Skip to main content

Biomimetic Gustatory Membrane-Based Taste Sensors

  • Chapter
  • First Online:
Bioinspired Smell and Taste Sensors
  • 1137 Accesses

Abstract

Electronic tongue is the classical tool for taste evaluation in different applications such as food evaluation [1], water [2], and process monitoring [3]; biomimetic membrane-based taste biosensor is another important approach for taste evaluation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kaneki N, Miura T, Shimada K, Tanaka H, Ito S, Hotori K, Akasaka C, Ohkubo S, Asano Y. Measurement of pork freshness using potentiometric sensor. Talanta. 2004;62(1):215–9.

    Article  CAS  PubMed  Google Scholar 

  2. Ha D, Hu N, Wu C, Kirsanov D, Legin A, Khaydukova M, Wang P. Novel structured light-addressable potentiometric sensor array based on PVC membrane for determination of heavy metals. Sens Actuators B: Chem. 2012;17459–64.

    Google Scholar 

  3. Winquist F, Bjorklund R, Krantz-Rülcker C, Lundström I, Östergren K, Skoglund T. An electronic tongue in the dairy industry. Sens Actuators B: Chem. 2005;111299–304.

    Google Scholar 

  4. Bencharit S. History of Progress and Challenges in Structural Biology. J Pharmacogenom Pharmacoproteomics S. 2012; 42153–0645.

    Google Scholar 

  5. Weiss S. Fluorescence spectroscopy of single biomolecules. Science. 1999;283(5408):1676–83.

    Article  CAS  PubMed  Google Scholar 

  6. Finer JT, Simmons RM, Spudich JA. Single myosin molecule mechanics: piconewton forces and nanometre steps. Nature. 1994;368(6467):113–9.

    Article  CAS  PubMed  Google Scholar 

  7. Shen Y-X, Saboe PO, Sines IT, Erbakan M, Kumar M. Biomimetic membranes: a review. J Membr Sci. 2014; 454359–381.

    Google Scholar 

  8. Lenau T, Stroble J, Stone R, Watkins S. An overview of biomimetic sensor technology. Sens Rev. 2009;29(2):112–9.

    Article  Google Scholar 

  9. Toko K. Biomimetic sensor technology. Cambridge University Press; 2000.

    Google Scholar 

  10. Huang W, Yang X, Wang E. Mimetic membrane for biosensors. Anal Lett. 2005;38(1):3–18.

    Article  CAS  Google Scholar 

  11. Winter R, Dzwolak W. Exploring the temperature–pressure configurational landscape of biomolecules: from lipid membranes to proteins. Philos Trans R Soc A: Math, Phys Eng Sci. 1827;2005(363):537–63.

    Google Scholar 

  12. Tian W-J, Sasaki Y, Fan S-D, Kikuchi J-I. Switching of enzymatic activity through functional connection of molecular recognition on lipid bilayer membranes. Supramol Chem. 2005;17(1–2):113–9.

    Article  CAS  Google Scholar 

  13. Fahy E, Subramaniam S, Brown HA, Glass CK, Merrill AH, Murphy RC, Raetz CR, Russell DW, Seyama Y, Shaw W. A comprehensive classification system for lipids. J Lipid Res. 2005;46(5):839–62.

    Article  CAS  PubMed  Google Scholar 

  14. Sleytr UB, Messner P, Pum D, Sara M. Crystalline bacterial cell surface layers (S layers): from supramolecular cell structure to biomimetics and nanotechnology. Angew Chem Int Ed. 1999;38(8):1034–54.

    Article  CAS  Google Scholar 

  15. Ilk N, Egelseer EM, Sleytr UB. S-layer fusion proteins—construction principles and applications. Curr Opin Biotechnol. 2011;22(6):824–31.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Cashion MP, Long TE. Biomimetic design and performance of polymerizable lipids. Acc Chem Res. 2009;42(8):1016–25.

    Article  CAS  PubMed  Google Scholar 

  17. Mueller P, Rudin DO, Ti Tien H, Wescott WC. Reconstitution of cell membrane structure in vitro and its transformation into an excitable system. Nature. 1962; 194979–980.

