Skip to main content

Part of the book series: Optoelectronics, Imaging and Sensing ((OISS,volume 2))

Abstract

The idea of using optical fiber geometry for laser and optical amplification purposes was proposed and demonstrated in 1961 by Snitzer [1] who used a 300 μm core diameter fiber doped with neodymium as the laser active gain medium. Since the development of this laser a range of fiber lasers has been constructed using either rare earth ions [2] or optical nonlinearities [3] as the optical gain medium. Although efficient laser action has been observed from nonlinear optical fiber lasers, the greatest research emphasis has been placed on the refinement of rare earth doped systems. This has been stimulated by the observation that significant concentrations of rare earth ions could be introduced into the core of standard telecommunications grade fiber without degrading the guiding properties of the fiber [4]. Strong absorption bands are created by the rare earth ion, whilst the low loss waveguiding characteristics of the fiber are maintained at the emission wavelength of the rare earth ion. Indeed, today, rare earth doped optical fibers are an accepted and important class of laser active gain medium with a wide variety of experimental applications ranging from the remote sensing of magnetic fields [5] through to ultra-short pulse generation for coherent optical communications [6] and high resolution spectroscopy [7]. Although extensive research effort has been directed at the development of efficient erbium-doped fiber lasers for the low loss third telecommunications window of standard silica fiber at 1.55 μm [8], a selection of rare earth ions has been used as gain media giving a wavelength coverage from 0.38 μm [9] to 3.9 μm [10]. These transitions have been observed in several different types of fiber host such as silica-based fibers [11], fluorozirconate or ZBLAN fibers [12], lead germanate fibers [13], lead silicate fibers [14] and tellurite glass fibers [15].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. E. Snitzer; ‘Optical maser action of Nd3+ in a barium crown glass’, Physical Review Letters, 72, 36, 1961.

    Google Scholar 

  2. See for example N. Langford and A. I. Ferguson; ‘Rare earth doped silica fibre lasers’, Ch. 3 in Principles of Modern Optical Systems, Vol. II, Eds. I. Andonovic and D. Uttamchandani, Artec House, Boston, 1993.

    Google Scholar 

  3. See for example G. P. Agrawal; Non-Linear Optical Fibres, Academic Press, New York, 1987.

    Google Scholar 

  4. S. B. Poole, D. N. Payne and M. E. Fermann; ‘Fabrication of low loss optical fibres containing rare earth ions’, Electronics Letters, 21, 737, 1985.

    Article  Google Scholar 

  5. K. Koo, A. Kersey and F. Bucholtz; Postdeadline paper PD41, ‘Fibre Bragg grating laser magnetometer’ in the Proceedings of the Conference on Lasers and Electro-Optics, Baltimore, USA, 1995.

    Google Scholar 

  6. J. R. Taylor; Paper CWM3, ‘Soliton fibre lasers’ in the Proceedings of the Conference on Lasers and Electro-Optics, Baltimore, USA, 1995.

    Google Scholar 

  7. S. L. Gilbert; ‘Frequency stabilisation of a tunable erbium-doped fibre laser’, Optics Letters, 16, 150, 1991.

    Google Scholar 

  8. See for example M. J-F. Digonnet and E. Snitzer; ‘Nd3 + and Er3 +-doped silica fibre lasers’ in Rare Earth Doped Fibre Lasers and Amplifiers, Ed. M. J-F. Digonnet, Dekker, New York, 1993.

    Google Scholar 

  9. D. S. Funk, J. W. Carlson and J. G. Eden; Paper CMB2, ‘Room temperature up-conversion UV and violet lasing in Nd3 +:ZBLAN’ in the Proceedings of the Conference on Lasers and Electro-Optics, Baltimore, USA, 1995.

    Google Scholar 

  10. J. Schneider; ‘Fluoride fibre laser operating at 3.9 μm’, Electronics Letters, 31,1250, 1995.

    Article  Google Scholar 

  11. See for example D. C. Hanna and A. C. Tropper; ‘Silica fibre laser oscillators’, Ch. 7 in Optical Fibre Lasers and Amplifiers, Ed. P. W. France, Blackie, Glasgow, 1991.

    Google Scholar 

  12. See for example J. S. Sanghera and I. D. Aggarwal; ‘Rare earth doped heavy metal fluoride glass fibres’ in Rare Earth Doped Fibre Lasers and Amplifiers, Ed. M. J-F. Digonnet, Dekker, New York, 1993.

    Google Scholar 

  13. J. R. Lincoln, W. S. Brocklesby, C. J. MacKechnie, J. Wang, R. S. Deol, D. C. Hanna and D. N. Payne; ‘New class of fibre laser based on lead-germanate glass’, Electronics Letters, 28, 1021, 1992.

    Article  Google Scholar 

  14. J. Wang, L. Reekie, W. S. Brocklesby, Y. T. Chow and D. N. Payne; ‘Fabrication spectroscopy and laser performance of a Nd3+ lead-silicate glass-fibre’, Journal of Non-Crystalline Solids, 180, 207, 1995.

    Article  Google Scholar 

  15. J. S. Wang, D. P. MacHewirth, F. Wu, E. Snitzer and E. M. Vogel; ‘Neodymium-doped tellurite single-mode fibre laser’, Optics Letters, 19, 1448, 1994.

    Article  Google Scholar 

  16. See for example A. E. Siegman; Lasers, p. 123, University Science Books, 1988.

    Google Scholar 

  17. See for example P. W. Milonni and J. H. Eberly; Lasers, pp. 486–495, Wiley Inter-science, New York, 1988.

    Google Scholar 

  18. J. L. Wagener, P. F. Wysocki, M. J. F. Digonnet and H. J. Shaw; ‘Modelling of ion-pairs in erbium-doped fibre amplifiers’, Optics Letters, 19, 347, 1994.

    Article  Google Scholar 

  19. M. Shimizu, M. Yamada, M. Horiguchi, T. Takeshita and M. Okayasu; ‘Erbium-doped fibre amplifiers with an extremely high gain coefficient of H.0dB/mW’, Electronics Letters, 26, 1641, 1990.

    Article  Google Scholar 

  20. R. J. Mears, L. Reekie, S. B. Poole and D. N. Payne; ‘Low threshold tunable c.w. and Q-switched fibre laser operating at 1.55 μm’, Electronics Letters, 22, 159, 1986.

    Article  Google Scholar 

  21. See for example W. Koechner; Solid State Laser Engineering Ch. 2, Springer-Verlag, Berlin, 1988.

    Google Scholar 

  22. See for example W. J. Miniscalo; ‘Rare earth doped glass fibres: optical properties’ in Rare Earth Doped Fibre Lasers and Amplifiers, Ed. M. J-F. Digonnet, Dekker, New York, 1993.

    Google Scholar 

  23. D. C. Hanna, R. M. Percival, R. G. Smart, J. E. Townsend and A. C. Tropper; ‘Continuous-wave oscillation of holmium-doped silica fibre laser’, Electronics Letters, 25, 593, 1989.

    Article  Google Scholar 

  24. See for example S. P. Craig-Ryan and B. J. Ainslie; ‘Glass structure and fabrication techniques’ in Optical Fibre Lasers and Amplifiers, Ed. P. W. France, Blackie, Glasgow, 1991.

    Google Scholar 

  25. S. R. Nagel; ‘Fibre materials and fabrication methods’, Ch. 4 in Optical Fibre Telecommunications, Vol. II, Eds. S. E. Miller and I. P. Kaminow, Academic Press, New York, 1988.

    Google Scholar 

  26. B. J. Ainslie, S. P. Craig, S. T. Davey and B. Wakefield; ‘The fabrication and optical properties of Nd3+ in silica-based optical fibres’, Material Letters, 5, 143, 1987.

    Article  Google Scholar 

  27. B. J. Ainslie, S. P. Craig, S. T. Davey and B. Wakefield; ‘The fabrication assessment and optical properties of Nd3+ and Er3+-doped silica-based fibres’, Material Letters, 6, 139, 1988.

    Article  Google Scholar 

  28. W. J. Tomlinson; ‘Passive and low-speed active optical components for fibre systems’, Ch. 10 in Optical Fibre Telecommunications, Vol. II, Eds. S. E. Miller and I. P. Kaminow, Academic Press, New York, 1988.

    Google Scholar 

  29. D. B. Mortimore; ‘Fibre loop reflectors’, Journal of Lightwave Technology, LT-6, 1217, 1988.

    Article  Google Scholar 

  30. K. O. Hill, Y. Fujii, D. C. Johnson and B. S. Kawasaki; ‘Photosensitivity in optical fibre waveguides: applications to reflection filter fabrication’, Applied Physics Letters, 32, 647, 1978.

    Article  Google Scholar 

  31. M. C. Brierley and P. W. France; ‘Neodymium-doped fluorozirconate fibre laser’, Electronics Letters, 23, 815, 1987.

    Article  Google Scholar 

  32. J. Stone and C. A. Burrus; ‘Neodymium-doped silica lasers in end-pumped fibre geometry’, Applied Physics Letters, 23, 388, 1973.

