier properties have a role? J Control Release 148:255–263

    Article  CAS  PubMed  Google Scholar 

  35. Ebrahim Attia AB, Ong ZY, Hedrick JL, Lee PP, Ee PLR, Hammond PT, Yang YY (2011) Mixed micelles self-assembled from block copolymers for drug delivery. Curr Opin Colloid Interface Sci 16:182–194

    Article  CAS  Google Scholar 

  36. Chen L, Sha X, Jiang X, Chen Y, Ren Q, Fang X (2013) Pluronic P105/F127 mixed micelles for the delivery of docetaxel against Taxol-resistant non-small cell lung cancer: optimization and in vitro, in vivo evaluation. Int J Nanomedicine 8:73–84

    PubMed Central  PubMed  Google Scholar 

  37. Mehnert W, Mader K (2001) Solid lipid nanoparticles: production, characterization and applications. Adv Drug Deliv Rev 47:165–196

    Article  CAS  PubMed  Google Scholar 

  38. Xu Z, Chen L, Gu W, Gao Y, Lin L, Zhang Z, Xi Y, Li Y (2009) The performance of docetaxel-loaded solid lipid nanoparticles targeted to hepatocellular carcinoma. Biomaterials 30:226–232

    Article  PubMed  CAS  Google Scholar 

  39. Sloat BR, Sandoval MA, Li D, Chung WG, Lansakara P, Proteau PJ, Kiguchi K, DiGiovanni J, Cui Z (2011) In vitro and in vivo anti-tumor activities of a gemcitabine derivative carried by nanoparticles. Int J Pharm 409:278–288

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  40. Mosallaei N, Jaafari MR, Hanafi-Bojd MY, Golmohammadzadeh S, Malaekeh-Nikouei B (2013) Docetaxel-loaded solid lipid nanoparticles: preparation, characterization, in vitro, and in vivo evaluations. J Pharm Sci 102:1994–2004

    Article  CAS  PubMed  Google Scholar 

  41. Parveen R, Ahmad FJ, Iqbal Z, Samim M, Ahmad S (2013) Solid lipid nanoparticles of anticancer drug andrographolide: formulation, in vitro and in vivo studies. Drug Dev Ind Pharm. doi:10.3109/03639045.2013.810636

  42. Muller RH, Mader K, Gohla S (2000) Solid lipid nanoparticles (SLN) for controlled drug delivery – a review of the state of the art. Eur J Pharm Biopharm 50:161–177

    Article  CAS  PubMed  Google Scholar 

  43. Wong HL, Bendayan R, Rauth AM, Li Y, Wu XY (2007) Chemotherapy with anticancer drugs encapsulated in solid lipid nanoparticles. Adv Drug Deliv Rev 59:491–504

    Article  CAS  PubMed  Google Scholar 

  44. Feng L, Mumper RJ (2013) A critical review of lipid-based nanoparticles for taxane delivery. Cancer Lett 334:157–175

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  45. Sanchis J, Canal F, Lucas R, Vicent MJ (2010) Polymer-drug conjugates for novel molecular targets. Nanomedicine (Lond) 5:915–935

    Article  CAS  Google Scholar 

  46. Pasut G, Veronese FM (2009) PEG conjugates in clinical development or use as anticancer agents: an overview. Adv Drug Deliv Rev 61:1177–1188

    Article  CAS  PubMed  Google Scholar 

  47. Duncan R (2009) Development of HPMA copolymer-anticancer conjugates: clinical experience and lessons learnt. Adv Drug Deliv Rev 61:1131–1148

    Article  CAS  PubMed  Google Scholar 

  48. Li C, Wallace S (2008) Polymer-drug conjugates: recent development in clinical oncology. Adv Drug Deliv Rev 60:886–898

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  49. Ringsdorf H (1975) Structure and properties of pharmacologically active polymers. J Polym Sci Symp 51:135–153

    Article  CAS  Google Scholar 

  50. Vasey PA, Kaye SB, Morrison R, Twelves C, Wilson P, Duncan R, Thomson AH, Murray LS, Hilditch TE, Murray T, Burtles S, Fraier D, Frigerio E, Cassidy J (1999) Phase I clinical and pharmacokinetic study of PK1 [N-(2-hydroxypropyl)methacrylamide copolymer doxorubicin]: first member of a new class of chemotherapeutic agents-drug-polymer conjugates. Cancer Research Campaign Phase I/II Committee. Clin Cancer Res 5:83–94

    CAS  PubMed  Google Scholar 

  51. Lammers T, Subr V, Ulbrich K, Peschke P, Huber PE, Hennink WE, Storm G (2009) Simultaneous delivery of doxorubicin and gemcitabine to tumors in vivo using prototypic polymeric drug carriers. Biomaterials 30:3466–3475

    Article  CAS  PubMed  Google Scholar 

  52. Tong R, Yala L, Fan TM, Cheng J (2010) The formulation of aptamer-coated paclitaxel-polylactide nanoconjugates and their targeting to cancer cells. Biomaterials 31:3043–3053

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  53. Jeyapalan S, Boxerman J, Donahue S, Goldman M, Kinsella T, Dipetrillo T, Evans D, Elinzano H, Constantinou M, Stopa E, Puthawala Y, Cielo D, Santaniello A, Oyelese A, Mantripragada K, Rosati K, Isdale D, Safran H (2013) Paclitaxel poliglumex, temozolomide, and radiation for newly diagnosed high-grade glioma: a Brown University Oncology Group Study. Am J Clin Oncol. doi:10.1097/COC.0b013e31827de92b

  54. Stirland DL, Nichols JW, Miura S, Bae YH (2013) Mind the gap: a survey of how cancer drug carriers are susceptible to the gap between research and practice. J Control Release 172(3):1045–1064

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  55. O’Brien ME, Socinski MA, Popovich AY, Bondarenko IN, Tomova A, Bilynsky BT, Hotko YS, Ganul VL, Kostinsky IY, Eisenfeld AJ, Sandalic L, Oldham FB, Bandstra B, Sandler AB, Singer JW (2008) Randomized phase III trial comparing single-agent paclitaxel Poliglumex (CT-2103, PPX) with single-agent gemcitabine or vinorelbine for the treatment of PS 2 patients with chemotherapy-naive advanced non-small cell lung cancer. J Thorac Oncol 3:728–734

    Article  PubMed  Google Scholar 

  56. Paz-Ares L, Ross H, O’Brien M, Riviere A, Gatzemeier U, Von PJ, Kaukel E, Freitag L, Digel W, Bischoff H, Garcia-Campelo R, Iannotti N, Reiterer P, Bover I, Prendiville J, Eisenfeld AJ, Oldham FB, Bandstra B, Singer JW, Bonomi P (2008) Phase III trial comparing paclitaxel poliglumex vs docetaxel in the second-line treatment of non-small-cell lung cancer. Br J Cancer 98:1608–1613

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  57. Sievers EL, Senter PD (2013) Antibody-drug conjugates in cancer therapy. Annu Rev Med 64:15–29