    Google Scholar 

  18. Montal M, Mueller P. Formation of bimolecular membranes from lipid monolayers and a study of their electrical properties. Proc Natl Acad Sci. 1972;69(12):3561–6.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Cruz A, Pérez-Gil J. Langmuir films to determine lateral surface pressure on lipid segregation, in Methods in Membrane Lipids. Springer; 2007. p. 439–457.

    Google Scholar 

  20. Lin W-C, Blanchette CD, Ratto TV, Longo ML. Lipid domains in supported lipid bilayer for atomic force microscopy, in Methods in membrane lipids. Springer; 2007, p. 503–513.

    Google Scholar 

  21. Elie-Caille C, Fliniaux O, Pantigny J, Maziere J-C, Bourdillon C. Self-Assembly of solid-supported membranes using a triggered fusion of phospholipid-enriched proteoliposomes prepared from the inner mitochondrial membrane1. Langmuir. 2005;21(10):4661–8.

    Article  CAS  PubMed  Google Scholar 

  22. Nielsen CH. Biomimetic membranes for sensor and separation applications. Anal Bioanal Chem. 2009;395(3):697–718.

    Article  CAS  PubMed  Google Scholar 

  23. Zhang L, Granick S. Dynamical heterogeneity in supported lipid bilayers. MRS Bull. 2006;31(07):527–31.

    Article  CAS  Google Scholar 

  24. Tanaka M. Polymer-supported membranes: physical models of cell surfaces. MRS Bull. 2006;31(07):513–20.

    Article  CAS  Google Scholar 

  25. Sackmann E, Tanaka M. Supported membranes on soft polymer cushions: fabrication, characterization and applications. Trends Biotechnol. 2000;18(2):58–64.

    Article  CAS  PubMed  Google Scholar 

  26. Rossi C, Chopineau J. Biomimetic tethered lipid membranes designed for membrane-protein interaction studies. Eur Biophys J. 2007;36(8):955–65.

    Article  CAS  PubMed  Google Scholar 

  27. Gagner J, Johnson H, Watkins E, Li Q, Terrones M, Majewski J. Carbon nanotube supported single phospholipid bilayer. Langmuir. 2006;22(26):10909–11.

    Article  CAS  PubMed  Google Scholar 

  28. Jeon T-J, Malmstadt N, Schmidt JJ. Hydrogel-encapsulated lipid membranes. J Am Chem Soc. 2006;128(1):42–3.

    Article  CAS  PubMed  Google Scholar 

  29. Shim JW, Gu LQ. Stochastic sensing on a modular chip containing a single-ion channel. Anal Chem. 2007;79(6):2207–13.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Schuster B, Sleytr UB. The effect of hydrostatic pressure on S-layer-supported lipid membranes. Biochimica et Biophysica Acta (BBA)-Biomembranes, 2002;1563(1): 29–34.

    Google Scholar 

  31. Sleytr UB, Egelseer EM, Ilk N, Pum D, Schuster B. S-Layers as a basic building block in a molecular construction kit. FEBS J. 2007;274(2):323–34.

    Article  CAS  PubMed  Google Scholar 

  32. Ndoni S, Vigild ME, Berg RH. Nanoporous materials with spherical and gyroid cavities created by quantitative etching of polydimethylsiloxane in polystyrene-polydimethylsiloxane block copolymers. J Am Chem Soc. 2003;125(44):13366–7.

    Article  CAS  PubMed  Google Scholar 

  33. Seifert K, Fendler K, Bamberg E. Charge transport by ion translocating membrane proteins on solid supported membranes. Biophys J. 1993;64(2):384–91.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  34. Zebrowska A, Krysinski P. Incorporation of Na + , K + -ATP-ase into the thiolipid biomimetic assemblies via the fusion of proteoliposomes. Langmuir. 2004;20(25):11127–33.

