Development of diatom-based salinity models for paleoclimatic research from lakes in British Columbia (Canada)

  • Brian F. Cumming
  • John P. Smol
Conference paper
Part of the Developments in Hydrobiology book series (DIHY, volume 90)


Diatoms were identified and enumerated from the surface sediments of 65 lakes located on the Cariboo and Chilcotin Plateaux (British Columbia, Canada). These lakes span a large gradient in lakewater ionic concentration (fresh through hypersaline) and composition, as well as other physical/chemical variables. Almost all of the study lakes had higher salinities in the late-summer than in the spring. The lakes with spring salinities > 8 g l−1 showed the largest seasonal increases in salinity Ionic composition was similar in the spring and late-summer for most lakes. Both ionic concentration (i e salinity) and composition were important environmental variables that could account for the different diatom floras in the lakes. Diatom assemblages characteristic of carbonate-dominated and sulfate-dominated waters were identified. Other variables such as water depth and phosphorus concentration were also important.

The majority (87%) of diatom taxa had estimated salinity optima <3 g 1−1. Halophilic diatom taxa had broader tolerances to salinity when compared to the fresh water taxa, however taxa with narrow and broad tolerances could be identified across the salinity gradient. Species diversity was weakly but significantly correlated to lakewater salinity (r 2 = 0.18 to 0.3, P>0.05).

Salinity inference models were developed based on the relationship between the diatom assemblages and the spring, late-summer and average salinity. The correlations between the measured and diatom-inferred salinity, based on the spring (r=0.95), late-summer (r=0.94) and average (r=0.95) salinity data, are high because there was an extremely strong correlation (r=0.98) between the log transformed spring and late-summer measured salinities. These salinity reconstruction models provide a tool that can be used to infer past climatic changes as part of paleolimnological studies from appropriate closed-basin lakes in British Columbia.