    Article  CAS  PubMed  Google Scholar 

  58. Ricart AD, Tolcher AW (2007) Technology insight: cytotoxic drug immunoconjugates for cancer therapy. Nat Clin Pract Oncol 4:245–255

    Article  CAS  PubMed  Google Scholar 

  59. Wu AM, Senter PD (2005) Arming antibodies: prospects and challenges for immunoconjugates. Nat Biotechnol 23:1137–1146

    Article  CAS  PubMed  Google Scholar 

  60. Junutula JR, Raab H, Clark S, Bhakta S, Leipold DD, Weir S, Chen Y, Simpson M, Tsai SP, Dennis MS, Lu Y, Meng YG, Ng C, Yang J, Lee CC, Duenas E, Gorrell J, Katta V, Kim A, McDorman K, Flagella K, Venook R, Ross S, Spencer SD, Lee WW, Lowman HB, Vandlen R, Sliwkowski MX, Scheller RH, Polakis P, Mallet W (2008) Site-specific conjugation of a cytotoxic drug to an antibody improves the therapeutic index. Nat Biotechnol 26:925–932

    Article  CAS  PubMed  Google Scholar 

  61. Mosure KW, Henderson AJ, Klunk LJ, Knipe JO (1997) Disposition of conjugate-bound and free doxorubicin in tumor-bearing mice following administration of a BR96-doxorubicin immunoconjugate (BMS 182248). Cancer Chemother Pharmacol 40:251–258

    Article  CAS  PubMed  Google Scholar 

  62. Gerber HP, Koehn FE, Abraham RT (2013) The antibody-drug conjugate: an enabling modality for natural product-based cancer therapeutics. Nat Prod Rep 30:625–639

    Article  CAS  PubMed  Google Scholar 

  63. Zhao RY, Wilhelm SD, Audette C, Jones G, Leece BA, Lazar AC, Goldmacher VS, Singh R, Kovtun Y, Widdison WC, Lambert JM, Chari RV (2011) Synthesis and evaluation of hydrophilic linkers for antibody-maytansinoid conjugates. J Med Chem 54:3606–3623

    Article  CAS  PubMed  Google Scholar 

  64. Kovtun YV, Audette CA, Mayo MF, Jones GE, Doherty H, Maloney EK, Erickson HK, Sun X, Wilhelm S, Ab O, Lai KC, Widdison WC, Kellogg B, Johnson H, Pinkas J, Lutz RJ, Singh R, Goldmacher VS, Chari RV (2010) Antibody-maytansinoid conjugates designed to bypass multidrug resistance. Cancer Res 70:2528–2537

    Article  CAS  PubMed  Google Scholar 

  65. Carter PJ, Senter PD (2008) Antibody-drug conjugates for cancer therapy. Cancer J 14:154–169

    Article  CAS  PubMed  Google Scholar 

  66. Chan SY, Gordon AN, Coleman RE, Hall JB, Berger MS, Sherman ML, Eten CB, Finkler NJ (2003) A phase 2 study of the cytotoxic immunoconjugate CMB-401 (hCTM01-calicheamicin) in patients with platinum-sensitive recurrent epithelial ovarian carcinoma. Cancer Immunol Immunother 52:243–248

    CAS  PubMed  Google Scholar 

  67. Lambert JM (2005) Drug-conjugated monoclonal antibodies for the treatment of cancer. Curr Opin Pharmacol 5:543–549

    Article  CAS  PubMed  Google Scholar 

  68. Kharfan-Dabaja MA, Hamadani M, Reljic T, Pyngolil R, Komrokji RS, Lancet JE, Fernandez HF, Djulbegovic B, Kumar A (2013) Gemtuzumab ozogamicin for treatment of newly diagnosed acute myeloid leukaemia: a systematic review and meta-analysis. Br J Haematol 163:315–325

    Article  CAS  PubMed  Google Scholar 

  69. Newland AM, Li JX, Wasco LE, Aziz MT, Lowe DK (2013) Brentuximab vedotin: a CD30-directed antibody-cytotoxic drug conjugate. Pharmacotherapy 33:93–104

    Article  CAS  PubMed  Google Scholar 

  70. Wong BS, Yoong SL, Jagusiak A, Panczyk T, Ho HK, Ang WH, Pastorin G (2013) Carbon nanotubes for delivery of small molecule drugs. Adv Drug Deliv Rev 65(15):1964–2015

    Article  CAS  PubMed  Google Scholar 

  71. Liang XJ, Meng H, Wang Y, He H, Meng J, Lu J, Wang PC, Zhao Y, Gao X, Sun B, Chen C, Xing G, Shen D, Gottesman MM, Wu Y, Yin JJ, Jia L (2010) Metallofullerene nanoparticles circumvent tumor resistance to cisplatin by reactivating endocytosis. Proc Natl Acad Sci U S A 107:7449–7454

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  72. Dreaden EC, Austin LA, Mackey MA, El-Sayed MA (2012) Size matters: gold nanoparticles in targeted cancer drug delivery. Ther Deliv 3:457–478

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  73. Shen J, Song G, An M, Li X, Wu N, Ruan K, Hu J, Hu R (2013) The use of hollow mesoporous silica nanospheres to encapsulate bortezomib and improve efficacy for non-small cell lung cancer therapy. Biomaterials 35(1):316–326

    Article  PubMed  CAS  Google Scholar 

  74. Li X, Li H, Yi W, Chen J, Liang B (2013) Acid-triggered core cross-linked nanomicelles for targeted drug delivery and magnetic resonance imaging in liver cancer cells. Int J Nanomedicine 8:3019–3031

    PubMed Central  PubMed  Google Scholar 

  75. Diaz A, Saxena V, Gonzalez J, David A, Casanas B, Carpenter C, Batteas JD, Colon JL, Clearfield A, Hussain MD (2012) Zirconium phosphate nano-platelets: a novel platform for drug delivery in cancer therapy. Chem Commun (Camb) 48:1754–1756

    Article  CAS  Google Scholar 

  76. Fang M, Yuan JP, Peng CW, Pang DW, Li Y (2013) Quantum dots-based in situ molecular imaging of dynamic changes of collagen IV during cancer invasion. Biomaterials 34:8708–8717

    Article  CAS  PubMed  Google Scholar 

  77. Gautier J, Allard-Vannier E, Munnier E, Souce M, Chourpa I (2013) Recent advances in theranostic nanocarriers of doxorubicin based on iron oxide and gold nanoparticles. J Control Release 169:48–61

    Article  CAS  PubMed  Google Scholar 

  78. Chen Y, Chen H, Shi J (2013) In vivo bio-safety evaluations and diagnostic/therapeutic applications of chemically designed mesoporous silica nanoparticles. Adv Mater 25:3144–3176

    Article  CAS  PubMed  Google Scholar 

  79. Probst CE, Zrazhevskiy P, Bagalkot V, Gao X (2013) Quantum dots as a platform for nanoparticle drug delivery vehicle design. Adv Drug Deliv Rev 65:703–718

