Skip to main content

Advertisement

Log in

Stromal expression of SPARC in pancreatic adenocarcinoma

  • NON-THEMATIC REVIEW
  • Published:
Cancer and Metastasis Reviews Aims and scope Submit manuscript

Abstract

Pancreatic ductal adenocarcinoma (PDAC) stands as the poorest prognostic tumor of the digestive tract, with a 5-year survival rate of less than 5 %. Therapeutic options for unresectable PDAC are extremely limited and there is a pressing need for expanded therapeutic approaches to improve current options available with gemcitabine-based regimens. With PDAC displaying one of the most prominent desmoplastic stromal reactions of all carcinomas, recent research has focused on the microenvironment surrounding PDAC cells. Secreted protein acid and rich in cysteine (SPARC), which is overexpressed in PDAC, may display tumor suppressor functions in several cancers (e.g., in colorectal, ovarian, prostate cancers, and acute myelogenous leukemia) but also appears to be overexpressed in other tumor types (e.g., breast cancer, melanoma, and glioblastoma). The apparent contradictory functions of SPARC may yield inhibition of angiogenesis via inhibition of vascular endothelial growth factor, while promoting epithelial-to-mesenchymal transition and invasion through matrix metalloprotease expression. This feature is of particular interest in PDAC where SPARC overexpression in the stroma stands along with inhibition of angiogenesis and promotion of cancer cell invasion and metastasis. Several therapeutic strategies to deplete stromal tissue have been developed. In this review, we focused on key preclinical and clinical data describing the role of SPARC in PDAC biology, the properties, and mechanisms of delivery of drugs that interact with SPARC and discuss the proof-of-concept clinical trials using nab-paclitaxel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Siegel, R., Naishadham, D., & Jemal, A. (2013). Cancer statistics, 2013. CA: A Cancer Journal for Clinicians, 63(1), 11–30. doi:10.3322/caac.21166.

    Google Scholar 

  2. Ferlay, J., Shin, H. R., Bray, F., Forman, D., Mathers, C., & Parkin, D. M. (2010). Estimates of worldwide burden of cancer in 2008: GLOBOCAN 2008. International journal of cancer, 127(12), 2893–2917. doi:10.1002/ijc.25516.

    CAS  Google Scholar 

  3. Hidalgo, M. (2010). Pancreatic cancer. The New England Journal of Medicine, 362(17), 1605–1617. doi:10.1056/NEJMra0901557.

    PubMed  CAS  Google Scholar 

  4. Vincent, A., Herman, J., Schulick, R., Hruban, R. H., & Goggins, M. (2011). Pancreatic cancer. Lancet, 378(9791), 607–620. doi:10.1016/S0140-6736(10)62307-0.

    PubMed  Google Scholar 

  5. Burris, H. A., 3rd, Moore, M. J., Andersen, J., Green, M. R., Rothenberg, M. L., Modiano, M. R., et al. (1997). Improvements in survival and clinical benefit with gemcitabine as first-line therapy for patients with advanced pancreas cancer: a randomized trial. Journal of Clinical Oncology, 15(6), 2403–2413.

    PubMed  CAS  Google Scholar 

  6. Moore, M. J., Goldstein, D., Hamm, J., Figer, A., Hecht, J. R., Gallinger, S., et al. (2007). Erlotinib plus gemcitabine compared with gemcitabine alone in patients with advanced pancreatic cancer: a phase III trial of the National Cancer Institute of Canada Clinical Trials Group. Journal of Clinical Oncology, 25(15), 1960–1966. doi:10.1200/JCO.2006.07.9525.

    PubMed  CAS  Google Scholar 

  7. Di Marco, M., Di Cicilia, R., Macchini, M., Nobili, E., Vecchiarelli, S., Brandi, G., et al. (2010). Metastatic pancreatic cancer: is gemcitabine still the best standard treatment? (Review). Oncology Reports, 23(5), 1183–1192.

    PubMed  Google Scholar 

  8. Conroy, T., Desseigne, F., Ychou, M., Bouche, O., Guimbaud, R., Becouarn, Y., et al. (2011). FOLFIRINOX versus gemcitabine for metastatic pancreatic cancer. The New England Journal of Medicine, 364(19), 1817–1825. doi:10.1056/NEJMoa1011923.

    PubMed  CAS  Google Scholar 

  9. Duner, S., Lopatko Lindman, J., Ansari, D., Gundewar, C., & Andersson, R. (2010). Pancreatic cancer: the role of pancreatic stellate cells in tumor progression. Pancreatology, 10(6), 673–681. doi:10.1159/000320711.

    PubMed  CAS  Google Scholar 

  10. Garber, K. (2010). Stromal depletion goes on trial in pancreatic cancer. Journal of the National Cancer Institute, 102(7), 448–450. doi:10.1093/jnci/djq113.

    PubMed  Google Scholar 

  11. Von Hoff, D. D., Ervin, T. J., Arena, F. P., Chiorean, E. G., Infante, J. R., Moore, M. J., et al. (2012). Randomized phase III study of weekly nab-paclitaxel plus gemcitabine versus gemcitabine alone in patients with metastatic adenocarcinoma of the pancreas (MPACT). Journal of Clinical Oncology, 30(suppl 34), abstr LBA148.

  12. Chiodoni, C., Colombo, M. P., & Sangaletti, S. (2010). Matricellular proteins: from homeostasis to inflammation, cancer, and metastasis. Cancer and Metastasis Reviews, 29(2), 295–307. doi:10.1007/s10555-010-9221-8.

    PubMed  CAS  Google Scholar 

  13. Tai, I., Tai, I. T., & Tang, M. J. (2008). SPARC in cancer biology: its role in cancer progression and potential for therapy. Drug Resistance Updates, 11(6), 231–246. doi:10.1016/j.drup.2008.08.005 S1368-7646(08)00048-4.