    Article  Google Scholar 

  33. I. P. Alcock, A. I. Ferguson, D. C. Hanna and A. C. Tropper; ‘Tunable, continuous-wave neodymium doped monomode-fibre laser operating at 0.9-0.945 and 1.070-1.135 urn’, Optics Letters, 11, 709, 1986.

    Article  Google Scholar 

  34. M. Shimizu, H. Suda and M. Horiguchi; ‘High efficiency Nd-doped fibre lasers using direct-coated dielectric mirrors’, Electronics Letters, 23, 768, 1987.

    Article  Google Scholar 

  35. G. A. Ball and W. W. Morey; ‘Efficient integrated Nd3+ fibre laser’, IEEE Photonics Technology Letters, 3, 1077, 1991.

    Article  Google Scholar 

  36. I. D. Miller, D. B. Mortimore, P. Urqhart, B. J. Ainslie, S. P. Craig, V. A. Miller and D. N. Payne; ‘A Nd3+-doped cw fibre laser using all fibre reflectors’, Applied Optics, 26, 2197, 1987.

    Article  Google Scholar 

  37. Y. Chaoyu, P. Jianngde and Z. Bingkun; ‘Tunable Nd3+-doped fibre ring laser’, Electronics Letters, 25, 101, 1989.

    Article  Google Scholar 

  38. U. Ghera, N. Konforti and M. Tur; ‘Wavelength tunability in a Nd doped fibre laser with an intracavity polariser’, IEEE Photonics Technology Letters, 4, 4, 1992.

    Article  Google Scholar 

  39. U. Ghera, N. Friedman and M. Tur; ‘A fibre laser with a comb-like spectrum’, IEEE Photonics Technology Letters, 5, 1159, 1993.

    Article  Google Scholar 

  40. P. Mollier, V. Armbruster, H. Porte and J. P. Goedgebuer; ‘Electrically tunable Nd3+ doped fibre laser using nematic liquid-crystals’, Electronics Letters, 31, 1248, 1995.

    Article  Google Scholar 

  41. See for example P. Urqhart; ‘Devices and configurations for fibre laser sources and amplifiers’, Ch. 3 in Rare Earth Doped Fibre Lasers and Amplifiers, Ed. M. J-F. Digonnet, Dekker, New York, 1993.

    Google Scholar 

  42. E. Snitzer, H. Po, F. Hakimi, R. Tumminelli and B. C. McCollum; Paper PD5 ‘Double clad offset core Nd fibre laser’ in Digest of Conference on Optical Fibre Sensors, 1988.

    Google Scholar 

  43. H. Po, E. Snitzer, R. Tumminelli, L. Zenteno, F. Hakimi, N. M. Cho and T. Haw; Paper PD7 ‘High-brightness Nd fibre laser pumped by a GaAlAs phased array’ in the Proceedings of Optical Fibre Commmunications, OFC, 1989.

    Google Scholar 

  44. T. Weber, W. Luthy, H. P. Weber, V. Neuman, H. Berthou and G. Kotrotsios; ‘Cladding-pumped fibre laser’, IEEE Journal of Quantum Electronics, QE-31, 326, 1995.

    Article  Google Scholar 

  45. T. Weber, W. Luthy, H. P. Weber, V. Neuman, H. Berthou and G. Kotrotsios; ‘A longitudinal and side-pumped single transverse-mode double-clad fibre laser with a special silicone coating’, Optics Communications, 115, 99, 1995.

    Article  Google Scholar 

  46. H. Zellmer, U. Willamowski, A. Tunnermann, H. Welling, S. Unger, V. Reichel, H. R. Muller, J. Hirchhof and P. Albers; ‘High-power cw neodymium-doped fibre laser operating at 9.2 W with high beam quality’, Optics Letters, 20, 578, 1995.

    Article  Google Scholar 

  47. R. Koch, Ugrienbner and R. Grunwald; ‘High-average-power flashlamp-pumped Nd-glass fibre-bundle laser’, Applied Physics B, 58, 403, 1994.

    Article  Google Scholar 

  48. L. Reekie, I. M. Jauncey, S. B. Poole and D. N. Payne; ‘Diode-laser pumped Nd3+-doped fibre laser operating at 938 nm’, Electronics Letters, 23, 884, 1987.

    Article  Google Scholar 

  49. F. Hakimi, H. Po, R. Tumminelli, B. C. McCollum, L. Zenteno, N. M. Cho and E. Snitzer; ‘Glass fibre laser at 1.36 μm from SiO2’, Optics Letters, 14, 884,1987.

    Google Scholar 

  50. W. J. Miniscalo, L. J. Andrews, B. A. Thompson, R. S. Quimby, L. J. B. Vacha and M. G. Drexhage; ‘1.3 urn fluoride fibre laser’, Electronics Letters, 24, 28, 1988.

    Article  Google Scholar 

  51. D. S. Funk, J. W. Carlson and J. G. Eden; ‘Room-temperature fluorozirconate glass-fibre laser in the violet (412 nm)’, Optics Letters, 20, 1474, 1995.

    Article  Google Scholar 

  52. D. S. Funk, J. W. Carlson and J. G. Eden; ‘Ultraviolet (381 nm) room-temperature laser in neodymium doped fluorozirconate fibre’, Electronics Letters, 30, 1859, 1994.

    Article  Google Scholar 

  53. I. P. Alcock, A. I. Ferguson, D. C. Hanna and A. C. Tropper; ‘Continuous-wave oscillation of a monomode neodymium-doped fibre laser 0.9 μm on the 4F3/2 to 4l9/2 transition’, Optics Communications, 58, 405, 1986.

    Article  Google Scholar 

  54. M. C. Brierley and M. H. Hunt; ‘Efficient semiconductor diode pumped fluoride fibre lasers’, in the Proceedings of SPIE, 1171, 157, 1990.

    Article  Google Scholar 

  55. T. Komukai, Y. Fukasaku, T. Sugawa and Y. Miyajima; ‘Highly efficient and tunable Nd3+ doped fluoride fibre laser operating in the 1.3 μm band’, Electronics Letters, 29, 755, 1993.

    Article  Google Scholar 

  56. See for example Ch. 2 in Optical Fibre Telecommunications, Eds. S. E. Miller and A. G. Chynoweth, Academic Press, New York, 1979.

    Google Scholar 

  57. M. C. Brierley and P. W. France; ‘Continuous wave lasing at 2.7 μm in an erbium doped fluorozirconate fibre’, Electronics Letters, 25, 935, 1988.

    Article  Google Scholar 

  58. J. Y. Allain, M. Monerie and H. Poignant; ‘Erbium doped fluorozirconate single mode fibre laser lasing at 2.71 μm’, Electronics Letters, 26, 28, 1989.

    Article  Google Scholar 

  59. R. G. Smart, J. N. Carter, D. C. Hanna and A. C. Tropper; ‘Erbium doped fluorozirconate fibre laser operating at 1.66 and 1.72 μm’, Electronics Letters, 26, 649, 1989.

    Article  Google Scholar 

  60. J. Y. Allain, M. Monerie and H. Poignant; ‘Lasing at 1.0 μm in erbium doped fluorozirconate fibres’, Electronics Letters, 26, 318, 1989.

    Article  Google Scholar 

  61. C. A. Miller, M. C. Brierley, M. H. Hunt and S. F. Carter, ‘Efficient up-conversion pumping at 800 nm of an erbium-doped fluoride fibre laser operating around 850 nm’, Electronics Letters, 26, 1218, 1990.

    Article  Google Scholar 

  62. M. S. O’Sullivan, J. Chrostowski, E. Desurvire and J. R. Simpson; ‘High power narrow-linewidth Er3+ doped fibre laser’, Optics Letters, 14, 438, 1989.

    Article  Google Scholar 

  63. R. Wyatt, B. J. Ainslie and S. P. Craig; ‘Efficient operation of an array-pumped Er3+ doped silica fibre laser at 1.55 μm’, Electronics Letters, 24, 1362, 1988.

    Article  Google Scholar 

  64. C. G. Atkins, J. R. Armitage, R. Wyatt, B. J. Ainslie and S. P. Craig; ‘Spectro-scopic studies of erbium-doped single mode silica fibres’, Optics Communications, 73, 217, 1989.

    Article  Google Scholar 

  65. R. I. Laming, S. B. Poole and J. E. Tarbox; ‘Pump excited state absorption in erbium doped fibres’, Optics Letters, 13, 1084, 1989.

    Article  Google Scholar 

  66. R. P. Davey, N. Langford and A. I. Ferguson; Paper CFE2 ‘Sub-picosecond pulse generation from an erbium doped fibre laser’ in the Proceedings of the Conference on Lasers and Electro-optics, Baltimore, USA, 1991.

    Google Scholar 

  67. K. Smith, J. R. Armitage, R. Wyatt, N. J. Doran and S. M. J. Kelly; ‘The erbium fibre soliton laser’, Electronics Letters, 26, 1149, 1990.

    Article  Google Scholar 

  68. V. P. Gasponstev, P. I. Sadovsky and I. E. Samartsev; Paper CPDP, in the Proceedings of the Conference on Lasers and Electro-Optics, Anaheim, USA, 1990.