    Article  CAS  PubMed  Google Scholar 

  35. Helix Nielsen C, Abdali S, Lundbæk JA, Cornelius F. Raman spectroscopy of conformational changes in membrane-bound sodium potassium ATPase. Spectroscopy. 2007;22(2): 52–63.

    Google Scholar 

  36. LaVan DA, Cha JN. Approaches for biological and biomimetic energy conversion. Proc Natl Acad Sci. 2006;103(14):5251–5.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  37. Oesterhelt D, Stoeckenius W. Functions of a new photoreceptor membrane. Proc Natl Acad Sci. 1973;70(10):2853–7.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  38. Gruia AD, Bondar A-N, Smith JC, Fischer S. Mechanism of a molecular valve in the halorhodopsin chloride pump. Structure. 2005;13(4):617–27.

    Article  CAS  PubMed  Google Scholar 

  39. Jiang Y, Lee A, Chen J, Ruta V, Cadene M, Chait BT, MacKinnon R. X-ray structure of a voltage-dependent K+ channel. Nature. 2003;423(6935):33–41.

    Article  CAS  PubMed  Google Scholar 

  40. DeCoursey TE. Voltage-gated proton channels. Cell Mol Life Sci. 2008;65(16):2554–73.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  41. Agre P, Sasaki S, Chrispeels M. Aquaporins: a family of water channel proteins. Am J Physiol-Ren Physiol. 1993;265(3):F461–F461.

    CAS  Google Scholar 

  42. Németh-Cahalan KL, Hall JE. pH and calcium regulate the water permeability of aquaporin 0. J Biol Chem. 2000;275(10):6777–82.

    Article  PubMed  Google Scholar 

  43. Johansson I, Karlsson M, Shukla VK, Chrispeels MJ, Larsson C, Kjellbom P. Water transport activity of the plasma membrane aquaporin PM28A is regulated by phosphorylation. Plant Cell Online. 1998;10(3):451–9.

    Article  CAS  Google Scholar 

  44. Zeuthen T, Klaerke DA. Transport of water and glycerol in aquaporin 3 is gated by H+. J Biol Chem. 1999;274(31):21631–6.

    Article  CAS  PubMed  Google Scholar 

  45. Toko K, Nitta J, Yamafuji K. Dynamic aspect of a phase transition in DOPH-millipore membranes. J Phys Soc Jpn. 1981;50(4):1343–50.

    Article  CAS  Google Scholar 

  46. Toko K, Yamafuji K. Stabilization effect of protons and divalent cations on membrane structures of lipids. Biophys Chem. 1981;14(1):11–23.

    Article  CAS  PubMed  Google Scholar 

  47. Toko K, Ryu K, Ezaki S, Yamafuji K. Self-sustained oscillations of membrane potential in DOPH-millipore membranes. J Phys Soc Jpn. 1982;51(10):3398–405.

    Article  CAS  Google Scholar 

  48. Toko K, Tsukiji M, Ezaki S, Yamafuji K. Current-voltage characteristics and self-sustained oscillations in dioleyl phosphate-millipore membranes. Biophys Chem. 1984;20(1):39–59.

    Article  CAS  PubMed  Google Scholar 

  49. Toko K, Nosaka M, Tsukiji M, Yamafuji K. Dynamic property of membrane formation in a protoplasmic droplet of nitella. Biophys Chem. 1985;21(3):295–313.

    Article  CAS  PubMed  Google Scholar 

  50. Toko K, Tsukiji M, Iiyama S, Yamafuji K. Self-sustained oscillations of electric potential in a model membrane. Biophys Chem. 1986;23(3):201–10.

    Article  CAS  PubMed  Google Scholar 

  51. Toko K, Nakashima N, Iiyama S, Yamafuji K, Kunitake T. Self-oscillation of electric potential of a porous membrane impregnated with polymer multi-bilayer complexes. Chem Lett. 1986;8:1375–8.

    Article  Google Scholar 

  52. Hayashi K, Yamanaka M, Toko K, Yamafuji K. Multichannel taste sensor using lipid membranes. Sens Actuators B: Chem. 1990;2(3):205–13.

