Skip to main content

Luminescent optical fibers in sensing

  • Chapter
Optical Fiber Sensor Technology

Part of the book series: Optoelectronics, Imaging and Sensing ((OISS,volume 4))

Abstract

The development of fibers doped with materials through which luminescence is generated has a long history, which follows upon the original proposal by Snitzer [1] in the early 1960s of the use of an optical fiber geometry for lasers and optical amplification, employing 300 μm core diameter neodymium doped fiber. Subsequent development of this concept has been the major reason for the production of a range of different types of optical fiber, doped with appropriate materials to show fluorescence. Only ions that belong to the lanthanide group of rare earths have been observed to allow laser oscillation in a fiber geometry, as these ions possess a number of distinct features which make them attractive for use as a laser medium. These benefits apply equally (but under less rigorous conditions) to their use as fluorescent sources where the need to generate stimulated emission is not present, and so strong, noncoherent fluorescent light arising from spontaneous emission is the primary output. The fiber geometry, however, provides a very useful constraint on the propagation of the light beam, and so an intense directional emission can be achieved from a fluorescing fiber when monitoring the light emerging at either end. The discussion of the use of luminescent fibers in sensing in this chapter excludes the considerable use of optical fiber in lasers and amplifiers, either as sources for optical sensing or for other purposes, such as optical communications and in optical fiber laser sensors themselves. Both these topics have been discussed in some detail, the former by Langford [2] and the latter by Kim [3]. Further, the use of other luminescent phenomena such as are produced by nonlinear effects, typically Raman and Brillouin scattering, are also not discussed in this section, as again they have been considered extensively elsewhere, for example in the work of Grattan and Zhang [4] and Rogers [5].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. E. Snitzer, `Optical laser action of Nd3+ in a barium crown glass,’ Phys. Rev. Lett., 72, 1961, 36.

    Google Scholar 

  2. N. Langford, `Optical fiber lasers,’ in Optical Fiber Sensor Technology, 2. Devices and Technology (eds. K. T. V. Grattan and B. T. Meggitt ). Chapman and Hall, London, 1998, pp. 37–98.

    Chapter  Google Scholar 

  3. B. Y. Kim, `Fiber lasers in optical sensors,’ in Optical Fiber Sensor Technology, 2. Devices and Technology (eds. K. T. V. Grattan and B. T. Meggitt ). Chapman and Hall, London, 1998, pp. 99–115.

    Google Scholar 

  4. K. T. V. Grattan and Z. Y. Zhang, `Fiber optic luminescent thermometry,’ in Optical Fiber Sensor Technology, 4. Chemical and Environmental Sensing (eds. K. T. V. Grattan and B. T. Meggitt ). Kluwer Academic Publishers, Dordrecht, The Netherlands, 1998, pp. 133–203.

    Chapter  Google Scholar 

  5. A. J. Rogers, Essentials of Optoelectronics. Chapman and Hall, London, 1998, p. 329.

    Google Scholar 

  6. V. Handerek, `Foundations of optical fiber technology,’ in Optical Fiber Sensor Technology (eds. K. T. V. Grattan and B. T. Meggitt ). Chapman and Hall, London, 1995, pp. 11–44.

    Chapter  Google Scholar 

  7. J. Marcou, `General introduction to plastic optical fibers,’ in Plastic Optical Fibers — Practical Applications (ed. Club des Fibres Optiques ). Wiley, Chichester, 1997, pp. 1–10.

    Google Scholar 

  8. J.-P. Guelon, `Plastic optical fiber sensors,’ in Plastic Optical Fibers — Practical Applications (ed. Club des Fibres Optiques ). Wiley, Chichester, 1997, pp. 119–125.

    Google Scholar 

  9. M. Languesse and P. Rebourgeard, `Luminescent optical fibers,’ in Plastic Optical Fibers — Practical Applications (ed. Club des Fibres Optiques ). Wiley, Chichester, 1997, pp. 127–137.

    Google Scholar 

  10. A. T. Augousti, J. Mason and K. T. V. Grattan, `A simple fiber optic level sensor using fluorescent fiber,’ Rev. Sci. Instrum., 61, 1990, 3854–3858.