    Google Scholar 

  69. W. L. Barnes, P. R. Morkel, L. Reekie and D. N. Payne; ‘High-quantum-efficiency Er3+ fibrelasers pumped at 980 nm’ Optics Letters, 14, 1002, 1989.

    Article  Google Scholar 

  70. R. Wyatt; ‘High power broadly tunable erbium doped silica fibre laser’, Electronics Letters, 25, 1498, 1989.

    Article  MathSciNet  Google Scholar 

  71. J. L. Zyskind, C. R. Giles, E. Dersurvire and J. R. Simpson; ‘Optimal pump wavelength in the 4I15/2-4I13/2 absorption band for efficient Er3+ doped fibre amplifiers’, IEEE Photonics Technology Letters, 1, 428, 1989.

    Article  Google Scholar 

  72. Y. Kimura, K. Susuki and M. Nakazawa; ‘Laser diode pumped mirror free Er3+ doped fibre laser’, Optics Letters, 14, 999, 1989.

    Article  Google Scholar 

  73. N. Langford; Unpublished results.

    Google Scholar 

  74. E. Dursurvire and J. R. Simpson; ‘Evaluation of and Stark level energies in erbium-doped aluminosilicate fibres’, Optics Letters, 15, 547, 1990.

    Article  Google Scholar 

  75. R. Kashyap, J. R. Armitage, R. Wyatt, S. T. Davey and D. L. Williams; ‘All fibre narrowband reflection gratings at 1500nm’, Electronics Letters, 26, 730, 1990.

    Article  Google Scholar 

  76. G. A. Ball and W. H. Glenn; ‘Design of a single mode linear cavity erbium fibre laser utilising Bragg reflectors’, Journal of Lightwave Technology, 10, 1338, 1992.

    Article  Google Scholar 

  77. A. D. Kersey and W. W. Morey; ‘Multielement Bragg-grating based fibre-laser strain sensor’, Electronics Letters, 29, 964, 1993.

    Article  Google Scholar 

  78. G. A. Ball and W. W. Morey; ‘Compression tuned single frequency Bragg grating fibre laser’, Optics Letters, 19, 1979, 1994.

    Article  Google Scholar 

  79. J. J. Pan and Y. Shi; ‘Tunable Er3+ doped fibre ring laser using fibre Bragg grating incorporated by optical circulator or fibre coupler’, Electronics Letters, 31, 1164, 1995.

    Article  Google Scholar 

  80. C. M. Miller and F. J. Janniello; ‘Passively temperature-compensated Fabry-Perot filter and its applications in wavelength division multiple access computer network’, Electronics Letters, 25, 2122, 1990.

    Article  Google Scholar 

  81. J. Minowa and Y. Fujii, ‘Wide-bandwidth, sharp-cutoff bandpass filter for WDM transmission’, Electronics Letters, 21, 915, 1985.

    Article  Google Scholar 

  82. K. McCallion, W. Johnstone and W. Fawcett; ‘Tunable in-line fibreoptic bandpass filter’, Optics Letters, 19, 542, 1994.

    Article  Google Scholar 

  83. N. Park, J. W. Dawson and K. J. Vahala; ‘All fibre, low threshold, widely tunable single-frequency, erbium-doped fibre ring laser with a tandem Fabry-Perot filter’, Applied Physicss Letter, 59, 2369, 1991.

    Article  Google Scholar 

  84. S. Sanders, N. Park, J. W. Dawson and K. J. Vahala; ‘Reduction of the intensity noise from an erbium-doped fibre laser to the standard quantum limit by intracavity spectral filtering’, Applied Physics Letters, 61, 1889, 1992.

    Article  Google Scholar 

  85. J. W. Dawson, N. Park and K. J. Vahala; ‘CO-lasing in an electrically tunable erbium-doped fibre laser’, Applied Physics Letters, 60, 3090, 1992.

    Article  Google Scholar 

  86. G. W. Schinn, C. Y. Yue, J. Zhang, D. Yang, V. M. Paramonov and W. R. L. Clements; ‘Recent developments in erbium fibre lasers and associated products at MPB Technologies Inc.’, Proceedings of OPTO 94, Paris, France.

    Google Scholar 

  87. A. Gloag, K. MacCallion, W. Johnstone and N. Langford; ‘A tunable erbium fibre laser containing a novel continuous fibre overlay filter’, Optics Letters, 19, 802, 1994.

    Article  Google Scholar 

  88. P. L. Scrivener, E. J. Tarbox and P. D. Maton; ‘Narrow linewidth tunable operation of Er3+-doped single mode fibre laser’, Electronics Letters, 25, 549, 1989.

    Article  Google Scholar 

  89. P. F. Wysocki, M. J. F. Digonnet and B. Y. Kim; ‘Electronically tunable 1.55 μm erbium-doped fibre laser’, Optics Letters, 15, 273, 1990.

    Article  Google Scholar 

  90. M. Y. Frankel, R. D. Esman and J. F. Weller; ‘Rapid continuous tuning of a single-polarisation fibre ring laser’, IEEE Photonics Technology Letters, 6, 591, 1994.

    Article  Google Scholar 

  91. M. W. Meada, J. S. Patel, D. A. Smith, C. L. Lin, M. A. Saifi and A. Vonlehman; ‘An electronically tunable fibre laser with a liquid-crystal etalon filter as the wavelength tuning element’, IEEE Photonics Technology Letters, 2, 787, 1990.

    Article  Google Scholar 

  92. H. Tobben; ‘Room temperature cw fibre laser at 3.5 μm on Er3+ doped ZBLAN glass’, Electronics Letters, 28, 1361, 1992.

    Article  Google Scholar 

  93. W. Hofle and H. Tobben; ‘Analysis measurement and optimisation of threshold power of 3.5 μm ZBLAN-glass fibre lasers’, International Journal of Infrared and Millimeter Waves, 14, 1407, 1993.

    Article  Google Scholar 

  94. R. Allen, L. Esterowitz and R. J. Ginther; ‘Diode-pumped single mode fluorozirco-nate fibre laser from the 4I11/2-4I13/2 transition in erbium’, Applied Physics Letters, 56, 1635, 1990.

    Article  Google Scholar 

  95. H. Yangagita, I. Masuda, T. Yamashita and H. Toratani; ‘Diode laser pumped Er3+ fibre laser operation between 2.7-2.8 μm’, Electronics Letters, 26, 1836, 1989.

    Article  Google Scholar 

  96. L. Wetenka‘Efficient cw operation of a 2.75 μm Er3+ doped fluorozirconate fibre laser pumped at 650 nm and 750 nm’, Journal of Electronics and Communications, 5, 328, 1991.

    Google Scholar 

  97. N. A. Swain and T. A. King; ‘Analysis and performance of 2.7 μm Er3+ fibre laser amplifiers and oscillators’, Journal of Modern Optics, 38, 2023, 1991.

    Article  Google Scholar 

  98. C. Frerichs; ‘Efficient Er3+-doped cw fluorozirconate fibre laser operating at 2.7 μm pumped at 980 nm’, International Journal of Infrared and Millimeter Waves, 15, 635, 1994.

    Article  Google Scholar 

  99. J. Schneider; ‘Midinfrared fluoride fibre laser in multiple cascade operation’, IEEE Photonics Technology Letters, 7, 354, 1995.

    Article  Google Scholar 

  100. M. C. Brierley, C. A. Miller and P. W. France; ‘Laser transitions in erbium doped fluoride fibres’, Paper TUJ 22, Proceedings of the Conference on Lasers and Electro-Optics, 1989.

    Google Scholar 

  101. J. Y. Allain, M. Monerie and H. Poignant; ‘Narrow line width tunable cw and Q-switched 0.98 μm operation of erbium-doped fluorozirconate fibre laser’, Electronics Letters, 25, 1082, 1989.

    Article  Google Scholar 

  102. J. Y. Allain, M. Monerie and H. Poignant; ‘Tunable green up-conversion erbium fibre laser’, Electronics Letters, 28, 111, 1992.

    Article  Google Scholar 

  103. D. Piehler and D. Craven; ‘11.5mW green InGaAs laser pumped erbium fibre laser’, Electronics Letters, 30, 1759, 1994.

    Article  Google Scholar 

  104. J. Massicott, M. C. Brierley, R. Wyatt, S. T. Davey and D. Szebesta; ‘Low threshold, diode pumped operation of a green Er3+ doped fluoride fibre laser’, Electronics Letters, 29, 2119, 1993.

    Article  Google Scholar 

  105. D. C. Hanna, I. M. Jauncey, R. M. Percival, I. R. Perry, R. G. Smart, P. J. Suni, J. E. Townsend and A. C. Tropper; ‘Continuous-wave oscillation of a monomode thulium-doped fibre laser’, Electronics Letters, 24, 1222, 1988.

    Article  Google Scholar 

  106. D. C. Hanna, M. J. McCarthy, I. R. Perry and P. J. Suni; ‘Efficient high power continuous wave operation of a monomode Tin-doped fibre laser at 2 μm pumped by Nd: YAG laser at 1.064 μm’, Electronics Letters, 25, 1365, 1989.