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  80. Yang F, Jin C, Subedi S, Lee CL, Wang Q, Jiang Y, Li J, Di Y, Fu D (2012) Emerging inorganic nanomaterials for pancreatic cancer diagnosis and treatment. Cancer Treat Rev 38:566–579

    Article  CAS  PubMed  Google Scholar 

  81. Mukerjee A, Ranjan AP, Vishwanatha JK (2012) Combinatorial nanoparticles for cancer diagnosis and therapy. Curr Med Chem 19:3714–3721

    Article  CAS  PubMed  Google Scholar 

  82. Matsumura Y, Maeda H (1986) A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs. Cancer Res 46:6387–6392

    CAS  PubMed  Google Scholar 

  83. Torchilin V (2011) Tumor delivery of macromolecular drugs based on the EPR effect. Adv Drug Deliv Rev 63:131–135

    Article  CAS  PubMed  Google Scholar 

  84. Maeda H (2010) Tumor-selective delivery of macromolecular drugs via the EPR effect: background and future prospects. Bioconjug Chem 21:797–802

    Article  CAS  PubMed  Google Scholar 

  85. Wu J, Akaike T, Maeda H (1998) Modulation of enhanced vascular permeability in tumors by a bradykinin antagonist, a cyclooxygenase inhibitor, and a nitric oxide scavenger. Cancer Res 58:159–165

    CAS  PubMed  Google Scholar 

  86. Brannon-Peppas L, Blanchette JO (2004) Nanoparticle and targeted systems for cancer therapy. Adv Drug Deliv Rev 56:1649–1659

    Article  CAS  PubMed  Google Scholar 

  87. Iyer AK, Khaled G, Fang J, Maeda H (2006) Exploiting the enhanced permeability and retention effect for tumor targeting. Drug Discov Today 11:812–818

    Article  CAS  PubMed  Google Scholar 

  88. Alexis F, Rhee JW, Richie JP, Radovic-Moreno AF, Langer R, Farokhzad OC (2008) New frontiers in nanotechnology for cancer treatment. Urol Oncol 26:74–85

    Article  CAS  PubMed  Google Scholar 

  89. Maeda H, Bharate GY, Daruwalla J (2009) Polymeric drugs for efficient tumor-targeted drug delivery based on EPR-effect. Eur J Pharm Biopharm 71:409–419

    Article  CAS  PubMed  Google Scholar 

  90. Hobson B, Denekamp J (1984) Endothelial proliferation in tumours and normal tissues: continuous labelling studies. Br J Cancer 49:405–413

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  91. Fang J, Nakamura H, Maeda H (2011) The EPR effect: unique features of tumor blood vessels for drug delivery, factors involved, and limitations and augmentation of the effect. Adv Drug Deliv Rev 63:136–151

    Article  CAS  PubMed  Google Scholar 

  92. Maeda H, Sawa T, Konno T (2001) Mechanism of tumor-targeted delivery of macromolecular drugs, including the EPR effect in solid tumor and clinical overview of the prototype polymeric drug SMANCS. J Control Release 74:47–61

    Article  CAS  PubMed  Google Scholar 

  93. Maeda H (1991) SMANCS and polymer-conjugated macromolecular drugs: advantages in cancer chemotherapy. Adv Drug Deliv Rev 6:181–202

    Article  CAS  Google Scholar 

  94. Prabhakar U, Maeda H, Jain RK, Sevick-Muraca EM, Zamboni W, Farokhzad OC, Barry ST, Gabizon A, Grodzinski P, Blakey DC (2013) Challenges and key considerations of the enhanced permeability and retention effect for nanomedicine drug delivery in oncology. Cancer Res 73:2412–2417

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  95. Bae YH, Park K (2011) Targeted drug delivery to tumors: myths, reality and possibility. J Control Release 153:198–205

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  96. Bae YH (2009) Drug targeting and tumor heterogeneity. J Control Release 133:2–3

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  97. Denison TA, Bae YH (2012) Tumor heterogeneity and its implication for drug delivery. J Control Release 164:187–191

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  98. Nichols JW, Bae YH (2012) Odyssey of a cancer nanoparticle: from injection site to site of action. Nano Today 7:606–618

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  99. Noguchi A, Takahashi T, Yamaguchi T, Kitamura K, Noguchi A, Tsurumi H, Takashina K, Maeda H (1992) Enhanced tumor localization of monoclonal antibody by treatment with kininase II inhibitor and angiotensin II. Jpn J Cancer Res 83:240–243

    Article  CAS  PubMed  Google Scholar 

  100. Seki T, Fang J, Maeda H (2009) Enhanced delivery of macromolecular antitumor drugs to tumors by nitroglycerin application. Cancer Sci 100:2426–2430

    Article  CAS  PubMed  Google Scholar 

  101. Jain RK (2005) Normalization of tumor vasculature: an emerging concept in antiangiogenic therapy. Science 307:58–62

    Article  CAS  PubMed  Google Scholar 

  102. Yuan F, Chen Y, Dellian M, Safabakhsh N, Ferrara N, Jain RK (1996) Time-dependent vascular regression and permeability changes in established human tumor xenografts induced by an anti-vascular endothelial growth factor/vascular permeability factor antibody. Proc Natl Acad Sci U S A 93:14765–14770

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  103. Goel S, Duda DG, Xu L, Munn LL, Boucher Y, Fukumura D, Jain RK (2011) Normalization of the vasculature for treatment of cancer and other diseases. Physiol Rev 91:1071–1121

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  104. Jain RK, Stylianopoulos T (2010) Delivering nanomedicine to solid tumors. Nat Rev Clin Oncol 7:653–664

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  105. Carmeliet P, Jain RK (2011) Principles and mechanisms of vessel normalization for cancer and other angiogenic diseases. Nat Rev Drug Discov 10:417–427

    Article  CAS  PubMed  Google Scholar 

  106. Goel S, Wong AH, Jain RK (2012) Vascular normalization as a therapeutic strategy for malignant and nonmalignant disease. Cold Spring Harb Perspect Med 2:a006486

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  107. Chauhan VP, Stylianopoulos T, Martin JD, Popovic Z, Chen O, Kamoun WS, Bawendi MG, Fukumura D, Jain RK (2012) Normalization of tumour blood vessels improves the delivery of nanomedicines in a size-dependent manner. Nat Nanotechnol 7:383–388

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  108. Huang C, Zhang Y, Yuan H, Gao H, Zhang S (2013) Role of nanoparticle geometry in endocytosis: laying down to stand up. Nano Lett 13:4546–4550

    Article  CAS  PubMed  Google Scholar 

  109. Byrne JD, Betancourt T, Brannon-Peppas L (2008) Active targeting schemes for nanoparticle systems in cancer therapeutics. Adv Drug Deliv Rev 60:1615–1626

    Article  CAS  PubMed  Google Scholar 

  110. Dagar A, Kuzmis A, Rubinstein I, Sekosan M, Onyuksel H (2012) VIP-targeted cytotoxic nanomedicine for breast cancer. Drug Deliv Transl Res 2:454–462