    Article  Google Scholar 

  11. S. Muto, A. Fukasawa, M. Kamimura, F. Shinmura and H. Ito, `Fiber humidity sensor using fluorescent dye-doped plastics,’ Jpn. J. Appl. Phys., 28 (2), 1989, 1065–1066.

    Article  Google Scholar 

  12. H. Sawada, A. Tanaka and N. Wakatsuki, `Plastic optical fiber doped with organic fluorescent materials,’ Fujitsu Sei. Technol. J., 25, 1989, 163–169.

    Google Scholar 

  13. S. F. Collins, K. T. V. Grattan, Z. Y. Zhang, T. Sun and A. W. Palmer, `Comparison of fluorescence-based temperature sensor schemes using intensity ratioing and exponential decay in rare earth material,’ in 12th Int. Conf. Optical Fiber Sensors, Vol. 16, OSA Technical Digest Series (OSA, Washington, DC, 1997 ), pp. 194–197.

    Google Scholar 

  14. E. Maurice, G. Mannom, G. W. Baxter, S. A. Wade, B. P. Petreski and S. F. Wade, `Blue LED pumped point temperature sensor based on fluorescence intensity ratio in Pr3+-ZBLAN glass,’ Proc. 11th Int. Optical Fiber Sensors Conf., 1996, pp. 188–191.

    Google Scholar 

  15. K. T. V. Grattan and Z. Y. Zhang, Fiber Optic Fluorescent Thermometry. Chapman and Hall, London, 1995.

    Google Scholar 

  16. Z. Y. Zhang, K. T. V. Grattan, A. W. Palmer and B. T. Meggitt, `Spectral characteristics and effects of heat treatment on intrinsic Nd-doped fiber thermometer probes,’ Rev. Sci. Instrum., 69, 1998, 139–145.

    Article  Google Scholar 

  17. L. Scrivener, P. D. Maton, A. P. Appleyard and E. J. Tarbox, `Fabrication and properties of large core, high NA, high Nd3+ content multimode optical fibers for temperature sensor applications,’ Electron. Lett., 26 (13), 1990, 872.

    Article  Google Scholar 

  18. T. Sun, Z. Y. Zhang, K. T. V. Grattan and A. W. Palmer, `Analysis of double exponential fluorescence decay behaviour for optical temperature sensing,’ Rev. Sci. Instrum., 68 (1), 1997, 58.

    Article  Google Scholar 

  19. K. T. V. Grattan, J. D. Manwell, S. M. L. Sim and C. A. Wilson, `Lifetime investigation of fluorescence from neodymium: yttrium: aluminium garnet at elevated temperatures,’ Opt. Commun., 62 (2), 1987, 104.

    Article  Google Scholar 

  20. E. Snitzer, H. Po, F. Hakimi, R. Tummineli and B. C. McCollum, `Double-clad, offset core Nd fiber laser,’ Proc. Optical Fiber Sensors Conf: (OFS ‘88),New Orleans, post-deadline paper PD5.

    Google Scholar 

  21. K. A. Fesler, M. J. F. Digonnet, B. Y. Kim and H. J. Shaw, `Stable fiber source gyroscopes,’ Opt. Lett., 15, 1990, 1321–1323.

    Article  Google Scholar 

  22. P. F. Wysocki, `Broadband operation of erbium and neodymium doped fiber sources,’ in Rare Earth Doped Fiber Lasers and Amplifiers (ed. M. J. F. Digonnet ). Marcel Dekker, New York, 1993, pp. 319–373.

    Google Scholar 

  23. S. Satoh and M. Tmai, `Mode-locked all-fiber laser with a piezoelectric copolymer jacketed fiber for phase modulation,’ in Proc. 11th Int. Optical Fiber Sensors Conf, 1996, pp. 506–509.

    Google Scholar 

  24. Z. Y. Zhang, K. T. V. Grattan, A. W. Palmer, T. Sun and B. T. Meggitt, `Rare earth doped intrinsic fiber optic sensors for high temperature measurement up to 1100°C,’ in 12th Int. Conf. Optical Fiber Sensors, Vol. 16, OSA Technical Digest Series (OSA, Washington, DC, 1997 ), pp. 556–559.