    Article  Google Scholar 

  107. D. C. Hanna, R. M. Percival, R. G. Smart and A. Tropper; ‘Efficient and tunable operation of a Tm-doped fibre laser’, Optics Communications, 75, 283, 1990.

    Article  Google Scholar 

  108. W. L. Barnes and J. E. Townsend; ‘Highly tunable and efficient diode pumped operation of Tm3+ doped fibre lasers’, Electronics Letters, 26, 746, 1990.

    Article  Google Scholar 

  109. R. G. Smart, J. N. Carter, A. C. Tropper and D. C. Hanna; ‘Continuous-wave oscillation of Tm3+-doped fluorozirconate fibre lasers at around 1.47 μm, 1.9 μm and 2.3 μm when pumped at 790 nm’, Optics Communications, 82, 563, 1991.

    Article  Google Scholar 

  110. J. Y. Allain, M. Monerie and H. Poignant; ‘Tunable cw lasing around 0.82, 1.48, 1.88 and 2.35 μm in thulium doped fluorozirconate fibre’, Electronics Letters, 25, 1660, 1989.

    Article  Google Scholar 

  111. S. Boj, E. Delevaque, J. Y. Allain, J. F. Bayon, P. Niay and P. Bernage; ‘High-efficiency diode pumped thulium-doped silica fibre lasers with intracore Bragg gratings in the 1.9-2.1 μm band’, Electronics Letters, 30, 1019, 1994.

    Article  Google Scholar 

  112. D. C. Hanna, I. R. Perry, J. R. Lincoln and J. E. Townsend; ‘A 1-watt thulium doped cw fibre laser operating at 2 urn’, Optics Communications, 80, 52, 1990.

    Article  Google Scholar 

  113. R. M. Percival, D. Szebesta and S. T. Davey; ‘Highly efficient and tunable operation of a 2 colour Tm-doped fluoride fibre laser’, Electronics Letters, 28, 671, 1992.

    Article  Google Scholar 

  114. R. Allen and L. Esterowitz; ‘Cw diode pumped 2.3 μm fibre laser’, Applied Physics Letters, 55, 721, 1989.

    Article  Google Scholar 

  115. R. M. Percival, S. F. Carter, D. Szebesta, S. T. Davey and W. A. Stallard; ‘Thulium doped monomode fluoride fibre laser broadly tunable from 2.25-2.5 μm’, Electronics Letters, 27, 1912, 1991.

    Article  Google Scholar 

  116. T. Yamamoto, Y. Miyajima, T. Komukai and T. Sugawa; ‘1.9 μm Tm-doped fibre amplifier and laser pumped at 1.58 μm’, Electronics Letters, 29, 986, 1993.

    Article  Google Scholar 

  117. R. M. Percival, D. Szebesta, C. P. Seltzer, S. D. Perrin, S. T. Davey and M. Louka; ‘A 1.6 μm semiconductor diode pumped thulium doped fluoride fibre laser and amplifier of very high efficiency’, Electronics Letters, 29, 2110, 1993.

    Article  Google Scholar 

  118. R. M. Percival, D. Szebesta, C. P. Seltzer, S. D. Perrin, S. T. Davey and M. Louka; ‘A 1.6 μm pumped 1.9 μm thulium doped fluoride fibre laser and amplifier of very high efficiency’, IEEE Journal of Quantum Electronics, QE-31, 489, 1995.

    Article  Google Scholar 

  119. J. Y. Allain, M. Monerie and H. Poignant; ‘Tunable cw lasing around 0.82, 1.48, 1.88 and 2.35 μm in thulium doped fluorozirconate fibre’, Electronics Letters, 25, 1660, 1989.

    Article  Google Scholar 

  120. R. Allen, L. Esterowitz and I. Aggarwal; ‘An efficient 1.46 μm thulium laser via a cascade process’, IEEE Journal of Quantum Electronics, 29, 303, 1993.

    Article  Google Scholar 

  121. R. M. Percival, D. Szebesta and S. T. Davey; ‘Highly efficient cw cascade operation of 1.47 and 1.82 μm transitions in Tm-doped fluoride fibre laser’, Electronics Letters, 28, 1866, 1992.

    Article  Google Scholar 

  122. Y. Miyajima, T. Komukai and T. Sugawa; ‘1 W Tm-doped fibre laser at 1.47 μm’, Electronics Letters, 29, 660, 1993.

    Article  Google Scholar 

  123. M. L. Dennis, J. W. Dixon and I. Aggarwal; ‘High-power up-conversion lasing at 810nm in Tm-ZBLAN fibre’, Electronics Letters, 30, 136, 1994.

    Article  Google Scholar 

  124. J. Y. Allain, M. Monerie and H. Poignant; ‘Blue up-conversion fluorozirconate fibre laser’, Electronics Letters, 26, 166, 1990.

    Article  Google Scholar 

  125. S. G. Grubb, K. W. Bennett, R. S. Cannon and W. F. Humer; ‘CW room temperature blue up-conversion fibre laser’, Electronics Letters, 28, 1243, 1992.

    Article  Google Scholar 

  126. P. R. Barber, H. M. Pask, C. J. MacKechnie, D. C. Hanna, A. C. Tropper, J. Massicott, S. T. Davey and D. Szebesta; ‘Improved performance of Tm3+ and Pr3 +-doped ZBLAN fibres’, Paper CMF3, in Proceedings of European Conference on Lasers and Electro-Optics ECLEO, Amsterdam, 1994.

    Google Scholar 

  127. G. Tohmon, J. Ohya, H. Sato and T. Uno; ‘Increased efficiency and decreased threshold in Tm-ZBLAN fibre laser co-pumped by 1.1 μm and 0.68 μm light’, IEEE Photonics Technology Letters, 7, 742, 1995.

    Google Scholar 

  128. D. C. Hanna, R. M. Percival, R. G. Smart, J. E. Townsend and A. C. Tropper; ‘Continuous-wave oscillation of holmium-doped silica fibre laser’, Electronics Letters, 25, 593, 1989.

    Article  Google Scholar 

  129. M. C. Brierley, P. W. France and C. A. Miller; ‘Lasing at 2.08 μm and 1.38 μm in a holmium doped fluorozirconate fibre laser’, Electronics Letters, 24, 539, 1988.

    Article  Google Scholar 

  130. R. M. Percival, D. Szebesta, S. T. Davey, N. A. Swain and T. A. King; ‘High efficiency cw operation of 890 nm pumped holmium fluoride fibre laser’, Electronics Letters, 28, 2063, 1992.

    Article  Google Scholar 

  131. L. Wetenka‘Efficient cw operation of a 2.9 μm Ho3+-doped fluorozirconate fibre laser pumped at 640 nm’, Electronics Letters, 26, 883, 1990.

    Google Scholar 

  132. J. Y. Allain, M. Monerie and H. Poignant; ‘Room temperature cw tunable green upconversion holmium fibre laser’, Electronics Letters, 26, 261, 1990.

    Article  Google Scholar 

  133. D. S. Funk, S. B. Stevens and J. G. Eden; ‘Excitation-spectra of the green Ho-fluoro-zirconate glass-fibre laser’, IEEE Photonics Technology Letters, 5, 154, 1993.

    Article  Google Scholar 

  134. J. Y. Allain, M. Monerie and H. Poignant; ‘Tunable cw lasing around 610, 635, 695, 715, 885, and 910nm in praseodymium-doped fluorozirconate fibre’, Electronics Letters, 27, 189, 1991.

    Article  Google Scholar 

  135. R. G. Smart, D. C. Hanna, A. C. Tropper, S. T. Davey, S. F. Carter and D. Szebesta; ‘Cw room-temperature upconversion lasing at blue, green and red wavelengths in infrared-pumped Pr3+ doped fluoride fibre’, Electronics Letters, 27, 1307, 1991.

    Article  Google Scholar 

  136. R. G. Smart, J. N. Carter, A. C. Tropper, D. C. Hanna, S. T. Davey, S. F. Carter and D. Szebesta; ‘Cw room-temperature operation of praseodymium-doped fluorozirconate glass-fibre lasers in the blue-green, green and red spectral regions’, Optics Communications, 86, 337, 1991.

    Article  Google Scholar 

  137. A. C. Tropper, J. N. Carter, R. D. T. Lauder, D. C. Hanna, S. T. Davey and D. Szebesta; ‘Analysis of blue and red laser performance of the infrared pumped praseodymium-doped fluoride fibre laser’, Journal of the Optical Society of America B, 11, 886, 1994.

    Article  Google Scholar 

  138. Y. Shi, C. V. Poulsen, M. Sejka, M. Ibsen and O. Poulsen; ‘Tunable Pr3+ doped silica-based fibre laser’, Electronics Letters, 29, 1426, 1993.

    Article  Google Scholar 

  139. Y. Ohishi, T. Kanamori and S. Takahashi; ‘Pr3+-doped fluoride single mode fibre laser’, IEEE Photonics Technology Letters, 3, 688, 1991.