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  111. Cirstoiu-Hapca A, Buchegger F, Bossy L, Kosinski M, Gurny R, Delie F (2009) Nanomedicines for active targeting: physico-chemical characterization of paclitaxel-loaded anti-HER2 immunonanoparticles and in vitro functional studies on target cells. Eur J Pharm Sci 38:230–237

    Article  CAS  PubMed  Google Scholar 

  112. Nobs L, Buchegger F, Gurny R, Allemann E (2006) Biodegradable nanoparticles for direct or two-step tumor immunotargeting. Bioconjug Chem 17:139–145

    Article  CAS  PubMed  Google Scholar 

  113. Cirstoiu-Hapca A, Bossy-Nobs L, Buchegger F, Gurny R, Delie F (2007) Differential tumor cell targeting of anti-HER2 (Herceptin) and anti-CD20 (Mabthera) coupled nanoparticles. Int J Pharm 331:190–196

    Article  CAS  PubMed  Google Scholar 

  114. Sandoval MA, Sloat BR, Lansakara P, Kumar A, Rodriguez BL, Kiguchi K, DiGiovanni J, Cui Z (2012) EGFR-targeted stearoyl gemcitabine nanoparticles show enhanced anti-tumor activity. J Control Release 157:287–296

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  115. Yhee JY, Lee SJ, Lee S, Song S, Min HS, Kang SW, Son S, Jeong SY, Kim SH, Kim K (2013) Tumor-targeting transferrin nanoparticles for systemic polymerized siRNA delivery in tumor-bearing mice. Bioconjug Chem 24(11):1850–1860

    Article  CAS  PubMed  Google Scholar 

  116. Stephenson SM, Low PS, Lee RJ (2004) Folate receptor-mediated targeting of liposomal drugs to cancer cells. Methods Enzymol 387:33–50

    Article  CAS  PubMed  Google Scholar 

  117. Lu Y, Low PS (2002) Folate-mediated delivery of macromolecular anticancer therapeutic agents. Adv Drug Deliv Rev 54:675–693

    Article  CAS  PubMed  Google Scholar 

  118. Saxena V, Naguib Y, Hussain MD (2012) Folate receptor targeted 17-allylamino-17-demethoxygeldanamycin (17-AAG) loaded polymeric nanoparticles for breast cancer. Colloids Surf B Biointerfaces 94:274–280

    Article  CAS  PubMed  Google Scholar 

  119. Hrkach J, Von Hoff D, Mukkaram AM, Andrianova E, Auer J, Campbell T, De WD, Figa M, Figueiredo M, Horhota A, Low S, McDonnell K, Peeke E, Retnarajan B, Sabnis A, Schnipper E, Song JJ, Song YH, Summa J, Tompsett D, Troiano G, Van Geen HT, Wright J, LoRusso P, Kantoff PW, Bander NH, Sweeney C, Farokhzad OC, Langer R, Zale S (2012) Preclinical development and clinical translation of a PSMA-targeted docetaxel nanoparticle with a differentiated pharmacological profile. Sci Transl Med 4:128ra39

    Article  PubMed  Google Scholar 

  120. Elsabahy M, Wooley KL (2012) Design of polymeric nanoparticles for biomedical delivery applications. Chem Soc Rev 41:2545–2561

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  121. Huynh NT, Roger E, Lautram N, Benoit JP, Passirani C (2010) The rise and rise of stealth nanocarriers for cancer therapy: passive versus active targeting. Nanomedicine (Lond) 5:1415–1433

    Article  CAS  Google Scholar 

  122. Bertrand N, Leroux JC (2012) The journey of a drug-carrier in the body: an anatomo-physiological perspective. J Control Release 161:152–163

    Article  CAS  PubMed  Google Scholar 

  123. Owens DE III, Peppas NA (2006) Opsonization, biodistribution, and pharmacokinetics of polymeric nanoparticles. Int J Pharm 307:93–102

    Article  CAS  PubMed  Google Scholar 

  124. Ernsting MJ, Murakami M, Roy A, Li SD (2013) Factors controlling the pharmacokinetics, biodistribution and intratumoral penetration of nanoparticles. J Control Release 172(3):782–794

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  125. Betancourt T, Byrne JD, Sunaryo N, Crowder SW, Kadapakkam M, Patel S, Casciato S, Brannon-Peppas L (2009) PEGylation strategies for active targeting of PLA/PLGA nanoparticles. J Biomed Mater Res A 91:263–276

    Article  PubMed  CAS  Google Scholar 

  126. Perry JL, Reuter KG, Kai MP, Herlihy KP, Jones SW, Luft JC, Napier M, Bear JE, Desimone JM (2012) PEGylated PRINT nanoparticles: the impact of PEG density on protein binding, macrophage association, biodistribution, and pharmacokinetics. Nano Lett 12:5304–5310

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  127. Abu Lila AS, Kiwada H, Ishida T (2013) The accelerated blood clearance (ABC) phenomenon: clinical challenge and approaches to manage. J Control Release 172:38–47

    Article  CAS  PubMed  Google Scholar 

  128. Alaaeldin E, Abu Lila AS, Moriyoshi N, Sarhan HA, Ishida T, Khaled KA, Kiwada H (2013) The co-delivery of Oxaliplatin abrogates the immunogenic response to PEGylated siRNA-lipoplex. Pharm Res 30:2344–2354

    Article  CAS  PubMed  Google Scholar 

  129. Yoo JW, Irvine DJ, Discher DE, Mitragotri S (2011) Bio-inspired, bioengineered and biomimetic drug delivery carriers. Nat Rev Drug Discov 10:521–535

    Article  CAS  PubMed  Google Scholar 

  130. Cai S, Vijayan K, Cheng D, Lima EM, Discher DE (2007) Micelles of different morphologies–advantages of worm-like filomicelles of PEO-PCL in paclitaxel delivery. Pharm Res 24:2099–2109

    Article  CAS  PubMed  Google Scholar 

  131. Geng Y, Dalhaimer P, Cai S, Tsai R, Tewari M, Minko T, Discher DE (2007) Shape effects of filaments versus spherical particles in flow and drug delivery. Nat Nanotechnol 2:249–255

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  132. Parodi A, Quattrocchi N, van de Ven AL, Chiappini C, Evangelopoulos M, Martinez JO, Brown BS, Khaled SZ, Yazdi IK, Enzo MV, Isenhart L, Ferrari M, Tasciotti E (2013) Synthetic nanoparticles functionalized with biomimetic leukocyte membranes possess cell-like functions. Nat Nanotechnol 8:61–68

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  133. Jiang X, Xin H, Ren Q, Gu J, Zhu L, Du F, Feng C, Xie Y, Sha X, Fang X (2013) Nanoparticles of 2-deoxy-d-glucose functionalized poly(ethylene glycol)-co-poly(trimethylene carbonate) for dual-targeted drug delivery in glioma treatment. Biomaterials 35(1):518–529