    Google Scholar 

  25. C. Mazzali, H. L. Fraguto, E. Palange and D. C. Dini, `Fast method for obtaining erbium-doped fiber intrinsic parameters,’ Electron. Lett., 32 (10), 1996, 921.

    Article  Google Scholar 

  26. E. Maurice, G. Monnom, B. Dussardier, A. Saissy, D. B. Ostrowsky and G. Baxter, `Thermalization effects between upper levels of green fluorescence in Er-doped silica fibers,’ Opt. Lett., 19, 1994, 990–992; `High-dynamic range temperature point sensor using green fluorescence intensity ratio in Er-doped silica fiber, IEEE J. Light-wave Technol., 13, 1995, 1349–1353.

    Article  Google Scholar 

  27. Y. Imai, T. Hokazono and T. Yoshida, `Fluorescence-based temperature sensing using erbium-doped optical fibers with 1.48 m pumping,’ Proc. 11th Int. Conf. Optical Fiber Sensors (OFS11), 1996, 268, Opt. Rev., 4 (1A), 1997, 117.

    Article  Google Scholar 

  28. P. K. Y. Ko, M. S. Demokan and H. Tam, `Distributed temperature sensing with erbium-doped fiber amplifiers,’ IEEE J. Lightwave Technol., 14 (10), 1996, 2236–2245.

    Article  Google Scholar 

  29. Z. Y. Zhang, K. T. V. Grattan, A. W. Palmer, T. Sun and B. T. Meggitt, `Fluorescence decay time characteristics of erbium-doped optical fiber at elevated temperatures,’ Rev. Sci. Instrum., 68, 1997, 2764–2766.

    Article  Google Scholar 

  30. K. Oh and Un-C. Pack, `Fiber optic absorption spectroscopic gas sensor using an amplified spontaneous emission light source from Tm3+/Ho3+ co-doped silica fiber,’ in 12th Int. Conf. Optical Fiber Sensors, Vol. 16, OSA Technical Digest Series (OSA, Washington, DC, 1997 ), pp. 432–435.

    Google Scholar 

  31. B. T. Meggitt, `Fiber optic white light interferometric sensors,’ in Optical Fiber Sensor Technology (eds. K. T. V. Grattan and B. T. Meggitt ). Chapman and Hall, London, 1995, pp. 269–312.

    Chapter  Google Scholar 

  32. Y. N. Ning and K. T. V. Grattan, `White light interferometric optical fiber sensing techniques,’ in Optical Fiber Sensor Technology, 4. Chemical and Environmental Sensing (eds. K. T. V. Grattan and B. T. Meggitt ). Kluwer Academic Publishers, Dordrecht, The Netherlands, 1998, pp. 271–317.

    Google Scholar 

  33. D. N. Wang, B. T. Meggitt, A. W. Palmer, K. T. V. Grattan and Y. N. Ning, `Use of a Sm3+-doped fiber as a low coherence light-source,’ IEEE Photonics Technol. Lett., 7 (6), 1995, 620.

    Article  Google Scholar 

  34. S. Magne, `Etude d’un laser a fiber dopee Ytterbium — spectroscopie laser de fibers dopees,’ Thesis, University of St-Etienne, 1993.

    Google Scholar 

  35. A. H. Hartog, `Distributed fiber optic sensors,’ in Optical Fiber Sensor Technology (eds. K. T. V. Grattan and B. T. Meggitt ). Chapman and Hall, London, 1995, pp. 347–382.

    Chapter  Google Scholar 

  36. Z. Y. Zhang, K. T. V. Grattan, Y. L. Hu, A. W. Palmer and B. T. Meggitt, Pronys method for exponential lifetime estimations in fluorescence-based thermometers,’ Rev. Sci. Instrum., 67 (7), 1996, 2590–2594.

    Article  Google Scholar 

  37. T. Sun, Z. Y. Zhang, K. T. V. Grattan, A. W. Palmer and S. F. Collins, `Temperature dependence of the fluorescence lifetime in Pr3+: ZBLAN glass for fiber optic thermometry,’ Rev. Sci. Instrum., 68 (9), 1997, 3447.