    Article  Google Scholar 

  140. H. Doring, J. Peupelmann and F. Wenzel; ‘Pr3+ doped 1.3 μm fibre laser using direct coated dichroic mirrors’, Electronics Letters, 31, 1068, 1995.

    Article  Google Scholar 

  141. Y. Shi, C. V. Poulsen, M. Sejka, M. Ibsen and O. Poulsen’, ‘Tunable Pr3+ doped silica based fibre laser’, Electronics Letters, 29, 1426, 1993.

    Article  Google Scholar 

  142. F. Sanchez, P. LeBoudec, P. L. Francois and G. M. Stephan; ‘Self-pulsing in Er3+ doped fibre lasers: theory and experiment’ Paper LDmoP141, in Proceedings of European Quantum Electronics Conference, Florence, 1993.

    Google Scholar 

  143. D. C. Hanna, R. M. Percival, I. R. Perry, R. G. Smart, P. J. Suni, J. E. Townsend and A. C. Tropper; ‘Continuous-wave oscillation of a monomode ytterbium-doped fibre laser’, Electronics Letters, 24, 1111, 1988.

    Article  Google Scholar 

  144. J. R. Armitage, R. Wyatt, B. J. Ainslie and S. P. Craig-Ryan; ‘Highly efficient 980 nm operation of an Yb3+-doped silica fibre laser’, Electronics Letters, 25, 299, 1989.

    Article  Google Scholar 

  145. C. J. MacKechnie, W. L. Barnes, D. C. Hanna and J. E. Townsend; ‘High power ytterbium (Yb3+ )-doped fibre laser operating in the 1.12 μm region’, Electronics Letters, 29, 52, 1993.

    Article  Google Scholar 

  146. J. Y. Allain, J. F. Bayon, M. Monerie, P. Bernage and P. Niay; ‘Ytterbium doped silica fibre laser with intracore Bragg gratings operating at 1.02 μm’, Electronics Letters, 29, 309, 1993.

    Article  Google Scholar 

  147. J. M. Dawes, H. M. Pask, J. L. Archambault, J. E. Townsend, D. C. Hanna, L. Reekie and A. C. Tropper; ‘Single frequency lasers and efficient cladding-pumped lasers using Yb3+-doped silica fibre’, Paper CHJ1, in Proceedings of European Conference on Lasers and Electro-Optics ECLEO, Amsterdam, 1994.

    Google Scholar 

  148. J. Y. Allain, M. Monerie and H. Poignant; ‘Ytterbium-doped fluoride fibre laser operating at 1.02 μm’, Electronics Letters, 28, 988, 1992.

    Article  Google Scholar 

  149. J. Y. Allain, M. Monerie and H. Poignant; ‘High-efficiency ytterbium-doped fluoride fibre laser’, Journal of Non-Crystalline Solids, 161, 270, 1993.

    Article  Google Scholar 

  150. M. E. Fermann, D. C. Hanna, D. P. Shepard, P. J. Suni and J. E. Townsend; ‘Efficient operation of an Yb-sensitised Er fibre laser at 1.56 μm’, Electronics Letters, 24, 1135, 1988.

    Article  Google Scholar 

  151. G. T. Maker and A. I. Ferguson; ‘1.56 μm Yb-sensitized Er fibre laser pumped by diode-pumped Nd-YAG and Nd-YLF lasers’, Electronics Letters, 24, 1160, 1988.

    Article  Google Scholar 

  152. D. C. Hanna, R. M. Percival, I. R. Perry, R. G. Smart and A. C. Tropper; ‘Efficient operation of an Yb-sensitized Er fibre laser pumped in 0.8-μm region’, Electronics Letters, 24, 1068, 1988.

    Article  Google Scholar 

  153. J. D. Minelly, W. L. Barnes, R. I. Laming, P. R. Morkel, J. E. Townsend, S. G. Grubb and D. N. Payne; ‘Diode-array pumping of Er3+ /Yb3+ co-doped fibre lasers and amplifiers’, IEEE Photonics Technology Letters, 5, 301, 1993.

    Article  Google Scholar 

  154. J. Y. Allain, M. Monerie and H. Poignant; ‘Red upconversion Yb-sensitised Pr fluoride fibre laser pumped in 0.8 μm region’, Electronics Letters, 27, 1156, 1991.

    Article  Google Scholar 

  155. P. Xie and T. R. Gosnell; ‘Room-temperature up-conversion fibre laser tunable in the red, orange green and blue spectral regions’, Optics Letters, 20, 1014, 1995.

    Article  Google Scholar 

  156. A. Kermaoui, J. P. Denis, G. Ozen, P. Goldner, F. Pelle, B. Blanzat; ‘Effect of Yb3+ on red to blue conversion fluorescence of Tm3+ in fluorozirconate glass’, Optics Communications, 110, 581, 1994.

    Article  Google Scholar 

  157. J. Schneider, D. Hauschild, C. Frerichs and L. Wetenka‘Highly efficient Er3+/Pr3+-codoped cw fluorozirconate fibre laser operating at 2.7 μm’, International Journal of Infrared and Millimeter Waves, 15, 1907, 1994.

    Article  Google Scholar 

  158. L. Wetenkamp, G. F. West and H. Tobben; ‘Co-doping effects in Er3+-doped and Ho3+-doped ZBLAN glasses’, Journal of Non-Crystalline Solids, 140, 25, 1992.

    Article  Google Scholar 

  159. R. M. Percival, D. Szebesta, S. T. Davey, N. A. Swain and T. A. King; ‘Thulium sensitised holmium-doped fibre laser of high efficiency’, Electronics Letters, 28, 2231, 1991.

    Article  Google Scholar 

  160. J. X. Wang, M. Ahmad and T. A. King; ‘Theoretical modelling of thulium-sensitised holmium continuous-wave fibre lasers’, Journal of Modern Optics, 41, 1457, 1994.

    Article  Google Scholar 

  161. I. M. Jauncey, L. Reekie, R. J. Mears, D. N. Payne, C. J. Rowe, D. C. J. Ried, I. Bennion and C. Edge; ‘Narrow linewidth fibre laser with integral fibre grating’, Electronics Letters, 22, 987, 1986.

    Article  Google Scholar 

  162. I. M. Jauncey, L. Reekie, J. E. Townsend, D. N. Payne and C. J. Rowe; ‘Single longitudinal mode operation of a Nd3+-doped fibre laser’, Electronics Letters, 24, 24, 1988.

    Article  Google Scholar 

  163. H. Sabert; ‘Tunable narrow-band Nd3+ fibre laser’, Applied Physics Letters, 59, 2067,1991.

    Article  Google Scholar 

  164. H. Sabert, A, Koch and R. Ulrich; ‘Reduction of spatial hole burning by single phase modulator in linear Nd3+ fibre laser’, Electronics Letters, 27, 2176, 1991.

    Article  Google Scholar 

  165. H. Sabert and R. Ulrich; ‘Spatial hole burning in Nd3+ fibre lasers suppressed by push pulse phase modulation’, Applied Physics Letters, 58, 2323, 1991.

    Article  Google Scholar 

  166. H. Sabert; ‘Continuous electronic tuning of a narrow-band Nd3+-fibre laser’, Applied Physics Letters, 62, 452, 1993.

    Article  Google Scholar 

  167. H. Sabert; ‘Suppression of mode jumps in a single mode fibre laser’, Optics Letters, 19, 111, 1994.

    Article  Google Scholar 

  168. C. R. O’Cochlain and R. J. Mears; ‘Broad-band tunable single frequency diode-pumped erbium doped fibre laser’, Electronics Letters, 28, 124, 1992.

    Article  Google Scholar 

  169. A. Gloag, L. Zhang, I. Bennion and N. Langford; ‘Single-frequency travelling-wave erbium doped fibre laser incorporating a fibre Bragg grating’, to be published in Optics Communications.

    Google Scholar 

  170. G. A. Ball, W. W. Morey and W. H. Glen; ‘Standing wave monomode erbium fibre laser’, IEEE Photonics Technology Letters, 3, 613, 1991.

    Article  Google Scholar 

  171. J. L. Zyskind, V. Mixrahi, D. J. DiGiovanni and J. W. Sulhoff; ‘Short single frequency erbium doped fibre laser’, Electronics Letters, 28, 1385, 1992.

    Article  Google Scholar 

  172. G. A. Ball and W. W. Morey; ‘Continuously tunable single mode erbium fibre laser’, Optics Letters, 17, 420, 1992.

    Article  Google Scholar 

  173. S. V. Chernikov, J. R. Taylor and R. Kashyap; ‘Coupled-cavity erbium fibre lasers incorporating fibre grating reflectors’, Optics Letters, 18, 2023, 1993.

    Article  Google Scholar 

  174. S. V. Chernikov, R. Kashyap, P. F. McKee and J. R. Taylor; ‘Dual-frequency all fibre grating laser source’, Electronics Letters, 29, 1089, 1993.