    Article  PubMed  CAS  Google Scholar 

  134. Miura Y, Takenaka T, Toh K, Wu S, Nishihara H, Kano MR, Ino Y, Nomoto T, Matsumoto Y, Koyama H, Cabral H, Nishiyama N, Kataoka K (2013) Cyclic RGD-linked polymeric micelles for targeted delivery of platinum anticancer drugs to glioblastoma through the blood-brain tumor barrier. ACS Nano 7:8583–8592

    Article  CAS  PubMed  Google Scholar 

  135. Gao H, Yang Z, Zhang S, Cao S, Pang Z, Yang X, Jiang X (2013) Glioma-homing peptide with a cell-penetrating effect for targeting delivery with enhanced glioma localization, penetration and suppression of glioma growth. J Control Release 172(3):921–928

    Article  CAS  PubMed  Google Scholar 

  136. Rasheed ZA, Matsui W, Maitra A (2012) Pathology of pancreatic stroma in PDAC. In: Grippo PJ, Munshi HG (eds) Pancreatic cancer and tumor microenvironment. Transworld Research Network, Trivandrum (India)

    Google Scholar 

  137. Liss AS, Thayer SP (2012) Therapeutic targeting of pancreatic stroma. In: Grippo P, Munshi HG (eds) Pancreatic cancer and tumor microenvironment. Transworld Research Network, Trivandrum (India)

    Google Scholar 

  138. Kirtane AR, Kalscheuer SM, Panyam J (2013) Exploiting nanotechnology to overcome tumor drug resistance: challenges and opportunities. Adv Drug Deliv Rev 65(13-14):1731–1747

    Article  CAS  PubMed  Google Scholar 

  139. Heinemann V, Reni M, Ychou M, Richel DJ, Macarulla T, Ducreux M (2013) Tumour-stroma interactions in pancreatic ductal adenocarcinoma: rationale and current evidence for new therapeutic strategies. Cancer Treat Rev 40(1):118–128

    Article  PubMed  Google Scholar 

  140. Cox TR, Erler JT (2011) Remodeling and homeostasis of the extracellular matrix: implications for fibrotic diseases and cancer. Dis Model Mech 4:165–178

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  141. Lu P, Weaver VM, Werb Z (2012) The extracellular matrix: a dynamic niche in cancer progression. J Cell Biol 196:395–406

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  142. Levental KR, Yu H, Kass L, Lakins JN, Egeblad M, Erler JT, Fong SF, Csiszar K, Giaccia A, Weninger W, Yamauchi M, Gasser DL, Weaver VM (2009) Matrix crosslinking forces tumor progression by enhancing integrin signaling. Cell 139:891–906

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  143. Kessenbrock K, Plaks V, Werb Z (2010) Matrix metalloproteinases: regulators of the tumor microenvironment. Cell 141:52–67

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  144. Erler JT, Weaver VM (2009) Three-dimensional context regulation of metastasis. Clin Exp Metastasis 26:35–49

    Article  PubMed Central  PubMed  Google Scholar 

  145. Tredan O, Galmarini CM, Patel K, Tannock IF (2007) Drug resistance and the solid tumor microenvironment. J Natl Cancer Inst 99:1441–1454

    Article  CAS  PubMed  Google Scholar 

  146. Minchinton AI, Tannock IF (2006) Drug penetration in solid tumours. Nat Rev Cancer 6:583–592

    Article  CAS  PubMed  Google Scholar 

  147. Sermeus A, Rebucci M, Fransolet M, Flamant L, Desmet D, Delaive E, Arnould T, Michiels C (2013) Differential effect of hypoxia on etoposide-induced DNA damage response and p53 regulation in different cell types. J Cell Physiol 228:2365–2376

    Article  CAS  PubMed  Google Scholar 

  148. Erler JT, Bennewith KL, Nicolau M, Dornhofer N, Kong C, Le QT, Chi JT, Jeffrey SS, Giaccia AJ (2006) Lysyl oxidase is essential for hypoxia-induced metastasis. Nature 440:1222–1226

    Article  CAS  PubMed  Google Scholar 

  149. Brown JM, Wilson WR (2004) Exploiting tumour hypoxia in cancer treatment. Nat Rev Cancer 4:437–447

    Article  CAS  PubMed  Google Scholar 

  150. Comerford KM, Wallace TJ, Karhausen J, Louis NA, Montalto MC, Colgan SP (2002) Hypoxia-inducible factor-1-dependent regulation of the multidrug resistance (MDR1) gene. Cancer Res 62:3387–3394

    CAS  PubMed  Google Scholar 

  151. Gerweck LE, Vijayappa S, Kozin S (2006) Tumor pH controls the in vivo efficacy of weak acid and base chemotherapeutics. Mol Cancer Ther 5:1275–1279

    Article  CAS  PubMed  Google Scholar 

  152. Jain RK (1987) Transport of molecules in the tumor interstitium: a review. Cancer Res 47:3039–3051

    CAS  PubMed  Google Scholar 

  153. Heldin CH, Rubin K, Pietras K, Ostman A (2004) High interstitial fluid pressure – an obstacle in cancer therapy. Nat Rev Cancer 4:806–813

    Article  CAS  PubMed  Google Scholar 

  154. Saggar JK, Yu M, Tan Q, Tannock IF (2013) The tumor microenvironment and strategies to improve drug distribution. Front Oncol 3:154

    Article  PubMed Central  PubMed  Google Scholar 

  155. Biswas SK, Allavena P, Mantovani A (2013) Tumor-associated macrophages: functional diversity, clinical significance, and open questions. Semin Immunopathol 35:585–600

    Article  CAS  PubMed  Google Scholar 

  156. Balkwill F, Mantovani A (2001) Inflammation and cancer: back to Virchow? Lancet 357:539–545

    Article  CAS  PubMed  Google Scholar 

  157. Siveen KS, Kuttan G (2009) Role of macrophages in tumour progression. Immunol Lett 123:97–102

    Article  CAS  PubMed  Google Scholar 

  158. Bingle L, Brown NJ, Lewis CE (2002) The role of tumour-associated macrophages in tumour progression: implications for new anticancer therapies. J Pathol 196:254–265

    Article  CAS  PubMed  Google Scholar 

  159. Pollard JW (2004) Tumour-educated macrophages promote tumour progression and metastasis. Nat Rev Cancer 4:71–78

    Article  CAS  PubMed  Google Scholar 

  160. Coffelt SB, Hughes R, Lewis CE (2009) Tumor-associated macrophages: effectors of angiogenesis and tumor progression. Biochim Biophys Acta 1796:11–18

    CAS  PubMed  Google Scholar 

  161. Owen JL, Mohamadzadeh M (2013) Macrophages and chemokines as mediators of angiogenesis. Front Physiol 4:159

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  162. Marsh T, Pietras K, McAllister SS (2013) Fibroblasts as architects of cancer pathogenesis. Biochim Biophys Acta 1832:1070–1078

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  163. Kalluri R, Zeisberg M (2006) Fibroblasts in cancer. Nat Rev Cancer 6:392–401