    Article  CAS  Google Scholar 

  53. Murata T, Hayashi K, Toko K, Ikezaki H. Quantification of Sourness and Saltiness Using a Multichannel Sensor with Lipid Membranes (S & M 0100). Sens and Mater. 1992; 481–81.

    Google Scholar 

  54. Toko K, Matsuno T, Yamafuji K, Hayashi K, Ikezaki H, Sato K, Toukubo R, Kawarai S. Multichannel taste sensor using electric potential changes in lipid membranes. Biosens Bioelectron. 1994;9(4):359–64.

    Article  CAS  PubMed  Google Scholar 

  55. Hayashi K, Toko K, Yamanaka M, Yoshihara H, Yamafuji K, Ikezaki H, Toukubo R, Sato K. Electric characteristics of lipid-modified monolayer membranes for taste sensors. Sens Actuators B: Chem. 1995;23(1):55–61.

    Article  CAS  Google Scholar 

  56. Ninomiya Y, Funakoshi M. Qualitative discrimination among “umami” and the four basic taste substances in mice. Umami: a basic taste. 1987; 365–385.

    Google Scholar 

  57. Schiffman SS, Suggs MS, Sostman L, Simon SA. Chorda tympani and lingual nerve responses to astringent compounds in rodents. Physiol Behav. 1992;51(1):51–63.

    Article  Google Scholar 

  58. Bajec MR, Pickering GJ. Astringency: mechanisms and perception. Crit Rev Food Sci Nutr. 2008;48(9):858–75.

    Article  CAS  PubMed  Google Scholar 

  59. Singer SJ, Nicolson GL. The fluid mosaic model of the structure of cell membranes. Science. 1972;175(23):720–31.

    Article  CAS  PubMed  Google Scholar 

  60. Chandrashekar J, Hoon MA, Ryba NJ, Zuker CS. The receptors and cells for mammalian taste. Nature. 2006;444(7117):288–94.

    Article  CAS  PubMed  Google Scholar 

  61. Reed DR, Nanthakumar E, North M, Bell C, Bartoshuk LM, Price RA. Localization of a gene for bitter-taste perception to human chromosome 5p15. Am J Hum Genet. 1999;64(5):1478.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  62. Chandrashekar J, Mueller KL, Hoon MA, Adler E, Feng L, Guo W, Zuker CS, Ryba NJ. T2Rs function as bitter taste receptors. Cell. 2000;100(6):703–11.

    Article  CAS  PubMed  Google Scholar 

  63. Ishimaru Y, Inada H, Kubota M, Zhuang H, Tominaga M, Matsunami H. Transient receptor potential family members PKD1L3 and PKD2L1 form a candidate sour taste receptor. Proc Natl Acad Sci. 2006;103(33):12569–74.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  64. Lyall V, Heck GL, Vinnikova AK, Ghosh S. Phan T-HT, Alam RI, Russell OF, Malik SA, Bigbee JW, DeSimone JA. The mammalian amiloride-insensitive non-specific salt taste receptor is a vanilloid receptor-1 variant. J Physiol. 2004;558(1):147–59.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  65. Kobayashi Y, Habara M, Ikezazki H, Chen R, Naito Y, Toko K. Advanced taste sensors based on artificial lipids with global selectivity to basic taste qualities and high correlation to sensory scores. Sensors. 2010;10(4):3411–43.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  66. Ishii S, Misaka T, Kishi M, Kaga T, Ishimaru Y, Abe K. Acetic acid activates PKD1L3–PKD2L1 channel—A candidate sour taste receptor. Biochem Biophys Res Commun. 2009;385(3):346–50.

    Article  CAS  PubMed  Google Scholar 

  67. Kellenberger S, Schild L. Epithelial sodium channel/degenerin family of ion channels: a variety of functions for a shared structure. Physiol Rev. 2002;82(3):735–67.

    Article  CAS  PubMed  Google Scholar 

  68. Nakashima K, Ninomiya Y. Increase in inositol 1, 4, 5-trisphosphate levels of the fungiform papilla in response to saccharin and bitter substances in mice. Cell Physiol Biochem. 1998;8(4):224–30.