    PubMed  CAS  Google Scholar 

  14. Bradshaw, A. D., & Sage, E. H. (2001). SPARC, a matricellular protein that functions in cellular differentiation and tissue response to injury. The Journal of Clinical Investigation, 107(9), 1049–1054. doi:10.1172/JCI12939.

    PubMed  CAS  Google Scholar 

  15. Bradshaw, A. D. (2012). Diverse biological functions of the SPARC family of proteins. The International Journal of Biochemistry & Cell Biology, 44(3), 480–488. doi:10.1016/j.biocel.2011.12.021 S1357-2725(12)00004-0.

    CAS  Google Scholar 

  16. Swaroop, A., Hogan, B. L., & Francke, U. (1988). Molecular analysis of the cDNA for human SPARC/osteonectin/BM-40: sequence, expression, and localization of the gene to chromosome 5q31-q33. Genomics, 2(1), 37–47.

    PubMed  CAS  Google Scholar 

  17. Nagaraju, G. P., & El-Rayes, B. F. (2013). SPARC and DNA methylation: possible diagnostic and therapeutic implications in gastrointestinal cancers. Cancer Letters, 328(1), 10–17. doi:10.1016/j.canlet.2012.08.028.

    PubMed  CAS  Google Scholar 

  18. Kaufmann, B., Muller, S., Hanisch, F. G., Hartmann, U., Paulsson, M., Maurer, P., et al. (2004). Structural variability of BM-40/SPARC/osteonectin glycosylation: implications for collagen affinity. Glycobiology, 14(7), 609–619. doi:10.1093/glycob/cwh063 cwh063.

    PubMed  CAS  Google Scholar 

  19. Motamed, K. (1999). SPARC (osteonectin/BM-40). The International Journal of Biochemistry & Cell Biology, 31(12), 1363–1366.

    CAS  Google Scholar 

  20. Chlenski, A., & Cohn, S. L. (2010). Modulation of matrix remodeling by SPARC in neoplastic progression. Seminars in Cell & Developmental Biology, 21(1), 55–65. doi:10.1016/j.semcdb.2009.11.018 S1084-9521(09)00243-2.

    CAS  Google Scholar 

  21. Nagaraju, G. P., & Sharma, D. (2011). Anti-cancer role of SPARC, an inhibitor of adipogenesis. Cancer Treatment Reviews, 37(7), 559–566. doi:10.1016/j.ctrv.2010.12.001 S0305-7372(10)00212-4.

    PubMed  CAS  Google Scholar 

  22. Rahman, M., Chan, A. P., & Tai, I. T. (2011). A peptide of SPARC interferes with the interaction between caspase8 and Bcl2 to resensitize chemoresistant tumors and enhance their regression in vivo. PLoS One, 6(11), e26390. doi:10.1371/journal.pone.0026390 PONE-D-11-11572.

    PubMed  CAS  Google Scholar 

  23. Gilmour, D. T., Lyon, G. J., Carlton, M. B., Sanes, J. R., Cunningham, J. M., Anderson, J. R., et al. (1998). Mice deficient for the secreted glycoprotein SPARC/osteonectin/BM40 develop normally but show severe age-onset cataract formation and disruption of the lens. EMBO Journal, 17(7), 1860–1870. doi:10.1093/emboj/17.7.1860.

    PubMed  CAS  Google Scholar 

  24. Delany, A. M., Amling, M., Priemel, M., Howe, C., Baron, R., & Canalis, E. (2000). Osteopenia and decreased bone formation in osteonectin-deficient mice. The Journal of Clinical Investigation, 105(7), 915–923. doi:10.1172/JCI7039.

    PubMed  CAS  Google Scholar 

  25. Bradshaw, A. D., Puolakkainen, P., Dasgupta, J., Davidson, J. M., Wight, T. N., & Helene Sage, E. (2003). SPARC-null mice display abnormalities in the dermis characterized by decreased collagen fibril diameter and reduced tensile strength. Journal of Investigative Dermatology, 120(6), 949–955. doi:10.1046/j.1523-1747.2003.12241.x.

    PubMed  CAS  Google Scholar 

  26. Schellings, M. W., Vanhoutte, D., Swinnen, M., Cleutjens, J. P., Debets, J., van Leeuwen, R. E., et al. (2009). Absence of SPARC results in increased cardiac rupture and dysfunction after acute myocardial infarction. The Journal of Experimental Medicine, 206(1), 113–123. doi:10.1084/jem.20081244 jem.20081244.

    PubMed  CAS  Google Scholar 

  27. Bradshaw, A. D., Graves, D. C., Motamed, K., & Sage, E. H. (2003). SPARC-null mice exhibit increased adiposity without significant differences in overall body weight. Proceedings of the National Academy of Sciences of the United States of America, 100(10), 6045–6050. doi:10.1073/pnas.1030790100 1030790100.

    PubMed  CAS  Google Scholar 

  28. Shankavaram, U. T., DeWitt, D. L., Funk, S. E., Sage, E. H., & Wahl, L. M. (1997). Regulation of human monocyte matrix metalloproteinases by SPARC. Journal of Cellular Physiology, 173(3), 327–334. doi:10.1002/(SICI)1097-4652(199712)173:3<327::AID-JCP4>3.0.CO;2-P.

    PubMed  CAS  Google Scholar 

  29. Tremble, P. M., Lane, T. F., Sage, E. H., & Werb, Z. (1993). SPARC, a secreted protein associated with morphogenesis and tissue remodeling, induces expression of metalloproteinases in fibroblasts through a novel extracellular matrix-dependent pathway. The Journal of Cell Biology, 121(6), 1433–1444.

    PubMed  CAS  Google Scholar 

  30. Rivera, L. B., Bradshaw, A. D., & Brekken, R. A. (2011). The regulatory function of SPARC in vascular biology. Cellular and Molecular Life Sciences, 68(19), 3165–3173. doi:10.1007/s00018-011-0781-8.