    Article  Google Scholar 

  175. G. A. Ball, G. Hullallen, G. Holten and W. W. Morey; ‘Low noise single frequency linear fibre laser’, Electronics Letters, 29, 1623, 1993.

    Article  Google Scholar 

  176. G. A. Ball and W. W. Morey; ‘Compression tuned single frequency Bragg grating fibre laser’, Optics Letters, 19, 1979, 1994.

    Article  Google Scholar 

  177. G. A. Ball, C. E. Holton, G. Hullallen and W. W. Morey; ‘60 mW 1.5 μm single frequency low noise fibre laser MOPA’, IEEE Photonics Technology Letters, 6, 192, 1994.

    Article  Google Scholar 

  178. G. A. Ball, G. Hullallen and J. Livas; ‘Frequency noise of a Bragg grating fibre laser’, Electronics Letters, 30, 1229, 1994.

    Article  Google Scholar 

  179. V. Mizrahi, D. J. DiGiovanni, R. M. Atkins, S. G. Grubb, Y. K. Park and J. M. P. Delavaux; ‘Stable single mode erbium fibre grating laser for digital communication’, Journal of Lightwave Technology, 11, 2021, 1993.

    Article  Google Scholar 

  180. J. L. Wagener, P. F. Wysocki, M. J. F. Digonnet and H. J. Shaw; ‘Modeling of ion-pairs in erbium-doped fibre amplifiers’, Optics Letters, 19, 347, 1994.

    Article  Google Scholar 

  181. J. T. Kringlebotn, P. R. Morkel, L. Reekie, J. L. Archambault and D. N. Payne; ‘Efficient diode pumped single frequency erbium-ytterbium fibre laser’, IEEE Photonics Technology Letters, 5, 1162, 1993.

    Article  Google Scholar 

  182. J. T. Kringlebotn, J. L. Archambault, L. Reekie, J. E. Townsend, G. G. Vienne and D. N. Payne; ‘Highly efficient low noise grating feedback Er3+ Yb3+ codoped fibre laser’, Electronics Letters, 30, 972, 1994.

    Article  Google Scholar 

  183. M. Ibsen, B. J. Eggleton, M. G. Sceats and F. Ouellette; ‘Broadly tunable DBR fibre laser using sampled fibre Bragg gratings’, Electronics Letters, 31, 37, 1995.

    Article  Google Scholar 

  184. M. Sejka, P. Vanning, J. Hubner and M. Kristensen; ‘Distributed erbium doped fibre laser’, Electronics Letters, 31, 1445, 1995.

    Article  Google Scholar 

  185. W. H. Loh and R. I. Laming; ‘1.55 μm phase shifted distributed feedback fibre laser’, Electronics Letters, 31, 1440, 1995.

    Article  Google Scholar 

  186. A. Asseh, H. Storoy, J. T. Kringlebotn, W. Margulis, B. Sahlgren, R. Stubbe and G. Edwall; ‘10cm Yb3+ DFB fibre laser with permanent phase shifted grating’, Electronics Letters, 31, 969, 1995.

    Article  Google Scholar 

  187. K. Iwatsuki, H. Okamura and M. Saruwatari; ‘Wavelength tunable single frequency and single polarisation Er-doped fibre ring laser with 1.4 kHz linewidth’, Electronics Letters, 26, 2033, 1990.

    Article  Google Scholar 

  188. C. Y. Yue, G. W. Schinn, J. W. Y. Lit and Z. Zhang; ‘Single mode EFL using an all-fibre subresonator’, Paper WK7, in the Proceedings of the OFC’ 94 Conference, San Jose, 1994.

    Google Scholar 

  189. J. L. Zhang and J. W. Y. Lit; ‘All-fibre compound ring resonator with a ring filter’, Journal of Lightwave Technology, 12, 1256, 1994.

    Article  Google Scholar 

  190. A. Gloag, K. McCallion, W. Johnstone and N. Langford; ‘Tunable single frequency erbium fibre laser using an overlay bandpass filter’, Applied Physics Letters, 66, 3263, 1995.

    Article  Google Scholar 

  191. A. Gloag, K. McCallion, W. Johnstone and N. Langford; ‘A continuously tunable single frequency erbium fibre laser’, accepted for publication in the Journal of The Optical Society of America B—Optical Physics, 13, 921, 1996.

    Article  Google Scholar 

  192. A. D. Kersey and W. W. Morey; ‘Multiplexed Bragg grating fibre laser strain-sensor system with mode-locked interrogation’, Electronics Letters, 29, 112, 1993.

    Article  Google Scholar 

  193. See for example G. P. Agrawal; Non-Linear Optical Fibres, Ch. 2, Academic Press, New York, 1987.

    Google Scholar 

  194. F. Fontana, G. Bordogna, G. Grasso, M. Romagnoli, M. Midrio and P. Franco; ‘Evaluation and measurement of the resonant group-velocity dispersion in erbium doped fibre lasers’, Optics Letters, 18, 2011, 1993.

    Google Scholar 

  195. See for example G. P. Agrawal; Non-Linear Optical Fibres, Ch. 5, Academic Press, New York, 1987.

    Google Scholar 

  196. See for example G. P. Agrawal; Non-Linear Optical Fibres, Ch. 7, Academic Press, New York, 1987.

    Google Scholar 

  197. H. G. Wmful; ‘Self-induced polarisation changes in birefringent optical fibres’, Applied Physics Letters, 47, 213, 1985.

    Article  Google Scholar 

  198. See for example G. P. Agrawal; Non-Linear Optical Fibres, Ch. 5, Academic Press, New York, 1987.

    Google Scholar 

  199. N. J. Smith, K. J. Blow and I. Andonovic; ‘Side-band generation through perturbations to the average soliton model’, Journal of Lightwave Technology, 10, 1329, 1992.

    Article  Google Scholar 

  200. W. J. Tomlinson, R. H. Stolen and C. V. Shank; ‘Compression of optical pulses chirped by self-phase modulation in fibres’, Journal of the Optical Society of America, Bl, 139, 1984.

    Article  Google Scholar 

  201. E. B. Treacy; ‘Optical pulse compression with diffraction gratings’, IEEE Journal of Quantum Electronics, QE-5, 454, 1969.

    Article  Google Scholar 

  202. O. E. Martinez, J. P. Gordon and R. L. Fork; ‘Negative group velocity dispersion using refraction’, Journal of the Optical Society of America, Bl, 1003, 1984.

    Google Scholar 

  203. F. Ouellette; ‘All fibre filters for efficient dispersion compensation’, Optics Letters, 16, 303,1991.

    Article  Google Scholar 

  204. See for example A. E. Siegman; Lasers, Ch. 27, University Science Books, 1988.

    Google Scholar 

  205. See for example A. E. Siegman; Lasers, Ch. 28, University Science Books, 1988.

    Google Scholar 

  206. E. J. Greer and K. Smith; ‘All-optical FM mode-locking of fibre laser’, Electronics Letters, 28, 1741, 1993.

    Article  Google Scholar 

  207. B. P. Nelson, K. Smith and K. J. Blow; ‘Mode-locked erbium fibre laser using all-optical nonlinear loop modulator’, Electronics Letters, 28, 656, 1993.

    Article  Google Scholar 

  208. N. J. Doran, D. S. Forester and B. K. Nayar; ‘Experimental investigation of all-optical switching in fibre loop mirror device’, Electronics Letters, 25, 267, 1989.

    Article  Google Scholar 

  209. K. J. Blow, N. J. Doran and B. K. Nayar; ‘Experimental demonstration of optical soliton switching in an all-fibre nonlinear sagnac interferometer’, Optics Letters, 14, 754, 1989.

    Article  Google Scholar 

  210. K. Smith, N. J. Doran and P. G. J. Wigley; ‘Pulse shaping, compression, and pedestal suppression employing nonlinear-optical loop mirror’, Optics Letters, 15, 1232, 1990.

    Google Scholar 

  211. M. N. Islam, E. R. Sundermna, R. H. Stolen, W. Pleibel and J. R. Simpson; ‘Soliton switching in a fibre loop mirror’, Optics Letters, 14, 811, 1989.

    Article  Google Scholar 

  212. M. E. Fermann, F. Haberl, M. Hofer and H. Hochreiter; ‘Nonlinear amplifying loop mirror’, Optics Letters, 15, 752, 1990.

    Article  Google Scholar 

  213. D. J. Richardson, R. I. Lamming and D. N. Payne; ‘Very low threshold Sagnac switch incorporating an erbium doped fibre amplifier’, Electronics Letters, 26, 1779, 1990.

    Article  Google Scholar 

  214. A. W. O’Neill and R. P. Webb; ‘All-optical loop mirror switch employing an asymmetric amplifier attenuator combination’, Electronics Letters, 26, 2009, 1990.

    Article  Google Scholar 

  215. A. G. Bulushev, E. M. Dianov and O. G. Okhotnikov; ‘Self-starting mode-locked laser with a non-linear ring resonator’, Optics Letters, 15, 968, 1990.

    Article  Google Scholar 

  216. I. P. Alcock, A. I. Ferguson, D. C. Hanna and A. C. Tropper; ‘Mode-locking of a neodymium-doped monomode fibre laser’, Electronics Letters, 22, 268, 1986.