    Article  CAS  PubMed  Google Scholar 

  69. Nakashima K, Ninomiya Y. Transduction for sweet taste of saccharin may involve both inositol 1, 4, 5-trisphosphate and cAMP pathways in the fungiform taste buds in C57BL mice. Cell Physiol Biochem. 1999;9(2):90–8.

    Article  CAS  PubMed  Google Scholar 

  70. DeSimone JA, Lyall V, Heck GL, Feldman GM. Acid detection by taste receptor cells. Respir Physiol. 2001;129(1):231–45.

    Article  CAS  PubMed  Google Scholar 

  71. Zhang Y, Hoon MA, Chandrashekar J, Mueller KL, Cook B, Wu D, Zuker CS, Ryba NJ. Coding of sweet, bitter, and umami tastes: different receptor cells sharing similar signaling pathways. Cell. 2003;112(3):293–301.

    Article  CAS  PubMed  Google Scholar 

  72. Ikezaki H, Kobayashi Y, Toukubo R, Naito Y, Taniguchi A, Toko K. Techniques to control sensitivity and selectivity of multichannel taste sensor using lipid membranes. In: Proceedings of the 10th International Conference on Solid-State Sensors and Actuators. 1999.

    Google Scholar 

  73. Ikezaki H, Naito Y, Kobayashi Y, Toukubo R, Taniguchi A, Toko K. Improvement of selectivity of taste sensor by control of charge density and hydrophobicity of lipid membrane. Technical Report of IEICE. OME. 2000;10019–24.

    Google Scholar 

  74. Kumazawa T, Kashiwayanagi M, Kurihara K. Neuroblastoma cell as a model for a taste cell: mechanism of depolarization in response to various bitter substances. Brain Res. 1985;333(1):27–33.

    Article  CAS  PubMed  Google Scholar 

  75. Donovan SF, Pescatore MC. Method for measuring the logarithm of the octanol–water partition coefficient by using short octadecyl–poly (vinyl alcohol) high-performance liquid chromatography columns. J Chromatogr A. 2002;952(1):47–61.

    Article  CAS  PubMed  Google Scholar 

  76. Gulyaeva N, Zaslavsky A, Lechner P, Chait A, Zaslavsky B. pH dependence of the relative hydrophobicity and lipophilicity of amino acids and peptides measured by aqueous two-phase and octanol–buffer partitioning. J Pep Res. 2003;61(2):71–9.

    Article  CAS  Google Scholar 

  77. Kobayashi Y, Hamada H, Yamaguchi Y, Ikezaki H, Toko K. Development of an Artificial Lipid-Based Membrane Sensor with High Selectivity and Sensitivity to the Bitterness of Drugs and with High Correlation with Sensory Score. IEEJ Trans Electr Electron Eng. 2009;4(6):710–9.

    Article  CAS  Google Scholar 

  78. Ciosek P, Wróblewski W. Sensor arrays for liquid sensing–electronic tongue systems. Analyst. 2007;132(10):963–78.

    Article  CAS  PubMed  Google Scholar 

  79. Tahara Y, Toko K. Electronic Tongues–A Review. Sens J IEEE. 2013;13(8):3001–11.

    Article  Google Scholar 

  80. Mizota Y, Matsui H, Ikeda M, Ichihashi N, Iwatsuki K, Toko K. Flavor evaluation using taste sensor for UHT processed milk stored in cartons having different light permeabilities. Milchwissenschaft. 2009;64(2):143–6.

    CAS  Google Scholar 

  81. Uyen Tran T, Suzuki K, Okadome H, Homma S, Ohtsubo Ki. Analysis of the tastes of brown rice and milled rice with different milling yields using a taste sensing system. Food Chem. 2004;88(4):557–566.

    Google Scholar 

  82. Sasaki K, Tani F, Sato K, Ikezaki H, Taniguchi A, Emori T, Iwaki F, Chikuni K, Mitsumoto M. Analysis of pork extracts by taste sensing system and the relationship between umami substances and sensor output. Sens Mater. 2005;17(7):397–404.