Key words

diatoms salinity saline lakes canonical correspondence analysis weighted-averaging paleoclimate British Columbia Canada 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. American Public Health Association, 1980. Standard Methods for the Examination of Water and Wastewater, 15th edn. Washington, D.C.Google Scholar
  2. Birks, H.J.B., S. Juggins J.M. Line, 1990a. Lake surface-water chemistry reconstructions from palaeolimnological data. In B.J. Mason (ed.), The Surface Waters Acidification Programme. Cambridge University Press, Cambridge: 301–313.Google Scholar
  3. Birks, H.J.B., J.M. Line, S. Juggins, A.C. Stevenson C.J.F. ter Braak, 1990b. Diatoms and pH reconstruction. Phil. Trans. r. Soc. Lond. B 327: 263–278.Google Scholar
  4. Bradbury, J.P., R.M. Forester R.S. Thompson, 1989. Late Quaternary paleolimnology of Walker Lake, Nevada. J. Paleolimnol 1. 249–267.Google Scholar
  5. Camburn, K.E., J.C. Kingston D.F. Charles (eds), 19841986. PIRLA Diatom Iconograph. Report No. 3. PIRLA Unpublished Report Series, 53 photographic plates, 1059 figures. Dept. of Biology, Indiana Univ., Bloomington, IN.Google Scholar
  6. Cumming, B.F, J.P. Smol H.J.B. Birks, 1992. Scaled chrysophytes (Chrysophyceae and Synurophyceae) from Adirondack drainage lakes and their relationship to measured environmental variables. J. Phycol. 28: 162–178.Google Scholar
  7. Eugster, H.P. L.A. Hardie, 1978. Saline Lakes. In A. Lerman (ed.), Lakes: Chemistry, Geology, Physics. Springer-Verlag, New York: 237–293.Google Scholar
  8. Fontes, J. C. F. Gasse, 1991. PALHYDAF (Palaeohydrology in Africa) program: objectives, methods, major results. Palaeogeogr. Palaeoclimatol. Palaeoecol. 84: 191–215.Google Scholar
  9. Fritz, S.C., 1990. Twentieth-century salinity and water-level fluctuations in Devils Lake, North Dakota: Test of a diatom based transfer function. Limnol. Oceanogr. 35: 17711781.Google Scholar
  10. Fritz, S.C. R.W. Battarbee, 1988. Sedimentary diatom assemblages in freshwater and saline lakes of the Northern Great Plains, North America: preliminary results. In F.E. Round (ed.), Proceedings of the 9th International Diatom Symposium. Koeltz Scientific Books, Koenigstein: 265271.Google Scholar
  11. Fritz, S.C., S. Juggins, R.W. Battarbee D.R. Engstrom, 1991. Reconstruction of past changes in salinity and climate using a diatom-based transfer function. Nature 352: 706–708.CrossRefGoogle Scholar
  12. Fritz, S.C., S. Juggins, R.W. Battarbee. 1993. Diatom 195 assemblages and ionic characterization of lakes of the northern Great Plains, N.A.: A tool for reconstructing past salinity and climatic fluctuation. Can. J. Fish. aquat. Sci. (in press).Google Scholar
  13. Gasse, F., 1983. Diatom assemblages in East Africa: classification, distribution, and ecology. Revue. Hydrobiol. trop. 16: 3–34.Google Scholar
  14. Gasse, F., J.C. Fontes, J.C. Plaziat, P. Carbonel, I. Kaczmarska, P. De Decker, I. Soulié-Märsche, Y. Callot P.A. Dupeuble, 1987. Biological remains, geochemistry and stable isotopes for the reconstruction of environmental and hydrological changes in the Holocene lakes from North Sahara. Palaeogeogr. Palaeoclimatol. Palaeoecol. 60: 1–46.Google Scholar
  15. Germain, H., 1981. Flore des diatomées: Diatomophycées. Société Nouvelle des Éditions Boubée, Paris, 444 pp.Google Scholar
  16. Glew, J.R., 1991. Miniature gravity corer for recovering short sediment cores. J. Paleolimnol. 5: 285–287.CrossRefGoogle Scholar
  17. Häkansson, H., 1986. A taxonomic reappraisal of some Stephanodiscus species (Bacillariophyta). Br. Phycol. J. 21: 23–47.Google Scholar
  18. Hâkansson, H. E.F. Stoermer, 1984. Observations on the type material of Stephanodiscus hantzschii Grunow in Cleve Grunow. Nova Hedwigia 39: 477–495.Google Scholar
  19. Hall, R.I. J.P. Smol., 1992. A weighted-averaging regression and calibration model for inferring total phosphorus concentration from diatoms in British Columbia (Canada) lakes. Freshwat. Biol. 27: 417–434.Google Scholar
  20. Hill, M.O., 1973. Diversity and evenness: a unifying notation and its consequences. Ecology 54: 427–432.CrossRefGoogle Scholar
  21. Hill, M.O. H.G. Gauch, 1980. Detrended correspondence analysis, an improved ordination technique. Vegetatio 42: 47–58.CrossRefGoogle Scholar
  22. Hustedt, F., 1927–1966. Die Kieselalgen Deutschlands, Österreichs und der Schweiz. In Dr. L. Rabenhorst’s Kryptogamen-Flora von Deutschland, Österreich und der Schweiz, Akademische Verlagsgesellschaft, Leipzig, 3 Vols.Google Scholar
  23. Jeffery, D.A., 1989. Laboratory Quality Assurance Manual. Zenon Environmental Inc., Burnaby, 34 pp.Google Scholar
  24. Kolbe, R.W., 1927. Zur Ökologie, Morphologie und Systematik der Brackwasser-Diatomeen. Pflanzenforschung 7: 1–146.Google Scholar