    Article  Google Scholar 

  217. M. W. Phillips, A. I. Ferguson and D. C. Hanna; Optics Letters, 14, 21, 1989.

    Article  Google Scholar 

  218. M. Hofer, M. E. Fermann, F. Haberl and J. E. Townsend; ‘Active-mode-locking of a neodymium-doped fibre laser using intracavity pulse compression’, Optics Letters, 15, 1467, 1990.

    Article  Google Scholar 

  219. M. E. Fermann, M. Hofer, F. Haberl, A. J. Schmidt and L. Turi; ‘Additive-pulse-compression of a neodymium fibre laser’, Optics Letters, 16, 244, 1991.

    Article  Google Scholar 

  220. M. Hofer, M. E. Fermann, G. Haberl, M. H. Ober and A. J. Schmidt; ‘Mode-locking with cross-phase and self-phase modulation’, Optics Letters, 16, 502, 1991.

    Article  Google Scholar 

  221. F. Haberl, M. H. Ober, M. Hofer, M. E. Fermann, E. Wintner and A. J. Schmidt; ‘Low-noise operation modes of a passively mode-locked fibre laser’, IEEE Photonics Technology Letters, 3, 1071, 1991.

    Article  Google Scholar 

  222. M. Hofer, M. H. Ober, F. Haberl and M. E. Fermann; ‘Characterisation of ultra-short pulse formation in passively mode-locked fibre lasers’, IEEE Journal of Quantum Electronics, QE-28, 720, 1992.

    Article  Google Scholar 

  223. M. E. Fermann, M. J. Andrejco, Y. Silberberg and M. L. Stock; ‘Generation of pulses shorter than 200 fs from a passively mode-locked Er fibre laser’, Optics Letters, 18, 48, 1993.

    Article  Google Scholar 

  224. M. E. Fermann, M. J. Andrejco, Y. Silberberg and M. L. Stock; ‘Passive mode-locking by using non-linear polarisation evolution in a polarisation-maintaining erbium-doped fibre’, Optics Letters, 18, 894, 1993.

    Article  Google Scholar 

  225. M. W. Phillips, A. I. Ferguson and D. C. Hanna; ‘Frequency-modulation mode-locking of a Nd3+-doped fibre laser’, Optics Letters, 14, 219, 1989.

    Article  Google Scholar 

  226. D. M. Pataca, M. L. Rocha, K. Smith, T. J. Whitley and R. Wyatt; ‘Actively mode-locked Pr3 +-doped fluoride fibre laser’, Electronics Letters, 30, 964, 1994.

    Article  Google Scholar 

  227. R. P. Davey, N. Langford and A. I. Ferguson; ‘Sub-picosecond pulse generation from an erbium fibre laser’, Electronics Letters, 27, 729, 1991.

    Article  Google Scholar 

  228. R. P. Davey, N. Langford and A. I. Ferguson; ‘the role of polarisation rotation in the mode-locking of an erbium fibre laser’, Electronics Letters, 29, 729, 1993.

    Article  Google Scholar 

  229. R. P. Davey, A. Gloag, N. Langford and A. I. Ferguson; ‘The role of polarisation rotation in the mode-locking of an erbium fibre laser’, Paper TuB20 in the Proceedings of the Third International Conference on Non-Linear Optical Waveguides, Cambridge, UK, 1993.

    Google Scholar 

  230. R. P. Davey, N. Langford and A. I. Ferguson; ‘Interacting solitons in erbium fibre laser’, Electronics Letters, 27, 1251, 1991.

    Article  Google Scholar 

  231. G. Geister and R. Ulrich; ‘Neodymium-fibre laser with integrated-optic mode locker’, Optics Communications, 68, 187, 1988.

    Article  Google Scholar 

  232. G. Geister and R. Ulrich; ‘Integrated optical Q-switch/mode-locker for a Nd3+ fibre laser’, Applied Physics Letters, 56, 509, 1990.

    Article  Google Scholar 

  233. D. B. Patterson, A. A. Godil, G. S. Kino and B. T. Khuri-Yakub; ‘Detachable 400-mHz acoustooptic phase modulator for a single-mode optical fibre’, Optics Letters, 14, 248, 1989.

    Article  Google Scholar 

  234. M. W. Phillips, A. I. Ferguson, G. S. Kino and D. B. Patterson; ‘Mode-locked fibre laser with a fiber phase modulator’, Optics Letters, 14, 248, 1989.

    Article  Google Scholar 

  235. M. W. Phillips, A. I. Ferguson and D. B. Patterson; ‘Diode-pumped fm mode-locked fibre laser with coupled cavity bandwidth selection’, Optics Communications, 75, 33, 1990.

    Article  Google Scholar 

  236. J. D. Kafka, T. Baer and D. W. Hall; ‘Mode-locked erbium doped fibre laser with soliton pulse shaping’, Optics Letters, 14, 1269, 1989.

    Article  Google Scholar 

  237. J. B. Schlager, Y. Yamubayashi, D. L. Franzen and R. I. Juneau; ‘Mode-locked, long-cavity, erbium fibre lasers with subsequent soliton-like compression’, IEEE Photonics Technology Letters, 1, 264, 1989.

    Article  Google Scholar 

  238. J. B. Schlager, P. D. Hale and D. L. Franzen; ‘Subpicosecond pulse-compression and Raman generation using a mode-locked erbium-doped fibre laser-amplifier’, IEEE Photonics Technology Letters, 2, 562, 1990.

    Article  Google Scholar 

  239. J. B. Schlager, S. Kawanishi and M. Saruwatari; ‘Dual wavelength pulse generation using mode-locked erbium doped fibre ring laser’, Electronics Letters, 27, 2072, 1991.

    Article  Google Scholar 

  240. H. Takara, S. Kawanishi, M. Surawatari and J. B. Schlager; ‘Multiple wavelength birefringent cavity mode-locked fibre laser’, Electronics Letters, 28, 2274, 1992.

    Article  Google Scholar 

  241. E. Greer, R. Wyatt, P. Wheatley, N. J. Doran and M. Lawrence; ‘Totally integrated erbium fibre soliton laser pumped by a laser diode’, Electronics Letters, 27, 244, 1991.

    Article  Google Scholar 

  242. A. Takada and H. Miyazawa; ‘30 GHz picosecond pulse generation from actively mode-locked erbium-doped fibre laser’, Electronics Letters, 26, 216, 1990.

    Article  Google Scholar 

  243. A. Yoshida, Y. Kimura and M. Nakazawa; ‘20 GHz, 1.8 ps pulse generation from a regeneratively mode-locked erbium-doped fibre laser and its femtosecond pulse compression’, Electronics Letters, 31, 377, 1995.

    Article  Google Scholar 

  244. R. P. Davey, K. Smith and A. McGuire; ‘High speed, mode-locked tunable integrated erbium fibre laser’, Electronics Letters, 28, 482, 1992.

    Article  Google Scholar 

  245. R. P. Davey, R. P. E. Fleming, K. Smith, R. Kayshap and J. R. Armitage; ‘Mode-locked erbium fibre laser with wavelength selection by means of a fibre Bragg grating reflector’, Electronics Letters, 27, 2087, 1991.

    Article  Google Scholar 

  246. E. J. Greer, Y. Kimura, E. Yoshida and M. Nakazawa; ‘Generation of 1.2ps, 10 GHz pulse train from all optically mode-locked erbium fibre ring laser with active non-linear polarisation rotation’, Electronics Letters, 30, 1764, 1994.

    Article  Google Scholar 

  247. M. L. Stock, L. M. Yang, M. J. Andrejco and M. E. Fermann; ‘Synchronous mode-locking using pump induced phase modulation’, Optics Letters, 18, 1529, 1993.

    Article  Google Scholar 

  248. D. U. Noske, A. Boskovic, M. J. Guy and J. R. Taylor; ‘Synchronously pumped picosecond ytterbium-erbium fibre laser’, Electronics Letters, 29, 1863, 1993.

    Article  Google Scholar 

  249. D. M. Patrick; ‘Mode-locked ring laser using nonlinearity in a semiconductor laser amplifier’, Electronics Letters, 30, 43, 1994.

    Article  Google Scholar 

  250. M. Margalit, M. Orenstein and G. Eisenstein; ‘High repetition-rate mode-locked Er-doped fibre laser by harmonic injection locking’, Optics Letters, 20, 1791, 1995.

    Article  Google Scholar 

  251. D. M. Pataca, M. L. Rocha, R. Kashyap and K. Smith; ‘Bright and dark pulse generation in an optically mode-locked fibre laser at 1.3 urn’, Electronics Letters, 31, 35, 1995.

    Article  Google Scholar 

  252. M. H. Ober, M. Hofer and M. E. Fermann; ‘42 fs pulse generation from a mode-locked fibre laser started with a moving mirror’, Optics Letters, 18, 367, 1993.