    Article  CAS  PubMed  Google Scholar 

  164. Cirri P, Chiarugi P (2011) Cancer associated fibroblasts: the dark side of the coin. Am J Cancer Res 1:482–497

    PubMed Central  CAS  PubMed  Google Scholar 

  165. Goruppi S, Dotto GP (2013) Mesenchymal stroma: primary determinant and therapeutic target for epithelial cancer. Trends Cell Biol 23(12):593–602

    Article  CAS  PubMed  Google Scholar 

  166. Madar S, Goldstein I, Rotter V (2013) ‘Cancer associated fibroblasts’–more than meets the eye. Trends Mol Med 19:447–453

    Article  CAS  PubMed  Google Scholar 

  167. Dvorak HF (1986) Tumors: wounds that do not heal. Similarities between tumor stroma generation and wound healing. N Engl J Med 315:1650–1659

    Article  CAS  PubMed  Google Scholar 

  168. Polanska UM, Orimo A (2013) Carcinoma-associated fibroblasts: non-neoplastic tumour-promoting mesenchymal cells. J Cell Physiol 228:1651–1657

    Article  CAS  PubMed  Google Scholar 

  169. Murakami M, Ernsting MJ, Undzys E, Holwell N, Foltz WD, Li SD (2013) Docetaxel conjugate nanoparticles that target alpha-smooth muscle actin-expressing stromal cells suppress breast cancer metastasis. Cancer Res 73:4862–4871

    Article  CAS  PubMed  Google Scholar 

  170. Whatcott CJ, Han H, Posner RG, Hostetter G, Von Hoff DD (2011) Targeting the tumor microenvironment in cancer: why hyaluronidase deserves a second look. Cancer Discov 1:291–296

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  171. Thompson CB, Shepard HM, O’Connor PM, Kadhim S, Jiang P, Osgood RJ, Bookbinder LH, Li X, Sugarman BJ, Connor RJ, Nadjsombati S, Frost GI (2010) Enzymatic depletion of tumor hyaluronan induces antitumor responses in preclinical animal models. Mol Cancer Ther 9:3052–3064

    Article  CAS  PubMed  Google Scholar 

  172. Baumgartner G, Gomar-Hoss C, Sakr L, Ulsperger E, Wogritsch C (1998) The impact of extracellular matrix on the chemoresistance of solid tumors–experimental and clinical results of hyaluronidase as additive to cytostatic chemotherapy. Cancer Lett 131:85–99

    Article  CAS  PubMed  Google Scholar 

  173. Pillwein K, Fuiko R, Slavc I, Czech T, Hawliczek G, Bernhardt G, Nirnberger G, Koller U (1998) Hyaluronidase additional to standard chemotherapy improves outcome for children with malignant brain tumors. Cancer Lett 131:101–108

    Article  CAS  PubMed  Google Scholar 

  174. Yocum RC, Kennard D, Heiner LS (2007) Assessment and implication of the allergic sensitivity to a single dose of recombinant human hyaluronidase injection: a double-blind, placebo-controlled clinical trial. J Infus Nurs 30:293–299

    Article  PubMed  Google Scholar 

  175. Provenzano PP, Cuevas C, Chang AE, Goel VK, Von Hoff DD, Hingorani SR (2012) Enzymatic targeting of the stroma ablates physical barriers to treatment of pancreatic ductal adenocarcinoma. Cancer Cell 21:418–429

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  176. Provenzano PP, Hingorani SR (2013) Hyaluronan, fluid pressure, and stromal resistance in pancreas cancer. Br J Cancer 108:1–8

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  177. Yang C, Liu Y, He Y, Du Y, Wang W, Shi X, Gao F (2013) The use of HA oligosaccharide-loaded nanoparticles to breach the endogenous hyaluronan glycocalyx for breast cancer therapy. Biomaterials 34:6829–6838

    Article  CAS  PubMed  Google Scholar 

  178. Burris HA III, Moore MJ, Andersen J, Green MR, Rothenberg ML, Modiano MR, Cripps MC, Portenoy RK, Storniolo AM, Tarassoff P, Nelson R, Dorr FA, Stephens CD, Von Hoff DD (1997) Improvements in survival and clinical benefit with gemcitabine as first-line therapy for patients with advanced pancreas cancer: a randomized trial. J Clin Oncol 15:2403–2413

    CAS  PubMed  Google Scholar 

  179. Chung WG, Sandoval MA, Sloat BR, Lansakara P, Cui Z (2012) Stearoyl gemcitabine nanoparticles overcome resistance related to the over-expression of ribonucleotide reductase subunit M1. J Control Release 157:132–140

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  180. Olson P, Hanahan D (2009) Cancer. Breaching the cancer fortress. Science 324:1400–1401

    Article  CAS  PubMed  Google Scholar 

  181. Olive KP, Jacobetz MA, Davidson CJ, Gopinathan A, McIntyre D, Honess D, Madhu B, Goldgraben MA, Caldwell ME, Allard D, Frese KK, Denicola G, Feig C, Combs C, Winter SP, Ireland-Zecchini H, Reichelt S, Howat WJ, Chang A, Dhara M, Wang L, Ruckert F, Grutzmann R, Pilarsky C, Izeradjene K, Hingorani SR, Huang P, Davies SE, Plunkett W, Egorin M, Hruban RH, Whitebread N, McGovern K, Adams J, Iacobuzio-Donahue C, Griffiths J, Tuveson DA (2009) Inhibition of Hedgehog signaling enhances delivery of chemotherapy in a mouse model of pancreatic cancer. Science 324:1457–1461

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  182. Sandhiya S, Melvin G, Kumar SS, Dkhar SA (2013) The dawn of hedgehog inhibitors: Vismodegib. J Pharmacol Pharmacother 4:4–7

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  183. Xu Y, Chenna V, Hu C, Sun HX, Khan M, Bai H, Yang XR, Zhu QF, Sun YF, Maitra A, Fan J, Anders RA (2012) Polymeric nanoparticle-encapsulated hedgehog pathway inhibitor HPI-1 (NanoHHI) inhibits systemic metastases in an orthotopic model of human hepatocellular carcinoma. Clin Cancer Res 18:1291–1302

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  184. Chenna V, Hu C, Pramanik D, Aftab BT, Karikari C, Campbell NR, Hong SM, Zhao M, Rudek MA, Khan SR, Rudin CM, Maitra A (2012) A polymeric nanoparticle encapsulated small-molecule inhibitor of Hedgehog signaling (NanoHHI) bypasses secondary mutational resistance to Smoothened antagonists. Mol Cancer Ther 11:165–173

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  185. Heinemann V, Haas M, Boeck S (2012) Systemic treatment of advanced pancreatic cancer. Cancer Treat Rev 38:843–853

    Article  CAS  PubMed  Google Scholar 

  186. Yardley DA (2013) nab-Paclitaxel mechanisms of action and delivery. J Control Release 170:365–372

    Article  CAS  PubMed  Google Scholar 

  187. Desai N, Trieu V, Damascelli B, Soon-Shiong P (2009) SPARC expression correlates with tumor response to albumin-bound paclitaxel in head and neck cancer patients. Transl Oncol 2:59–64