    CAS  Google Scholar 

  83. Chen R, Hidekazu I, Toko K. Development of Sensor with High Selectivity for Saltiness and Its Application in Taste Evaluation of Table Salt. Sens Mater. 2010;22(6):313–25.

    Google Scholar 

  84. Cui S, Wang J, Geng L, Wei Z, Tian X. Determination of Ginseng with Different Ages Using a Taste-Sensing System. Sens Mater. 2013;25(4):241–55.

    Google Scholar 

  85. Toko K. Taste sensor. Sens Actuators B: Chem. 2000;64(1):205–15.

    Article  CAS  Google Scholar 

  86. Taniguchi A, Naito Y, Maeda N, Sato Y, Ikezaki H. Development of a monitoring system for water quality using a taste sensor. Sens Mater. 1999;11(7):437–46.

    CAS  Google Scholar 

  87. Okamoto M, Sunada H, Nakano M, Nishiyama R. Bitterness evaluation of orally disintegrating famotidine tablets using a taste sensor. Asian J Pharm Sci. 2009; 41–7.

    Google Scholar 

  88. Uchida T, Miyanaga Y, Tanaka H, Wada K, Kurosaki S, Ohki T, Yoshida M, Matsuyama K. Quantitative evaluation of the bitterness of commercial medicines using a taste sensor. channels. 2000;24.

    Google Scholar 

  89. Uchida T, Kobayashi Y, Miyanaga Y, Toukubo R, Ikezaki H, Taniguchi A, Nishikata M, Matsuyama K. A new method for evaluating the bitterness of medicines by semi-continuous measurement of adsorption using a taste sensor. Chem Pharm Bull. 2001;49(10):1336–9.

    Article  CAS  PubMed  Google Scholar 

  90. Miyanaga Y, Tanigake A, Nakamura T, Kobayashi Y, Ikezaki H, Taniguchi A, Matsuyama K, Uchida T. Prediction of the bitterness of single, binary-and multiple-component amino acid solutions using a taste sensor. Int J Pharm. 2002;248(1):207–18.

    Article  CAS  PubMed  Google Scholar 

  91. Takagi S, Toko K, Wada K, Yamada H, Toyoshima K. Detection of suppression of bitterness by sweet substance using a multichannel taste sensor. J Pharm Sci. 1998;87(5):552–5.

    Article  CAS  PubMed  Google Scholar 

  92. Takagi S, Toko K, Wada K, Ohki T. Quantification of suppression of bitterness using an electronic tongue. J Pharm Sci. 2001;90(12):2042–8.

    Article  CAS  PubMed  Google Scholar 

  93. Nakamura T, Tanigake A, Miyanaga Y, Ogawa T, Akiyoshi T, Matsuyama K, Uchida T. The effect of various substances on the suppression of the bitterness of quinine–human gustatory sensation, binding, and taste sensor studies. Chem Pharm Bull. 2002;50(12):1589–93.

    Article  CAS  PubMed  Google Scholar 

  94. Woertz K, Tissen C, Kleinebudde P, Breitkreutz J. Performance qualification of an electronic tongue based on ICH guideline Q2. J Pharm Biomed Anal. 2010;51(3):497–506.

    Article  CAS  PubMed  Google Scholar 

  95. Uekama K. Design and evaluation of cyclodextrin-based drug formulation. Chem Pharm Bull. 2004;52(8):900–15.

    Article  CAS  PubMed  Google Scholar 

  96. Katsuragi Y, Sugiura Y, Lee C, Otsuji K, Kurihara K. Selective inhibition of bitter taste of various drugs by lipoprotein. Pharm Res. 1995;12(5):658–62.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hao Wan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Science Press, Beijing and Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Wan, H., Ha, D., Wang, P. (2015). Biomimetic Gustatory Membrane-Based Taste Sensors. In: Wang, P., Liu, Q., Wu, C., Hsia, K. (eds) Bioinspired Smell and Taste Sensors. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-7333-1_13

Download citation

Publish with us

Policies and ethics