    PubMed  CAS  Google Scholar 

  31. Kupprion, C., Motamed, K., & Sage, E. H. (1998). SPARC (BM-40, osteonectin) inhibits the mitogenic effect of vascular endothelial growth factor on microvascular endothelial cells. Journal of Biological Chemistry, 273(45), 29635–29640.

    PubMed  CAS  Google Scholar 

  32. Raines, E. W., Lane, T. F., Iruela-Arispe, M. L., Ross, R., & Sage, E. H. (1992). The extracellular glycoprotein SPARC interacts with platelet-derived growth factor (PDGF)-AB and -BB and inhibits the binding of PDGF to its receptors. Proceedings of the National Academy of Sciences of the United States of America, 89(4), 1281–1285.

    PubMed  CAS  Google Scholar 

  33. Motamed, K., Blake, D. J., Angello, J. C., Allen, B. L., Rapraeger, A. C., Hauschka, S. D., et al. (2003). Fibroblast growth factor receptor-1 mediates the inhibition of endothelial cell proliferation and the promotion of skeletal myoblast differentiation by SPARC: a role for protein kinase A. Journal of Cellular Biochemistry, 90(2), 408–423. doi:10.1002/jcb.10645.

    PubMed  CAS  Google Scholar 

  34. Hasselaar, P., & Sage, E. H. (1992). SPARC antagonizes the effect of basic fibroblast growth factor on the migration of bovine aortic endothelial cells. Journal of Cellular Biochemistry, 49(3), 272–283. doi:10.1002/jcb.240490310.

    PubMed  CAS  Google Scholar 

  35. Chlenski, A., Liu, S., Guerrero, L. J., Yang, Q., Tian, Y., Salwen, H. R., et al. (2006). SPARC expression is associated with impaired tumor growth, inhibited angiogenesis and changes in the extracellular matrix. International Journal of Cancer, 118(2), 310–316. doi:10.1002/ijc.21357.

    CAS  Google Scholar 

  36. Wrana, J. L., Overall, C. M., & Sodek, J. (1991). Regulation of the expression of a secreted acidic protein rich in cysteine (SPARC) in human fibroblasts by transforming growth factor beta. Comparison of transcriptional and post-transcriptional control with fibronectin and type I collagen. European Journal of Biochemistry, 197(2), 519–528.

    PubMed  CAS  Google Scholar 

  37. Francki, A., Bradshaw, A. D., Bassuk, J. A., Howe, C. C., Couser, W. G., & Sage, E. H. (1999). SPARC regulates the expression of collagen type I and transforming growth factor-beta1 in mesangial cells. Journal of Biological Chemistry, 274(45), 32145–32152.

    PubMed  CAS  Google Scholar 

  38. Francki, A., McClure, T. D., Brekken, R. A., Motamed, K., Murri, C., Wang, T., et al. (2004). SPARC regulates TGF-beta1-dependent signaling in primary glomerular mesangial cells. Journal of Cellular Biochemistry, 91(5), 915–925. doi:10.1002/jcb.20008.

    PubMed  CAS  Google Scholar 

  39. Schiemann, B. J., Neil, J. R., & Schiemann, W. P. (2003). SPARC inhibits epithelial cell proliferation in part through stimulation of the transforming growth factor-beta-signaling system. Molecular Biology of the Cell, 14(10), 3977–3988. doi:10.1091/mbc.E03-01-0001 E03-01-0001.

    PubMed  CAS  Google Scholar 

  40. Chlenski, A., Guerrero, L. J., Yang, Q., Tian, Y., Peddinti, R., Salwen, H. R., et al. (2007). SPARC enhances tumor stroma formation and prevents fibroblast activation. Oncogene, 26(31), 4513–4522. doi:10.1038/sj.onc.1210247.

    PubMed  CAS  Google Scholar 

  41. Weaver, M. S., & Workman, G. (2008). The copper binding domain of SPARC mediates cell survival in vitro via interaction with integrin beta1 and activation of integrin-linked kinase. Journal of Biological Chemistry, 283(33), 22826–22837. doi:10.1074/jbc.M706563200 M706563200.

    PubMed  CAS  Google Scholar 

  42. Kelly, K. A., Allport, J. R., Yu, A. M., Sinh, S., Sage, E. H., Gerszten, R. E., et al. (2007). SPARC is a VCAM-1 counter-ligand that mediates leukocyte transmigration. Journal of Leukocyte Biology, 81(3), 748–756. doi:10.1189/jlb.1105664.

    PubMed  CAS  Google Scholar 

  43. Llera, A. S., Girotti, M. R., Benedetti, L. G., & Podhajcer, O. L. (2010). Matricellular proteins and inflammatory cells: a task force to promote or defeat cancer? Cytokine & Growth Factor Reviews, 21(1), 67–76. doi:10.1016/j.cytogfr.2009.11.010 S1359-6101(09)00117-8.

    CAS  Google Scholar 

  44. Chong, H. C., Tan, C. K., Huang, R. L., & Tan, N. S. (2012). Matricellular proteins: a sticky affair with cancers. Journal of Oncology, 2012, 351089. doi:10.1155/2012/351089.

    PubMed  Google Scholar 

  45. Barker, T. H., Baneyx, G., Cardo-Vila, M., Workman, G. A., Weaver, M., Menon, P. M., et al. (2005). SPARC regulates extracellular matrix organization through its modulation of integrin-linked kinase activity. Journal of Biological Chemistry, 280(43), 36483–36493. doi:10.1074/jbc.M504663200.

    PubMed  CAS  Google Scholar 

  46. Podhajcer, O. L., Benedetti, L., Girotti, M. R., Prada, F., Salvatierra, E., & Llera, A. S. (2008). The role of the matricellular protein SPARC in the dynamic interaction between the tumor and the host. Cancer and Metastasis Reviews, 27(3), 523–537. doi:10.1007/s10555-008-9135-x.