    Article  Google Scholar 

  38. T. Sun, Z. Y. Zhang, K. T. V. Grattan, A. W. Palmer and S. F. Collins, `Analysis of the double exponential behaviour in alexandrite for optical temperature sensing applications,’ Rev. Sci. Instrum., 68 (9), 1997, 3442.

    Article  Google Scholar 

  39. Z. Y. Zang, K. T. V. Grattan, A. W. Palmer, B. T. Meggitt and T. Sun, `Fluorescence decay-time characteristics of erbium-doped optical fiber at elevated temperatures,’ Rev. Sci. Instrum., 68 (7), 1997, 2764.

    Google Scholar 

  40. T. Sun, Z. Y. Zhang, K. T. V. Grattan and A. W. Palmer, `Quasi-distributed and average temperature measurement using fluorescent sensor technology,’ in Applied Optics and Optoelectronics (ed. K. T. V. Grattan ). Institute of Physics Publishing, Bristol, 1998, pp. 117–122.

    Google Scholar 

  41. M. J. F. Digonnet, Rare Earth Doped Fiber Lasers and Amplifiers, Marcel Dekker, New York, 1993.

    Google Scholar 

  42. G. Boisde and A. Harmer, Chemical and Biochemical Sensing with Optical Fibers and Waveguides. Artec House, Norwood, USA, 1996.

    Google Scholar 

  43. G. E. Badini, K. T. V. Grattan, A. W. Palmer and A. C. C. Tseung, `Development of pH sensitive substrates for optical sensor applications,’ in Optical Fiber Sensors (eds. H. J. Arditty, J. P. Dakin and R. T. Kersten). Springer, Berlin, 1989, 44, 436–442.

    Google Scholar 

  44. D. Flannery, S. W. James, R. P. Tatam and G. J. Ashwell, `Single mode fiber optic chemical sensor using Langmuir—Blodgett waveguide overlays,’ in 12th Int. Conf. Optical Fiber Sensors, Vol. 16, OSA Technical Digest Series (OSA, Washington, DC, 1997 ), pp. 382–385.

    Google Scholar 

  45. M. Poulain, M. Poulain and J. Lucas, ‘Verres fluores au tetrafluorure de zirconum: Proprietes optiques d’un verre dope au Nd3+,’ Mater. Res. Bull., 10, 1975, 243.

    Article  Google Scholar 

  46. J. S. Sanghera and I. D. Aggarawal, `Rare earth doped heavy-metal fluoride glass fibers,’ in Rare Earth Doped Fiber Lasers and Amplifiers (ed. M. J. F. Digonnet ). Marcel Dekker, New York, 1993, pp. 423–495.

    Google Scholar 

  47. D. Richardson, J. Minelly and D. Hanna, `Fiber laser systems shine brightly,’ Laser Focus World, September, 1997, pp. 87–96.

    Google Scholar 

  48. T. Schweitzer, `New fiber laser glasses using gallium lanthium sulfide,’ Proc. CLEO ‘87, Paper CWQ4, Baltimore, MD, 1997.

    Google Scholar 

  49. A. G. Clare, J. M. Parker, D. Furniss, E. A. Harris and T. M. Searle, `Applications,’ in Fluoride Glass Optical Fibers (ed. P. W. France ). CRC Press, Boca Raton, FL, 1990, p. 249.

    Google Scholar 

  50. A. L. Huston and B. L. Justus, `Fiber coupled radiation dosimeter,’ in 12th Int. Conf. Optical Fiber Sensors, Vol. 16, OSA Technical Digest Series (OSA, Washington, DC, 1997 ), pp. 420–423.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Grattan, K.T.V., Zhang, Z.Y., Sun, T. (1998). Luminescent optical fibers in sensing. In: Grattan, K.T.V., Meggitt, B.T. (eds) Optical Fiber Sensor Technology. Optoelectronics, Imaging and Sensing, vol 4. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-2484-5_8

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-2484-5_8

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-4031-2

  • Online ISBN: 978-94-017-2484-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics