Skip to main content

Graphene-Enhanced Metamaterials for THz Applications

  • Chapter
Fundamental and Applied Nano-Electromagnetics

Abstract

Terahertz (THz) radiation is gaining momentum in biology, medicine, communication, security, chemistry, and spectroscopy applications. To expand the usability of terahertz radiation the man-made metal-dielectric composite metamaterials are typically considered owing to their ability to effectively manipulate electromagnetic waves. The possibilities of light manipulation can be extended even more by involving new active materials as a structural component – such as, for example, graphene. Its prominent conductivity tunability through the electrochemical potential change allows converting a multilayer graphene/dielectric structure into an artificial medium with widely varying properties – transparent or opaque, plasmonic, low-index or high-index dielectric – in a certain THz or infra-red frequency range. This chapter presents several examples of effective THz components like absorbers, modulators, and filters based on graphene-dielectric multilayers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Tonouchi M (2001) Cutting-edge terahertz technology. Nature 2:97–105

    Google Scholar 

  2. Siegel PH (2004) Terahertz technology in biology and medicine. IEEE Trans Microw Theory Tech 52:2438–2447

    Article  ADS  Google Scholar 

  3. Jepsen PU, Cooke DG, Koch M (2011) Terahertz spectroscopy and imaging – modern techniques and applications. Laser Photon Rev 5:124–166

    Article  Google Scholar 

  4. Chen H-T, O’Hara JF, Azad AK, Taylor AJ (2011) Manipulation of terahertz radiation using metamaterials. Laser Photon Rev 5:513–533

    Article  Google Scholar 

  5. Rahm M, Li JS, Padilla W (2013) THz wave modulators: a brief review on different modulation techniques. J Infrared Millim Terahertz Waves 34:1–27

    Article  Google Scholar 

  6. Ferrari A et al (2015) Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems. Nanoscale 7:4598–4810

    Article  ADS  Google Scholar 

  7. Buron JD, Petersen DH, Bøggild P, Cooke DG, Hilke M, Sun J, Whiteway E, Nielsen PF, Hansen O, Yurgens A, Jepsen PU (2012) Graphene conductance uniformity mapping. Nano Lett 12:5074–5081

    Article  ADS  Google Scholar 

  8. Ren L, Zhang Q, Yao J, Sun Z, Kaneko R, Yan Z, Nanot S, Jin Z, Kawayama I, Tonouchi M, Tour JM, Kono J (2012) Terahertz and infrared spectroscopy of gated large-area graphene. Nano Lett 12:3711–3715

    Article  ADS  Google Scholar 

  9. Sharapov SG, Carbotte JP, Gusynin VP (2007) Magneto-optical conductivity in graphene. J Phys Condens Matter 19:026222

    Article  ADS  Google Scholar 

  10. Scharf B, Fabian J, Perebeinos V, Phaedon A (2013) Effects of optical and surface polar phonons on the optical conductivity of doped graphene. Phys Rev B 87:035414

    Article  ADS  Google Scholar 

  11. Bolotin KI, Sikes KJ, Jiang Z, Klimac M, Fudenberg G, Hone J, Kim P, Stormer HL (2008) Ultrahigh electron mobility in suspended graphene. Solid State Commun 146:351–355

    Article  ADS  Google Scholar 

  12. Hao Y, Bharathi MS, Wang L, Liu Y, Chen H, Nie S, Wang X, Chou H, Tan C, Fallahazad B, Ramanarayan H, Magnuson CW, Tutuc E, Yakobson BI, McCarty KF, Zhang Y-W, Kim P, Hone J, Colombo L, Ruoff RS (2013) The role of surface oxygen in the growth of large single-crystal graphene on copper. Science 342:720–723

    Google Scholar 

  13. Wang L, Meric I, Huang PY, Gao Q, Gao Y, Tran H, Taniguchi T, Watanabe K, Campos LM, Muller DA, Guo J, Kim P, Hone J, Shepard KL, Dean CR (2013) One-dimensional electrical contact to a two-dimensional material. Science 342:614–617

    Article  ADS  Google Scholar 

  14. Mikhailov SA, Ziegler K (2007) New electromagnetic mode in graphene. Phys Rev Lett 99:016803

    Article  ADS  Google Scholar 

  15. Khromova I, Andryieuski A, Lavrinenko AV (2014) Ultrasensitive terahertz/infrared waveguide modulators based on multilayer graphene metamaterials. Laser Photon Rev 8:916–923