    PubMed  CAS  Google Scholar 

  47. Hanahan, D., & Weinberg, R. A. (2011). Hallmarks of cancer: the next generation. Cell, 144(5), 646–674. doi:10.1016/j.cell.2011.02.013 S0092-8674(11)00127-9.

    PubMed  CAS  Google Scholar 

  48. Yang, E., Kang, H. J., Koh, K. H., Rhee, H., Kim, N. K., & Kim, H. (2007). Frequent inactivation of SPARC by promoter hypermethylation in colon cancers. International Journal of Cancer, 121(3), 567–575. doi:10.1002/ijc.22706.

    CAS  Google Scholar 

  49. Lussier, C., Sodek, J., & Beaulieu, J. F. (2001). Expression of SPARC/osteonectin/BM4O in the human gut: predominance in the stroma of the remodeling distal intestine. Journal of Cellular Biochemistry, 81(3), 463–476.

    PubMed  CAS  Google Scholar 

  50. Tai, I. T., Dai, M., Owen, D. A., & Chen, L. B. (2005). Genome-wide expression analysis of therapy-resistant tumors reveals SPARC as a novel target for cancer therapy. The Journal of Clinical Investigation, 115(6), 1492–1502. doi:10.1172/JCI23002.

    PubMed  CAS  Google Scholar 

  51. Cheetham, S., Tang, M. J., Mesak, F., Kennecke, H., Owen, D., & Tai, I. T. (2008). SPARC promoter hypermethylation in colorectal cancers can be reversed by 5-Aza-2'deoxycytidine to increase SPARC expression and improve therapy response. British Journal of Cancer, 98(11), 1810–1819. doi:10.1038/sj.bjc.6604377.

    PubMed  CAS  Google Scholar 

  52. Tang, M. J., & Tai, I. T. (2007). A novel interaction between procaspase 8 and SPARC enhances apoptosis and potentiates chemotherapy sensitivity in colorectal cancers. Journal of Biological Chemistry, 282(47), 34457–34467. doi:10.1074/jbc.M704459200.

    PubMed  CAS  Google Scholar 

  53. Chan, S. K., Griffith, O. L., Tai, I. T., & Jones, S. J. (2008). Meta-analysis of colorectal cancer gene expression profiling studies identifies consistently reported candidate biomarkers. Cancer Epidemiology, Biomarkers & Prevention, 17(3), 543–552. doi:10.1158/1055-9965.EPI-07-2615.

    CAS  Google Scholar 

  54. Socha, M. J., Said, N., Dai, Y., Kwong, J., Ramalingam, P., Trieu, V., et al. (2009). Aberrant promoter methylation of SPARC in ovarian cancer. Neoplasia, 11(2), 126–135.

    PubMed  CAS  Google Scholar 

  55. Mok, S. C., Chan, W. Y., Wong, K. K., Muto, M. G., & Berkowitz, R. S. (1996). SPARC, an extracellular matrix protein with tumor-suppressing activity in human ovarian epithelial cells. Oncogene, 12(9), 1895–1901.

    PubMed  CAS  Google Scholar 

  56. Yiu, G. K., Chan, W. Y., Ng, S. W., Chan, P. S., Cheung, K. K., Berkowitz, R. S., et al. (2001). SPARC (secreted protein acidic and rich in cysteine) induces apoptosis in ovarian cancer cells. American Journal of Pathology, 159(2), 609–622. doi:10.1016/S0002-9440(10)61732-4.

    PubMed  CAS  Google Scholar 

  57. Said, N., & Motamed, K. (2005). Absence of host-secreted protein acidic and rich in cysteine (SPARC) augments peritoneal ovarian carcinomatosis. American Journal of Pathology, 167(6), 1739–1752. doi:10.1016/S0002-9440(10)61255-2.

    PubMed  CAS  Google Scholar 

  58. Said, N., Najwer, I., & Motamed, K. (2007). Secreted protein acidic and rich in cysteine (SPARC) inhibits integrin-mediated adhesion and growth factor-dependent survival signaling in ovarian cancer. American Journal of Pathology, 170(3), 1054–1063. doi:10.2353/ajpath.2007.060903.

    PubMed  CAS  Google Scholar 

  59. Said, N. A., Elmarakby, A. A., Imig, J. D., Fulton, D. J., & Motamed, K. (2008). SPARC ameliorates ovarian cancer-associated inflammation. Neoplasia, 10(10), 1092–1104.

    PubMed  CAS  Google Scholar 

  60. Said, N., Socha, M. J., Olearczyk, J. J., Elmarakby, A. A., Imig, J. D., & Motamed, K. (2007). Normalization of the ovarian cancer microenvironment by SPARC. Molecular Cancer Research, 5(10), 1015–1030. doi:10.1158/1541-7786.MCR-07-0001.

    PubMed  CAS  Google Scholar 

  61. Brown, T. J., Shaw, P. A., Karp, X., Huynh, M. H., Begley, H., & Ringuette, M. J. (1999). Activation of SPARC expression in reactive stroma associated with human epithelial ovarian cancer. Gynecologic Oncology, 75(1), 25–33. doi:10.1006/gyno.1999.5552.

    PubMed  CAS  Google Scholar 

  62. Thomas, R., True, L. D., Bassuk, J. A., Lange, P. H., & Vessella, R. L. (2000). Differential expression of osteonectin/SPARC during human prostate cancer progression. Clinical Cancer Research, 6(3), 1140–1149.

    PubMed  CAS  Google Scholar 

  63. Dhanasekaran, S. M., Barrette, T. R., Ghosh, D., Shah, R., Varambally, S., Kurachi, K., et al. (2001). Delineation of prognostic biomarkers in prostate cancer. Nature, 412(6849), 822–826. doi:10.1038/35090585.

    PubMed  CAS  Google Scholar 

  64. Wong, S. Y., Crowley, D., Bronson, R. T., & Hynes, R. O. (2008). Analyses of the role of endogenous SPARC in mouse models of prostate and breast cancer. Clinical & Experimental Metastasis, 25(2), 109–118. doi:10.1007/s10585-007-9126-2.

    CAS  Google Scholar 

  65. Said, N., Frierson, H. F., Jr., Chernauskas, D., Conaway, M., Motamed, K., & Theodorescu, D. (2009). The role of SPARC in the TRAMP model of prostate carcinogenesis and progression. Oncogene, 28(39), 3487–3498. doi:10.1038/onc.2009.205.

    PubMed  CAS  Google Scholar 

  66. Chlenski, A., Liu, S., Crawford, S. E., Volpert, O. V., DeVries, G. H., Evangelista, A., et al. (2002). SPARC is a key Schwannian-derived inhibitor controlling neuroblastoma tumor angiogenesis. Cancer Research, 62(24), 7357–7363.

    PubMed  CAS  Google Scholar 

  67. Chlenski, A., Liu, S., Baker, L. J., Yang, Q., Tian, Y., Salwen, H. R., et al. (2004). Neuroblastoma angiogenesis is inhibited with a folded synthetic molecule corresponding to the epidermal growth factor-like module of the follistatin domain of SPARC. Cancer Research, 64(20), 7420–7425. doi:10.1158/0008-5472.CAN-04-2141.

    PubMed  CAS  Google Scholar 

  68. Smid, M., Dorssers, L. C., & Jenster, G. (2003). Venn Mapping: clustering of heterologous microarray data based on the number of co-occurring differentially expressed genes. Bioinformatics, 19(16), 2065–2071.

    PubMed  CAS  Google Scholar 

  69. Bergamaschi, A., Tagliabue, E., Sorlie, T., Naume, B., Triulzi, T., Orlandi, R., et al. (2008). Extracellular matrix signature identifies breast cancer subgroups with different clinical outcome. The Journal of Pathology, 214(3), 357–367. doi:10.1002/path.2278.

    PubMed  CAS  Google Scholar 

  70. Teschendorff, A. E., Miremadi, A., Pinder, S. E., Ellis, I. O., & Caldas, C. (2007). An immune response gene expression module identifies a good prognosis subtype in estrogen receptor negative breast cancer. Genome Biology, 8(8), R157. doi:10.1186/gb-2007-8-8-r157.

    PubMed  Google Scholar 

  71. Dhanesuan, N., Sharp, J. A., Blick, T., Price, J. T., & Thompson, E. W. (2002). Doxycycline-inducible expression of SPARC/Osteonectin/BM40 in MDA-MB-231 human breast cancer cells results in growth inhibition. Breast Cancer Research and Treatment, 75(1), 73–85.

    PubMed  CAS  Google Scholar 

  72. Koblinski, J. E., Kaplan-Singer, B. R., VanOsdol, S. J., Wu, M., Engbring, J. A., Wang, S., et al. (2005). Endogenous osteonectin/SPARC/BM-40 expression inhibits MDA-MB-231 breast cancer cell metastasis. Cancer Research, 65(16), 7370–7377. doi:10.1158/0008-5472.CAN-05-0807.

    PubMed  CAS  Google Scholar 

  73. Sangaletti, S., Stoppacciaro, A., Guiducci, C., Torrisi, M. R., & Colombo, M. P. (2003). Leukocyte, rather than tumor-produced SPARC, determines stroma and collagen type IV deposition in mammary carcinoma. The Journal of Experimental Medicine, 198(10), 1475–1485. doi:10.1084/jem.20030202.

    PubMed  CAS  Google Scholar 

  74. Bellahcene, A., & Castronovo, V. (1995). Increased expression of osteonectin and osteopontin, two bone matrix proteins, in human breast cancer. American Journal of Pathology, 146(1), 95–100.

    PubMed  CAS  Google Scholar 

  75. Barth, P. J., Moll, R., & Ramaswamy, A. (2005). Stromal remodeling and SPARC (secreted protein acid rich in cysteine) expression in invasive ductal carcinomas of the breast. Virchows Archiv, 446(5), 532–536. doi:10.1007/s00428-005-1256-9.

    PubMed  CAS  Google Scholar 

  76. Jones, C., Mackay, A., Grigoriadis, A., Cossu, A., Reis-Filho, J. S., Fulford, L., et al. (2004). Expression profiling of purified normal human luminal and myoepithelial breast cells: identification of novel prognostic markers for breast cancer. Cancer Research, 64(9), 3037–3045.

    PubMed  CAS  Google Scholar 

  77. Campo McKnight, D. A., Sosnoski, D. M., Koblinski, J. E., & Gay, C. V. (2006). Roles of osteonectin in the migration of breast cancer cells into bone. Journal of Cellular Biochemistry, 97(2), 288–302. doi:10.1002/jcb.20644.

    PubMed  Google Scholar 

  78. Briggs, J., Chamboredon, S., Castellazzi, M., Kerry, J. A., & Bos, T. J. (2002). Transcriptional upregulation of SPARC, in response to c-Jun overexpression, contributes to increased motility and invasion of MCF7 breast cancer cells. Oncogene, 21(46), 7077–7091. doi:10.1038/sj.onc.1205857.

    PubMed  CAS  Google Scholar 

  79. Schultz, C., Lemke, N., Ge, S., Golembieski, W. A., & Rempel, S. A. (2002). Secreted protein acidic and rich in cysteine promotes glioma invasion and delays tumor growth in vivo. Cancer Research, 62(21), 6270–6277.