  25. Krammer, K. H. Lange-Bertalot, 1986–1991. Bacillariophyceae. Süßwasserflora von Mitteleuropa, Band 2 (1–4). Gustav Fischer Verlag, Stuttgart, 4 Vols.Google Scholar
  26. Mathews, W.H., 1986. Physiography of the Canadian Cor- dillera. Geol. Surv. Can., Map. 1701A (1:5,000,000).Google Scholar
  27. Patrick, R., C. Reimer, 1966–1975. The diatoms of the United States exclusive of Alaska and Hawaii. The Academy of Natural Sciences Philadelphia, Philadelphia, 2 Vols.Google Scholar
  28. Renaut, R.W. 1990, Recent carbonate sedimentation and brine evolution in the saline lake basins of the Cariboo Plateau, British Columbia, Canada. Hydrobiologia 197: 67–81.Google Scholar
  29. Renaut, R.W. P.R. Long, 1987. Freeze-out precipitation of salts in saline lakes–examples from Western Canada. In G.L. Strathdee, M.O. Klein L.A. Melis (eds), Crystallization and precipitation. Pergamon, Oxford: 33–42.Google Scholar
  30. Renaut, R.W. P.R. Long, 1989. Sedimentology of the saline lakes of the Cariboo Plateau, Interior British Columbia, Canada. Sed. Geol. 64: 239–264.Google Scholar
  31. Servant-Vildary, S., 1986. Les diatomées actuelles des Andes de Bolivie (Taxonomie, écologie). Cah. de Micropaléontol., CNRS, 1, 3–4: 99–124.Google Scholar
  32. Servant-Vildary, S M. Roux, 1990. Multivariate analysis of diatoms and water chemistry in Bolivian saline lakes. Hydrobiologia 197: 267–290.CrossRefGoogle Scholar
  33. Smol, J.P., 1981. Problems associated with the use of `species diversity’ in paleolimnological studies. Quat. Res. 15: 209–212.Google Scholar
  34. Smol, J.P., 1983. Paleophycology of a high arctic lake near Cape Herschel, Ellesmere Island. Can. J. Bot. 61: 21952204.Google Scholar
  35. Stevenson, A.C., S. Juggins, H.J.B. Birks, D.S. Anderson, N.J. Anderson, R.W. Battarbee, F. Berge, R.B. Davis, R.J. Flower, E.Y. Haworth, V.J. Jones, J.C. Kingston, A.M. Kreiser, J.M. Line, M.A.R. Munro I. Renberg, 1991. The Surface Water Acidification Project Palaeolimnology Programme: Modern Diatom/Lake-Water Chemistry dataset. ENSIS Publishing, London, 86 pp.Google Scholar
  36. Street-Perrott, F.A. N. Roberts, 1983. Fluctuations in closed lakes as an indicator of past atmospheric circulation patterns, In F.A. Street-Perrott, M. Berman R. Ratcliffe (eds), Variation in the global water budget. D. Reidel Publishing Co., Dordrecht: 331–345.CrossRefGoogle Scholar
  37. Ter Braak, C.J.F., 1986. Canonical correspondence analysis: a new eigenvector technique for multivariate direct gradient analysis. Ecology 67: 1167–1178.CrossRefGoogle Scholar
  38. Ter Braak, C.J.F., 1987a. Ordination. In R.H.G. Jongman, C.J.F. ter Braak O.F.R. van Tongeren (eds), Data analysis in community and landscape ecology. Pudoc, Wageningen, The Netherlands: 91–173.Google Scholar
  39. Ter Braak, C.J.F., 1987b. Calibration. In R.H.G. Jongman, C.J.F. ter Braak O.F.R. van Tongeren (eds), Data analysis in community and landscape ecology. Pudoc, Wageningen, The Netherlands: 79–90.Google Scholar
  40. Ter Braak, C.J.F., 1987c. CANOCO - A FORTRAN program for Canonical Community Ordination. Ithaca, NY, USA: Microcomputer Power.Google Scholar
  41. Ter Braak, C.J.F. 1988. CANOCO - A FORTRAN program for canonical community ordination by [partial] [de-trended] [canonical] correspondence analysis, principal components analysis, redundancy analysis (version 2.1). Agricultural Mathematics Group, The Netherlands. Technical Report LWA-88–02, Wageningen, 95 pp.Google Scholar
  42. Ter Braak, C.J.F., 1990a. Update Notes: CANOCO version 3.10. Agricultural Mathematics Group, Wageningen, The Netherlands, 35 pp.Google Scholar
  43. Ter Braak, C.J.F. C.W.N. Looman, 1987. Regression. In R.H.G. Jongman, C.J.F. ter Braak O.F.R. van Tongeren (eds), Data analysis in community and landscape ecology. Pudoc, Wageningen, The Netherlands: 29–77.Google Scholar
  44. Ter Braak, C.J.F. H. van Dam, 1989. Inferring pH from diatoms: a comparison of old and new calibration methods. Hydrobiologia 178: 209–223.CrossRefGoogle Scholar
  45. Topping, M.S. G.G. Scudder, 1977. Some physical and chemical features of saline lakes in central British Columbia. Synsis 10: 145–166.Google Scholar
  46. Valentine, K.W.G. A. Schori, 1980. Soils of the Lac La Hache — Clinton area, British Columbia. Report No. 25 of the British Columbia Soil Survey, Victoria, B.C., 118 pp.Google Scholar
  47. Williams, W.D., A.J. Boulton R.G. Taaffe, 1990. Salinity as a determinant of salt lake fauna: a question of scale. Hydrobiologia 197: 257–266.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1993

Authors and Affiliations

  • Brian F. Cumming
    • 1
  • John P. Smol
    • 1
  1. 1.Paleoecological Environmental Assessment and Research Laboratory (PEARL), Department of BiologyQueen’s UniversityKingstonCanada

Personalised recommendations