    Article  Google Scholar 

  16. Grigorenko AN, Polini M, Novoselov KN (2012) Graphene plasmonics. Nat Photon 6:749–758

    Article  ADS  Google Scholar 

  17. Tassin P, Koschny T, Soukoulis CM (2012) Effective material parameter retrieval for thin sheets: theory and application to graphene, thin silver films, and single-layer metamaterials. Phys B Condens Matter 407:4062–4065

    Article  ADS  Google Scholar 

  18. Andryieuski A, Lavrinenko AV (2013) Graphene metamaterials based tunable terahertz absorber: effective surface conductivity approach. Opt Express 21:9144–9155

    Article  ADS  Google Scholar 

  19. Alaee R, Farhat M, Rockstuhl C, Lederer F (2012) A perfect absorber made of a graphene micro-ribbon metamaterial. Opt Express 20:28017–28024

    Article  ADS  Google Scholar 

  20. Fallahi A, Perruisseau-Carrier J (2012) Design of tunable biperiodic graphene metasurfaces. Phys Rev B 86:195408

    Article  ADS  Google Scholar 

  21. Yan H, Li X, Chandra B, Tulevski G, Wu Y, Freitag M, Zhu W, Avouris P, Xia F (2012) Tunable infrared plasmonic devices using graphene/insulator stacks. Nat Nanotechnol 7:330–334

    Article  ADS  Google Scholar 

  22. Nikitin A, Guinea F, Garcia-Vidal F, Martin-Moreno L (2012) Surface plasmon enhanced absorption and suppressed transmission in periodic arrays of graphene ribbons. Phys Rev B 85:081405

    Article  ADS  Google Scholar 

  23. Thongrattanasiri S, Koppens F, Garcia de Abajo E (2012) Complete optical absorption in periodically patterned graphene. Phys Rev Lett 108:047401

    Article  ADS  Google Scholar 

  24. Cunningham PD, Valdes NN, Vallejo FA, Hayden LM, Polishak B, Zhou X-H, Luo J, Jen AK-Y, Williams JC, Twieg RJ (2011) Broadband terahertz characterization of the refractive index and absorption of some important polymeric and organic electro-optic materials. J Appl Phys 109:043505

    Article  ADS  Google Scholar 

  25. Othman MAK, Guclu C, Capolino F (2013) Graphene-dielectric composite metamaterials: evolution from elliptic to hyperbolic wavevector dispersion and the transverse epsilon-near-zero condition. J Nanophotonics 7:073089

    Article  ADS  Google Scholar 

  26. Noginov MA, Barnakov YA, Zhu G, Tumkur T, Li H, Narimanov EE (2009) Bulk photonic metamaterial with hyperbolic dispersion. Appl Phys Lett 94:151105

    Article  ADS  Google Scholar 

  27. Jacob Z, Alekseyev LV, Narimanov EE (2006) Optical hyperlens: far-field imaging beyond the diffraction limit. Opt Express 14:8247–8256

    Article  ADS  Google Scholar 

  28. Belov PA, Hao Y, Sudhakaran S (2006) Subwavelength microwave imaging using an array of parallel conducting wires as a lens. Phys Rev B 73:033108

    Article  ADS  Google Scholar 

  29. Liu Z, Lee H, Xiong Y, Sun C, Zhang X (2007) Far-field optical hyperlens magnifying sub-diffraction-limited objects. Science 315:1686

    Article  ADS  Google Scholar 

  30. Andryieuski A, Lavrinenko AV, Chigrin DN (2012) Graphene hyperlens for terahertz radiation. Phys Rev B 86:121108(R)

    Google Scholar 

  31. Jacob Z, Alekseyev LV, Narimanov EE (2007) Semiclassical theory of the hyperlens. J Opt Soc Am A 24:52–59

    Article  ADS  Google Scholar 

  32. Silveirinha MG, Belov PA, Simovski CR (2007) Subwavelength imaging at infrared frequencies using an array of metallic nanorods. Phys Rev B 75:035108

    Article  ADS  Google Scholar 

  33. Drachev V, Podolskiy VA, Kildishev AV (2013) Hyperbolic metamaterials: new physics behind a classical problem. Opt Express 21:15048–15064

    Article  ADS  Google Scholar 

  34. Zhukovsky SV, Kidwai O, Sipe JE (2013) Physical nature of volume plasmon polaritons in hyperbolic metamaterials. Opt Express 21:14982–14987

    Article  ADS  Google Scholar 

  35. Zhukovsky SV, Andryieuski A, Sipe JE, Lavrinenko AV (2014) From surface to volume plasmons in hyperbolic metamaterials: general existence conditions for bulk high-k waves in metal-dielectric and graphene-dielectric multilayers. Phys Rev B 90:155429

    Article  ADS  Google Scholar 

  36. Tassin P, Koschny T, Soukoulis CM (2013) Graphene for terahertz applications. Science 341:620–621

    Article  ADS  Google Scholar 

  37. Weis R, Garcia-Pomar JL, Höh M, Reinhard B, Brodyanski A, Rahm M (2012) Spectrally wide-band terahertz wave modulator based on optically tuned graphene. ACS Nano 6: 9118–9124

    Article  Google Scholar 

  38. Sensale-Rodriguez B, Yan R, Kelly M (2012) Broadband graphene terahertz modulators enabled by intraband transitions. Nat Commun 3:780–787

    Article  ADS  Google Scholar 

  39. Lee SH, Choi M, Kim TT, Lee S, Liu M, Yin X, Choi HK, Choi CG, Choi SY, Lee SS, Zhang X, Min B (2012) Switching terahertz waves with gate-controlled active graphene metamaterials. Nat Mater 11:936–941

    Article  ADS  Google Scholar 

  40. Liu M, Yin X, Ulin-Avila E, Geng B, Zentgraf T, Ju L, Wang F, Zhang X (2011) A graphene-based broadband optical modulator. Nature 474:64–67

    Article  ADS  Google Scholar 

  41. Tamagnone M, Fallahi A, Mosig JR, Perruisseau-Carrier J (2014) Fundamental limits and near-optimal design of graphene modulators and non-reciprocal devices. Nat Photon 8:556–563

    Article  ADS  Google Scholar 

  42. Kleine-Ostmann T, Nagatsuma T (2011) A review on terahertz communications research. J Infrared Millim Terahertz Waves 32:143–171

    Article  Google Scholar 

  43. Reed GT, Mashanovich G, Gardes FY, Thomson DJ (2010) Silicon optical modulators. Nat Photon 4:518–526

    Article  ADS  Google Scholar 

  44. Harrington JA (2000) A review of IR transmitting hollow waveguides. Fiber Integr Opt 19: 211–227

    Article  ADS  Google Scholar 

  45. Abel-Tiberini L, Labadie L, Arezki B, Kern P, Grille R, Labeye P, Broquin J-E (2007) Transmission behaviors of single mode hollow metallic waveguides dedicated to mid-infrared nulling interferometry. Opt Express 15:18005–18013

    Article  ADS  Google Scholar 

  46. http://www.photonics.com/edu/handbook.aspx

  47. Maldonado JR, Pianetta P, Dowell DH, Smedley J, Kneisel P (2010) Performance of a CsBr coated Nb photocathode at room temperature. J Appl Phys 107:013106

    Article  ADS  Google Scholar 

Download references

Acknowledgements

A.A. acknowledges the financial support from the Danish Council for Technical and Production Sciences through the GraTer project (Contract No. 0602-02135B). S.Z. acknowledges partial financial support from the People Programme (Marie Curie Actions) of the European Union’s 7th Framework Programme FP7-PEOPLE-2011-IIF under REA grant agreement No. 302009 (Project HyPHONE). I.K. acknowledges UPNA for financial support through a mobility grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrei V. Lavrinenko .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Andryieuski, A., Khromova, I., Zhukovsky, S.V., Lavrinenko, A.V. (2016). Graphene-Enhanced Metamaterials for THz Applications. In: Maffucci, A., Maksimenko, S.A. (eds) Fundamental and Applied Nano-Electromagnetics. NATO Science for Peace and Security Series B: Physics and Biophysics. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-7478-9_8

Download citation

Publish with us

Policies and ethics