    PubMed  CAS  Google Scholar 

  80. Yunker, C. K., Golembieski, W., Lemke, N., Schultz, C. R., Cazacu, S., Brodie, C., et al. (2008). SPARC-induced increase in glioma matrix and decrease in vascularity are associated with reduced VEGF expression and secretion. International Journal of Cancer, 122(12), 2735–2743. doi:10.1002/ijc.23450.

    CAS  Google Scholar 

  81. Rempel, S. A., Golembieski, W. A., Ge, S., Lemke, N., Elisevich, K., Mikkelsen, T., et al. (1998). SPARC: a signal of astrocytic neoplastic transformation and reactive response in human primary and xenograft gliomas. Journal of Neuropathology and Experimental Neurology, 57(12), 1112–1121.

    PubMed  CAS  Google Scholar 

  82. Shi, Q., Bao, S., Maxwell, J. A., Reese, E. D., Friedman, H. S., Bigner, D. D., et al. (2004). Secreted protein acidic, rich in cysteine (SPARC), mediates cellular survival of gliomas through AKT activation. Journal of Biological Chemistry, 279(50), 52200–52209. doi:10.1074/jbc.M409630200.

    PubMed  CAS  Google Scholar 

  83. Shi, Q., Bao, S., Song, L., Wu, Q., Bigner, D. D., Hjelmeland, A. B., et al. (2007). Targeting SPARC expression decreases glioma cellular survival and invasion associated with reduced activities of FAK and ILK kinases. Oncogene, 26(28), 4084–4094. doi:10.1038/sj.onc.1210181.

    PubMed  CAS  Google Scholar 

  84. McClung, H. M., Thomas, S. L., Osenkowski, P., Toth, M., Menon, P., Raz, A., et al. (2007). SPARC upregulates MT1-MMP expression, MMP-2 activation, and the secretion and cleavage of galectin-3 in U87MG glioma cells. Neuroscience Letters, 419(2), 172–177. doi:10.1016/j.neulet.2007.04.037.

    PubMed  CAS  Google Scholar 

  85. Kunigal, S., Gondi, C. S., Gujrati, M., Lakka, S. S., Dinh, D. H., Olivero, W. C., et al. (2006). SPARC-induced migration of glioblastoma cell lines via uPA-uPAR signaling and activation of small GTPase RhoA. International Journal of Oncology, 29(6), 1349–1357.

    PubMed  CAS  Google Scholar 

  86. Golembieski, W. A., Thomas, S. L., Schultz, C. R., Yunker, C. K., McClung, H. M., Lemke, N., et al. (2008). HSP27 mediates SPARC-induced changes in glioma morphology, migration, and invasion. GLIA, 56(10), 1061–1075. doi:10.1002/glia.20679.

    PubMed  Google Scholar 

  87. Prada, F., Benedetti, L. G., Bravo, A. I., Alvarez, M. J., Carbone, C., & Podhajcer, O. L. (2007). SPARC endogenous level, rather than fibroblast-produced SPARC or stroma reorganization induced by SPARC, is responsible for melanoma cell growth. The Journal of Investigative Dermatology, 127(11), 2618–2628. doi:10.1038/sj.jid.5700962.

    PubMed  CAS  Google Scholar 

  88. Haber, C. L., Gottifredi, V., Llera, A. S., Salvatierra, E., Prada, F., Alonso, L., et al. (2008). SPARC modulates the proliferation of stromal but not melanoma cells unless endogenous SPARC expression is downregulated. International Journal of Cancer, 122(7), 1465–1475. doi:10.1002/ijc.23216.

    CAS  Google Scholar 

  89. Ledda, F., Bravo, A. I., Adris, S., Bover, L., Mordoh, J., & Podhajcer, O. L. (1997). The expression of the secreted protein acidic and rich in cysteine (SPARC) is associated with the neoplastic progression of human melanoma. The Journal of Investigative Dermatology, 108(2), 210–214.

    PubMed  CAS  Google Scholar 

  90. Massi, D., Franchi, A., Borgognoni, L., Reali, U. M., & Santucci, M. (1999). Osteonectin expression correlates with clinical outcome in thin cutaneous malignant melanomas. Human Pathology, 30(3), 339–344.

    PubMed  CAS  Google Scholar 

  91. Alonso, S. R., Tracey, L., Ortiz, P., Perez-Gomez, B., Palacios, J., Pollan, M., et al. (2007). A high-throughput study in melanoma identifies epithelial-mesenchymal transition as a major determinant of metastasis. Cancer Research, 67(7), 3450–3460. doi:10.1158/0008-5472.CAN-06-3481.

    PubMed  CAS  Google Scholar 

  92. Ledda, M. F., Adris, S., Bravo, A. I., Kairiyama, C., Bover, L., Chernajovsky, Y., et al. (1997). Suppression of SPARC expression by antisense RNA abrogates the tumorigenicity of human melanoma cells. Nature Medicine, 3(2), 171–176.

    PubMed  CAS  Google Scholar 

  93. Alvarez, M. J., Prada, F., Salvatierra, E., Bravo, A. I., Lutzky, V. P., Carbone, C., et al. (2005). Secreted protein acidic and rich in cysteine produced by human melanoma cells modulates polymorphonuclear leukocyte recruitment and antitumor cytotoxic capacity. Cancer Research, 65(12), 5123–5132. doi:10.1158/0008-5472.CAN-04-1102.

    PubMed  CAS  Google Scholar 

  94. Von Hoff, D. D., Penny, R., Shack, S., Campbell, E., Taverna, D., Borad, M., et al. (2006). Frequency of potential therapeutic targets identified by immunochemistry (IHC) and DNA microarray (DMA) in tumors from patients who have progressed on multiple therapeutic agents. Journal of Clinical Oncology, 24(18S), abstr 3071.

    Google Scholar 

  95. Guweidhi, A., Kleeff, J., Adwan, H., Giese, N. A., Wente, M. N., Giese, T., et al. (2005). Osteonectin influences growth and invasion of pancreatic cancer cells. Annals of Surgery, 242(2), 224–234.