    Article  PubMed Central  PubMed  Google Scholar 

  188. Neuzillet C, Tijeras-Raballand A, Cros J, Faivre S, Hammel P, Raymond E (2013) Stromal expression of SPARC in pancreatic adenocarcinoma. Cancer Metastasis Rev 32(3-4):585–602

    Article  CAS  PubMed  Google Scholar 

  189. Von Hoff DD, Ramanathan RK, Borad MJ, Laheru DA, Smith LS, Wood TE, Korn RL, Desai N, Trieu V, Iglesias JL, Zhang H, Soon-Shiong P, Shi T, Rajeshkumar NV, Maitra A, Hidalgo M (2011) Gemcitabine plus nab-paclitaxel is an active regimen in patients with advanced pancreatic cancer: a phase I/II trial. J Clin Oncol 29:4548–4554

    Article  CAS  Google Scholar 

  190. Von Hoff DD, Ervin T, Arena FP, Chiorean EG, Infante J, Moore M, Seay T, Tjulandin SA, Ma WW, Saleh MN, Harris M, Reni M, Dowden S, Laheru D, Bahary N, Ramanathan RK, Tabernero J, Hidalgo M, Goldstein D, Van CE, Wei X, Iglesias J, Renschler MF (2013) Increased survival in pancreatic cancer with nab-paclitaxel plus gemcitabine. N Engl J Med 369(18):1691–1703

    Article  CAS  Google Scholar 

  191. Alvarez R, Musteanu M, Garcia-Garcia E, Lopez-Casas PP, Megias D, Guerra C, Munoz M, Quijano Y, Cubillo A, Rodriguez-Pascual J, Plaza C, de Vicente E, Prados S, Tabernero S, Barbacid M, Lopez-Rios F, Hidalgo M (2013) Stromal disrupting effects of nab-paclitaxel in pancreatic cancer. Br J Cancer 109:926–933

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  192. Frese KK, Neesse A, Cook N, Bapiro TE, Lolkema MP, Jodrell DI, Tuveson DA (2012) nab-Paclitaxel potentiates gemcitabine activity by reducing cytidine deaminase levels in a mouse model of pancreatic cancer. Cancer Discov 2:260–269

    Article  CAS  PubMed  Google Scholar 

  193. Lansakara P, Rodriguez BL, Cui Z (2012) Synthesis and in vitro evaluation of novel lipophilic monophosphorylated gemcitabine derivatives and their nanoparticles. Int J Pharm 429:123–134

    Article  CAS  Google Scholar 

  194. Ernsting MJ, Murakami M, Undzys E, Aman A, Press B, Li SD (2012) A docetaxel-carboxymethylcellulose nanoparticle outperforms the approved taxane nanoformulation, Abraxane, in mouse tumor models with significant control of metastases. J Control Release 162:575–581

    Article  CAS  PubMed  Google Scholar 

  195. Ernsting MJ, Foltz WD, Undzys E, Tagami T, Li SD (2012) Tumor-targeted drug delivery using MR-contrasted docetaxel – carboxymethylcellulose nanoparticles. Biomaterials 33:3931–3941

    Article  CAS  PubMed  Google Scholar 

  196. Ernsting MJ, Tang WL, MacCallum NW, Li SD (2012) Preclinical pharmacokinetic, biodistribution, and anti-cancer efficacy studies of a docetaxel-carboxymethylcellulose nanoparticle in mouse models. Biomaterials 33:1445–1454

    Article  CAS  PubMed  Google Scholar 

  197. Ernsting MJ, Tang WL, MacCallum N, Li SD (2011) Synthetic modification of carboxymethylcellulose and use thereof to prepare a nanoparticle forming conjugate of docetaxel for enhanced cytotoxicity against cancer cells. Bioconjug Chem 22:2474–2486

    Article  CAS  PubMed  Google Scholar 

  198. Lee ES, Gao Z, Bae YH (2008) Recent progress in tumor pH targeting nanotechnology. J Control Release 132:164–170

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  199. Torchilin V (2009) Multifunctional and stimuli-sensitive pharmaceutical nanocarriers. Eur J Pharm Biopharm 71:431–444

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  200. Zhu L, Torchilin VP (2013) Stimulus-responsive nanopreparations for tumor targeting. Integr Biol (Camb) 5:96–107

    Article  CAS  Google Scholar 

  201. Ganta S, Devalapally H, Shahiwala A, Amiji M (2008) A review of stimuli-responsive nanocarriers for drug and gene delivery. J Control Release 126:187–204

    Article  CAS  PubMed  Google Scholar 

  202. Jensen SS, Andresen TL, Davidsen J, Hoyrup P, Shnyder SD, Bibby MC, Gill JH, Jorgensen K (2004) Secretory phospholipase A2 as a tumor-specific trigger for targeted delivery of a novel class of liposomal prodrug anticancer etherlipids. Mol Cancer Ther 3:1451–1458

    CAS  PubMed  Google Scholar 

  203. Andresen TL, Davidsen J, Begtrup M, Mouritsen OG, Jorgensen K (2004) Enzymatic release of antitumor ether lipids by specific phospholipase A2 activation of liposome-forming prodrugs. J Med Chem 47:1694–1703

    Article  CAS  PubMed  Google Scholar 

  204. Lee ES, Na K, Bae YH (2003) Polymeric micelle for tumor pH and folate-mediated targeting. J Control Release 91:103–113

    Article  CAS  PubMed  Google Scholar 

  205. Patel NR, Pattni BS, Abouzeid AH, Torchilin VP (2013) Nanopreparations to overcome multidrug resistance in cancer. Adv Drug Deliv Rev 65(13-14):1748–1762

    Article  CAS  PubMed  Google Scholar 

  206. Zhu S, Niu M, O’Mary H, Cui Z (2013) Targeting of tumor-associated macrophages made possible by PEG-sheddable, mannose-modified nanoparticles. Mol Pharm 10:3525–3530

    Google Scholar 

  207. Zhu S, Wonganan P, Lansakara P, O’Mary HL, Li Y, Cui Z (2013) The effect of the acid-sensitivity of 4-(N)-stearoyl gemcitabine-loaded micelles on drug resistance caused by RRM1 overexpression. Biomaterials 34:2327–2339

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  208. Zhu S, Lansakara P, Li X, Cui Z (2012) Lysosomal delivery of a lipophilic gemcitabine prodrug using novel acid-sensitive micelles improved its antitumor activity. Bioconjug Chem 23:966–980

    Google Scholar 

  209. Poon Z, Chang D, Zhao X, Hammond PT (2011) Layer-by-layer nanoparticles with a pH-sheddable layer for in vivo targeting of tumor hypoxia. ACS Nano 5:4284–4292

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  210. Sawant RM, Hurley JP, Salmaso S, Kale A, Tolcheva E, Levchenko TS, Torchilin VP (2006) “SMART” drug delivery systems: double-targeted pH-responsive pharmaceutical nanocarriers. Bioconjug Chem 17:943–949

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  211. Yanasarn N, Sloat BR, Cui Z (2009) Nanoparticles engineered from lecithin-in-water emulsions as a potential delivery system for docetaxel. Int J Pharm 379:174–180