    PubMed  Google Scholar 

  96. Miyoshi, K., Sato, N., Ohuchida, K., Mizumoto, K., & Tanaka, M. (2010). SPARC mRNA expression as a prognostic marker for pancreatic adenocarcinoma patients. Anticancer Research, 30(3), 867–871.

    PubMed  CAS  Google Scholar 

  97. Prenzel, K. L., Warnecke-Eberz, U., Xi, H., Brabender, J., Baldus, S. E., Bollschweiler, E., et al. (2006). Significant overexpression of SPARC/osteonectin mRNA in pancreatic cancer compared to cancer of the papilla of Vater. Oncology Reports, 15(5), 1397–1401.

    PubMed  CAS  Google Scholar 

  98. Infante, J. R., Matsubayashi, H., Sato, N., Tonascia, J., Klein, A. P., Riall, T. A., et al. (2007). Peritumoral fibroblast SPARC expression and patient outcome with resectable pancreatic adenocarcinoma. Journal of Clinical Oncology, 25(3), 319–325. doi:10.1200/JCO.2006.07.8824.

    PubMed  Google Scholar 

  99. Mantoni, T. S., Schendel, R. R., Rodel, F., Niedobitek, G., Al-Assar, O., Masamune, A., et al. (2008). Stromal SPARC expression and patient survival after chemoradiation for non-resectable pancreatic adenocarcinoma. Cancer Biology & Therapy, 7(11), 1806–1815.

    CAS  Google Scholar 

  100. Sato, N., Fukushima, N., Maehara, N., Matsubayashi, H., Koopmann, J., Su, G. H., et al. (2003). SPARC/osteonectin is a frequent target for aberrant methylation in pancreatic adenocarcinoma and a mediator of tumor-stromal interactions. Oncogene, 22(32), 5021–5030. doi:10.1038/sj.onc.1206807.

    PubMed  CAS  Google Scholar 

  101. Gao, J., Song, J., Huang, H., Li, Z., Du, Y., Cao, J., et al. (2010). Methylation of the SPARC gene promoter and its clinical implication in pancreatic cancer. Journal of Experimental & Clinical Cancer Research, 29, 28. doi:10.1186/1756-9966-29-28.

    CAS  Google Scholar 

  102. Nagaraju, G. P., & Ei-Rayes, B. F. (2013). SPARC and DNA methylation: possible diagnostic and therapeutic implications in gastrointestinal cancers. Cancer Letters, 328(1), 10–17. doi:10.1016/j.canlet.2012.08.028S0304-3835(12)00516-2.

    PubMed  CAS  Google Scholar 

  103. Chen, G., Tian, X., Liu, Z., Zhou, S., Schmidt, B., Henne-Bruns, D., et al. (2010). Inhibition of endogenous SPARC enhances pancreatic cancer cell growth: modulation by FGFR1-III isoform expression. British Journal of Cancer, 102(1), 188–195. doi:10.1038/sj.bjc.66054406605440.

    PubMed  CAS  Google Scholar 

  104. Zhivkova-Galunska, M., Adwan, H., Eyol, E., Kleeff, J., Kolb, A., Bergmann, F., et al. (2010). Osteopontin but not osteonectin favors the metastatic growth of pancreatic cancer cell lines. Cancer Biology & Therapy, 10(1), 54–64.

    CAS  Google Scholar 

  105. Puolakkainen, P. A., Brekken, R. A., Muneer, S., & Sage, E. H. (2004). Enhanced growth of pancreatic tumors in SPARC-null mice is associated with decreased deposition of extracellular matrix and reduced tumor cell apoptosis. Molecular Cancer Research, 2(4), 215–224.

    PubMed  CAS  Google Scholar 

  106. Arnold, S., Mira, E., Muneer, S., Korpanty, G., Beck, A. W., Holloway, S. E., et al. (2008). Forced expression of MMP9 rescues the loss of angiogenesis and abrogates metastasis of pancreatic tumors triggered by the absence of host SPARC. Experimental Biology and Medicine (Maywood, N.J.), 233(7), 860–873. doi:10.3181/0801-RM-12 0801-RM-12.

    CAS  Google Scholar 

  107. Arnold, S. A., Rivera, L. B., Miller, A. F., Carbon, J. G., Dineen, S. P., Xie, Y., et al. (2010). Lack of host SPARC enhances vascular function and tumor spread in an orthotopic murine model of pancreatic carcinoma. Disease Models & Mechanisms, 3(1–2), 57–72. doi:10.1242/dmm.003228 dmm.003228.

    CAS  Google Scholar 

  108. Rivera, L. B., & Brekken, R. A. (2011). SPARC promotes pericyte recruitment via inhibition of endoglin-dependent TGF-beta1 activity. The Journal of Cell Biology, 193(7), 1305–1319. doi:10.1083/jcb.201011143.

    PubMed  CAS  Google Scholar 

  109. Arnold, S. A., Rivera, L. B., Carbon, J. G., Toombs, J. E., Chang, C. L., Bradshaw, A. D., et al. (2012). Losartan slows pancreatic tumor progression and extends survival of SPARC-null mice by abrogating aberrant TGFbeta activation. PLoS One, 7(2), e31384. doi:10.1371/journal.pone.0031384 PONE-D-11-19108.

    PubMed  CAS  Google Scholar 

  110. Rempel, S. A., Hawley, R. C., Gutierrez, J. A., Mouzon, E., Bobbitt, K. R., Lemke, N., et al. (2007). Splenic and immune alterations of the Sparc-null mouse accompany a lack of immune response. Genes and Immunity, 8(3), 262–274. doi:10.1038/sj.gene.6364388.