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  212. Zhu L, Wang T, Perche F, Taigind A, Torchilin VP (2013) Enhanced anticancer activity of nanopreparation containing an MMP2-sensitive PEG-drug conjugate and cell-penetrating moiety. Proc Natl Acad Sci U S A 110:17047–17052

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  213. Xu S, Olenyuk BZ, Okamoto CT, Hamm-Alvarez SF (2013) Targeting receptor-mediated endocytotic pathways with nanoparticles: rationale and advances. Adv Drug Deliv Rev 65:121–138

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  214. Sahay G, Alakhova DY, Kabanov AV (2010) Endocytosis of nanomedicines. J Control Release 145:182–195

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  215. Varkouhi AK, Scholte M, Storm G, Haisma HJ (2011) Endosomal escape pathways for delivery of biologicals. J Control Release 151:220–228

    Article  CAS  PubMed  Google Scholar 

  216. Akinc A, Thomas M, Klibanov AM, Langer R (2005) Exploring polyethylenimine-mediated DNA transfection and the proton sponge hypothesis. J Gene Med 7:657–663

    Article  CAS  PubMed  Google Scholar 

  217. Vercauteren D, Rejman J, Martens TF, Demeester J, De Smedt SC, Braeckmans K (2012) On the cellular processing of non-viral nanomedicines for nucleic acid delivery: mechanisms and methods. J Control Release 161:566–581

    Article  CAS  PubMed  Google Scholar 

  218. Duncan R, Richardson SC (2012) Endocytosis and intracellular trafficking as gateways for nanomedicine delivery: opportunities and challenges. Mol Pharm 9:2380–2402

    Article  CAS  PubMed  Google Scholar 

  219. Wonganan P, Lansakara P, Zhu S, Holzer M, Sandoval MA, Warthaka M, Cui Z (2013) Just getting into cells is not enough: mechanisms underlying 4-(N)-stearoyl gemcitabine solid lipid nanoparticle’s ability to overcome gemcitabine resistance caused by RRM1 overexpression. J Control Release 169:17–27

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  220. Sun YL, Patel A, Kumar P, Chen ZS (2012) Role of ABC transporters in cancer chemotherapy. Chin J Cancer 31:51–57

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  221. Jabr-Milane LS, van Vlerken LE, Yadav S, Amiji MM (2008) Multi-functional nanocarriers to overcome tumor drug resistance. Cancer Treat Rev 34:592–602

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  222. Xue X, Liang XJ (2012) Overcoming drug efflux-based multidrug resistance in cancer with nanotechnology. Chin J Cancer 31:100–109

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  223. Zhang P, Ling G, Sun J, Zhang T, Yuan Y, Sun Y, Wang Z, He Z (2011) Multifunctional nanoassemblies for vincristine sulfate delivery to overcome multidrug resistance by escaping P-glycoprotein mediated efflux. Biomaterials 32:5524–5533

    Article  CAS  PubMed  Google Scholar 

  224. Zahedi P, De SR, Huynh L, Piquette-Miller M, Allen C (2011) Combination drug delivery strategy for the treatment of multidrug resistant ovarian cancer. Mol Pharm 8:260–269

    Article  CAS  PubMed  Google Scholar 

  225. Patil Y, Sadhukha T, Ma L, Panyam J (2009) Nanoparticle-mediated simultaneous and targeted delivery of paclitaxel and tariquidar overcomes tumor drug resistance. J Control Release 136:21–29

    Article  CAS  PubMed  Google Scholar 

  226. Navarro G, Sawant RR, Biswas S, Essex S, de Tros I, Torchilin VP (2012) P-glycoprotein silencing with siRNA delivered by DOPE-modified PEI overcomes doxorubicin resistance in breast cancer cells. Nanomedicine (Lond) 7:65–78

    Article  CAS  Google Scholar 

  227. Li YT, Chua MJ, Kunnath AP, Chowdhury EH (2012) Reversing multidrug resistance in breast cancer cells by silencing ABC transporter genes with nanoparticle-facilitated delivery of target siRNAs. Int J Nanomedicine 7:2473–2481

    PubMed Central  CAS  PubMed  Google Scholar 

  228. Wang Y, Guo M, Lu Y, Ding LY, Ron WT, Liu YQ, Song FF, Yu SQ (2012) Alpha-tocopheryl polyethylene glycol succinate-emulsified poly(lactic-co-glycolic acid) nanoparticles for reversal of multidrug resistance in vitro. Nanotechnology 23:495103

    Article  PubMed  CAS  Google Scholar 

  229. Wang J, Sun J, Chen Q, Gao Y, Li L, Li H, Leng D, Wang Y, Sun Y, Jing Y, Wang S, He Z (2012) Star-shape copolymer of lysine-linked di-tocopherol polyethylene glycol 2000 succinate for doxorubicin delivery with reversal of multidrug resistance. Biomaterials 33:6877–6888

    Article  CAS  PubMed  Google Scholar 

  230. Patil YB, Swaminathan SK, Sadhukha T, Ma L, Panyam J (2010) The use of nanoparticle-mediated targeted gene silencing and drug delivery to overcome tumor drug resistance. Biomaterials 31:358–365

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  231. Wu H, Shi Y, Huang C, Zhang Y, Wu J, Shen H, Jia N(2013) Multifunctional nanocarrier based on clay nanotubes for efficient intracellular siRNA delivery and gene silencing. J Biomater Appl. doi: 10.1177/0885328213501215

  232. Ganesh S, Iyer AK, Weiler J, Morrissey DV, Amiji MM (2013) Combination of siRNA-directed gene silencing with cisplatin reverses drug resistance in human non-small cell lung cancer. Mol Ther Nucleic Acids 2:e110

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  233. Yang F, Huang W, Li Y, Liu S, Jin M, Wang Y, Jia L, Gao Z (2013) Anti-tumor effects in mice induced by survivin-targeted siRNA delivered through polysaccharide nanoparticles. Biomaterials 34:5689–5699

    Article  CAS  PubMed  Google Scholar 

  234. Markman JL, Rekechenetskiy A, Holler E, Ljubimova JY (2013) Nanomedicine therapeutic approaches to overcome cancer drug resistance. Adv Drug Deliv Rev 65(13-14):1866–1879

    Article  CAS  PubMed  Google Scholar 

  235. Kunjachan S, Rychlik B, Storm G, Kiessling F, Lammers T (2013) Multidrug resistance: physiological principles and nanomedical solutions. Adv Drug Deliv Rev 65(13-14):1852–1865

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Z. Cui was supported in part by a National Cancer Institute grant (CA135274). Youssef Naguib was supported by a doctoral scholarship from the Egyptian Ministry of Higher Education.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhengrong Cui PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Naguib, Y.W., Cui, Z. (2014). Nanomedicine: The Promise and Challenges in Cancer Chemotherapy. In: Capco, D., Chen, Y. (eds) Nanomaterial. Advances in Experimental Medicine and Biology, vol 811. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-8739-0_11

Download citation

Publish with us

Policies and ethics