    PubMed  CAS  Google Scholar 

  111. Gradishar, W. J. (2006). Albumin-bound paclitaxel: a next-generation taxane. Expert Opinion on Pharmacotherapy, 7(8), 1041–1053. doi:10.1517/14656566.7.8.1041.

    PubMed  CAS  Google Scholar 

  112. Guarneri, V., Dieci, M. V., & Conte, P. (2012). Enhancing intracellular taxane delivery: current role and perspectives of nanoparticle albumin-bound paclitaxel in the treatment of advanced breast cancer. Expert Opinion on Pharmacotherapy, 13(3), 395–406. doi:10.1517/14656566.2012.651127.

    PubMed  CAS  Google Scholar 

  113. Schilling, U., Friedrich, E. A., Sinn, H., Schrenk, H. H., Clorius, J. H., & Maier-Borst, W. (1992). Design of compounds having enhanced tumour uptake, using serum albumin as a carrier—part II. In vivo studies. International Journal of Radiation Applications and Instrumentation. Part B, 19(6), 685–695.

    CAS  Google Scholar 

  114. Minshall, R. D., Tiruppathi, C., Vogel, S. M., & Malik, A. B. (2002). Vesicle formation and trafficking in endothelial cells and regulation of endothelial barrier function. Histochemistry and Cell Biology, 117(2), 105–112. doi:10.1007/s00418-001-0367-x.

    PubMed  CAS  Google Scholar 

  115. Desai, N., Trieu, V., Damascelli, B., & Soon-Shiong, P. (2009). SPARC expression correlates with tumor response to albumin-bound paclitaxel in head and neck cancer patients. Translational Oncology, 2(2), 59–64.

    PubMed  Google Scholar 

  116. Ibrahim, N. K., Desai, N., Legha, S., Soon-Shiong, P., Theriault, R. L., Rivera, E., et al. (2002). Phase I and pharmacokinetic study of ABI-007, a Cremophor-free, protein-stabilized, nanoparticle formulation of paclitaxel. Clinical Cancer Research, 8(5), 1038–1044.

    PubMed  CAS  Google Scholar 

  117. Belli, C., Cereda, S., & Reni, M. (2012). Role of taxanes in pancreatic cancer. World Journal of Gastroenterology, 18(33), 4457–4465. doi:10.3748/wjg.v18.i33.4457.

    PubMed  CAS  Google Scholar 

  118. Fine, R. L., Fogelman, D. R., Schreibman, S. M., Desai, M., Sherman, W., Strauss, J., et al. (2008). The gemcitabine, docetaxel, and capecitabine (GTX) regimen for metastatic pancreatic cancer: a retrospective analysis. Cancer Chemotherapy and Pharmacology, 61(1), 167–175. doi:10.1007/s00280-007-0473-0.

    PubMed  CAS  Google Scholar 

  119. Reni, M., Cereda, S., Rognone, A., Belli, C., Ghidini, M., Longoni, S., et al. (2012). A randomized phase II trial of two different 4-drug combinations in advanced pancreatic adenocarcinoma: cisplatin, capecitabine, gemcitabine plus either epirubicin or docetaxel (PEXG or PDXG regimen). Cancer Chemotherapy and Pharmacology, 69(1), 115–123. doi:10.1007/s00280-011-1680-2.

    PubMed  CAS  Google Scholar 

  120. Von Hoff, D. D., Ramanathan, R. K., Borad, M. J., Laheru, D. A., Smith, L. S., Wood, T. E., et al. (2011). Gemcitabine plus nab-paclitaxel is an active regimen in patients with advanced pancreatic cancer: a phase I/II trial. Journal of Clinical Oncology, 29(34), 4548–4554. doi:10.1200/JCO.2011.36.5742JCO.2011.36.5742.

    Google Scholar 

  121. Hosein, P. J., de Lima Lopes, G., Jr., Pastorini, V. H., Gomez, C., Macintyre, J., Zayas, G., et al. (2012). A phase II trial of nab-paclitaxel as second-line therapy in patients with advanced pancreatic cancer. American Journal of Clinical Oncology. doi:10.1097/COC.0b013e3182436e8c.

    Google Scholar 

  122. Awasthi, N., Ostapoff, K., Zhang, C., Schwarz, M. A., & Schwarz, R. E. (2012). Evaluation of combination treatment benefits of nab-paclitaxel in experimental pancreatic cancer. Journal of Clinical Oncology, 30(suppl 4), abstr 170.

    Google Scholar 

  123. Frese, K. K., Neesse, A., Cook, N., Bapiro, T. E., Lolkema, M. P., Jodrell, D. I., et al. (2012). nab-Paclitaxel potentiates gemcitabine activity by reducing cytidine deaminase levels in a mouse model of pancreatic cancer. Cancer Discovery, 2(3), 260–269. doi:10.1158/2159-8290.CD-11-0242.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Foundation Nelia & Amadeo Barleta and by the Association pour l’Aide à la Recherche & l’Enseignement en Cancérologie. The authors thank Sarah MacKenzie for manuscript editing. The authors also sincerely thank Prof. Philippe Ruszniewski, Dr. Maria Eugenia Riveiro, Dr. Maria Serova, and Dr. Armand de Gramont for thorough review and wise criticisms of the manuscript, which have strongly contributed to the quality of this review.

Conflict of interest

Pascal Hammel is a consultant for Novartis, Pfizer, and Ipsen; Sandrine Faivre is a consultant for Merck, Pfizer, Novartis, Bayer, and Lilly; and Eric Raymond is a consultant for Pfizer, Novartis, Bayer, and Lilly. Other authors have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric Raymond.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Neuzillet, C., Tijeras-Raballand, A., Cros, J. et al. Stromal expression of SPARC in pancreatic adenocarcinoma. Cancer Metastasis Rev 32, 585–602 (2013). https://doi.org/10.1007/s10555-013-9439-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10555-013-9439-3

Keywords

Navigation