    Article  Google Scholar 

  253. N. Langford: unpublished data.

    Google Scholar 

  254. P. N. Kean, X. Zhu, D. W. Crust, R. S. Grant, N. Langford and W. Sibbett; ‘Enhanced mode-locking of colour-centre lasers’, Optics Letters, 14, 39, 1989.

    Article  Google Scholar 

  255. E. P. Ippen, H. A. Haus and L. Y. Lui; ‘Additive pulse mode-locking’, Journal of the Optical Society of America, B6, 1736, 1989.

    Article  Google Scholar 

  256. G. Sargsan, U. Stamm, C. Unger, C. Zschocke and M. Ledig; ‘Characteristics of a neodymium-doped fibre laser mode-locked with a linear external cavity’, Optics Communications, 86, 480, 1991.

    Article  Google Scholar 

  257. C. Unger, G. Sargsan, U. Stamm and M. Muller; ‘Coupled cavity mode-locking of a neodymium doped fibre laser’, Institute of Physics Conference Series, 126, 15, 1992.

    Google Scholar 

  258. Y. Shi, C. V. Poulsen, M. Sejka and O. Poulsen; ‘Mode-locked Pr3+ doped silica fibre laser with an external cavity’, Journal of Lightwave Technology, 12, 749, 1994.

    Article  Google Scholar 

  259. I. N. Ouling; ‘All-fibre ring soliton laser mode-locked with a non-linear mirror’, Optics Letters, 17

    Google Scholar 

  260. M. Nakazawa, E. Yoshida and Y. Kimura; ‘Low threshold, 290 fs erbium-doped fibre laser with a nonlinear amplifying loop mirror pumped by InGaAsP laser diodes’, Applied Physics Letters, 59, 2073, 1991.

    Article  Google Scholar 

  261. D. J. Richardson, R. I. Laming, D. N. Payne, V. Matsas and M. W. Phillips; ‘A self-starting passively mode-locked erbium fibre laser based on the amplifying Sagnac switch’, Electronics Letters, 27, 738, 1991.

    Article  Google Scholar 

  262. D. J. Richardson, R. I. Laming, D. N. Payne, V. Matsas and M. W. Phillips; ‘Pulse repetition rates in passive self-starting femtosecond soliton fibre laser’, Electronics Letters, 27, 1451, 1991.

    Article  Google Scholar 

  263. D. J. Richardson, R. I. Laming, D. N. Payne, M. W. Phillips and V. Matsas; ‘320 fs soliton generation with passively mode-locked erbium fibre laser’, Electronics Letters, 27, 730, 1991.

    Article  Google Scholar 

  264. S. J. Frisken, C. A. Telford, R. A. Betts and P. S. Atherton; ‘Passively mode-locked erbium-doped fibre laser with non-linear fibre mirror’, Electronics Letters, 27, 887, 1991.

    Article  Google Scholar 

  265. M. L. Dennis and I. N. Duling III; ‘High repetition rate figure 8 laser with extra-cavity feedback’, Electronics Letters, 28, 1894, 1992.

    Article  Google Scholar 

  266. E. Yoshida, Y. Kimura and M. Nakazawa; ‘Laser diode pumped femtosecond erbium doped fibre laser with a sub-ring cavity for repetition rate control’, Applied Physics Letters, 60, 932, 1992.

    Article  Google Scholar 

  267. A. B. Grudinin, D. J. Richardson and D. N. Payne; ‘Energy quantisation in figure 8 fibre laser’, Electronics Letters, 28, 67, 1992.

    Article  Google Scholar 

  268. M. J. Guy, D. U. Noske and J. R. Taylor; ‘Generation of femtosecond soliton pulses by passive mode-locking of an ytterbium erbium figure 8 fibre laser’, Optics Letters, 18, 1447, 1993.

    Article  Google Scholar 

  269. S. Wu, J. Strait, R. L. Fork and T. F. Morse; ‘High power passively mode-locked Er-doped fibre laser with a non-linear optical loop mirror’, Optics Letters, 18,1444, 1993.

    Article  Google Scholar 

  270. E. Yoshida, Y. Kimura and M. Nakazawa; ‘Femtosecond erbium doped fibre lasers and a soliton compression technique’, Japanese Journal of Applied Physics Part 1, 32, 3461, 1993.

    Article  Google Scholar 

  271. M. L. Dennis and I. N. Duling HI; ‘Intracavity dispersion measurement in mode-locked fibre laser’, Electronics Letters, 29, 409, 1993.

    Article  Google Scholar 

  272. M. Nakazawa, E. Yoshida and Y. Kimura; ‘Generation of 98 fs pulses directly from an erbium doped fibre ring laser at 1.57 μm’, Electronics Letters, 29, 63, 1993.

    Article  Google Scholar 

  273. M. L. Dennis and I. N. Duling; ‘Role of dispersion in limiting pulse-width in fibre lasers’, Applied Physics Letters, 62, 2911, 1993.

    Article  Google Scholar 

  274. D. U. Noske, N. Pandit and J. R. Taylor; ‘Source of spectral and temporal instability in soliton fibre lasers’, Optics Letters, 17, 1515, 1992.

    Article  Google Scholar 

  275. M. J. Guy and J. R. Taylor; ‘Simultaneous dual-polarisation operation of a diode-pumped femtosecond fibre laser’, Electronics Letters, 29, 2044, 1993.

    Article  Google Scholar 

  276. H. Lin, D. K. Donald and W. V. Sorin; ‘Optimisation polarisation states in a figure 8 laser using a non-reciprocal phase shifter’, Journal of Lightwave Technology, 12, 1121, 1994.

    Article  Google Scholar 

  277. M. L. Dennis and I. N. Duling; ‘Experimental study of side-band generation in femtosecond fibre lasers’, IEEE Journal of Quantum Electronics, QE-30, 1469, 1994.

    Article  Google Scholar 

  278. G. Town, J. Chow and M. Romagnoli;’ sliding frequency figure 8 optical fibre laser‘, Electronic Letters, 31, 1452, 1995.

    Article  Google Scholar 

  279. A. Boskovic, S. V. Chernikov and J. R. Taylor; ‘Femtosecond figure of 8 Yb-Er fibre laser incorporating a dispersion decreasing fibre’, Electronics Letters, 31, 1446, 1995.

    Article  Google Scholar 

  280. K. Tamura, H. A. Haus and E. P. Ippen; ‘Self-starting additive pulse mode-locked erbium fibre ring laser’, Electronics Letters, 28, 2226, 1992.

    Article  Google Scholar 

  281. D. U. Noske, N. Pandit and J. R. Taylor; ‘Subpicosecond soliton pulse formation from self-mode-locked erbium ring fibre laser using intensity dependent polarisation rotation’, Electronics Letters, 28, 2185, 1992.

    Article  Google Scholar 

  282. M. Nakazawa, E. Yoshida, T. Sugawa and Y. Kimura; ‘Continuum suppressed uniformally repetitive 136 fs pulse generation from an erbium fibre laser with nonlinear polarisation rotation’, Electronics Letters, 29, 1327, 1993.

    Article  Google Scholar 

  283. V. J. Matsas, D. J. Richardson, T. P. Newson and D. N. Payne; ‘Characterisation of a self-starting, passively mode-locked fibre ring laser that exploits non-linear polarisation evolution’, Optics Letters, 18, 358, 1993.

    Article  Google Scholar 

  284. A. B. Grudinin, D. J. Richardson and D. N. Payne; ‘Passive harmonic mode-locking of fibre soliton ring lasers’, Electronics Letters, 29, 1860, 1993.

    Article  Google Scholar 

  285. W. H. Loh, A. B. Grudinin and D. N. Payne; ‘Optically controlled wavelength adjustable passively mode-locked erbium doped fibre ring laser’, Electronics Letters, 30, 413, 1994.

    Article  Google Scholar 

  286. H. A. Haus, E. P. Ippen and K. Tamura; ‘Additive pulse mode-locking in fibre lasers’, IEEE Journal of Quantum Electronics, QE-30, 200, 1994.

    Article  Google Scholar 

  287. K. Tamura, K. Nelson, H. A. Haus and E. P. Ippen; ‘Soliton versus non-soliton operation of fibre ring lasers’, Applied Physics Letters, 64, 149, 1994.

    Article  Google Scholar 

  288. K. Tamura, Y. Kimura and M. Nakazawa; ‘Femtosecond pulse generation over 82nm wavelength span fron passively mode-locked erbium doped fibre laser’, Electronics Letters, 31, 1062, 1995.

    Article  Google Scholar 

  289. T. Sugawa, E. Yoshida, Y. Miyajima and M. Nakazawa; ‘1.6ps pulse generation from a 1.3 μm Pr3+-doped fluoride fibre laser’, Electronics Letters, 29, 903, 1993.

    Article  Google Scholar 

  290. M. J. Guy, D. U. Noske, A. Boskovic and J. R. Taylor; ‘Femtosecond soliton generation in a praseodymium fluoride fibre laser’, Optics Letters, 19, 828, 1994.

    Article  Google Scholar 

  291. L. E. Nelson, K. Tamura, E. P. Ippen and H. A. Haus; ‘Additive-pulse mode-locked thulium-doped fibre ring laser’, Paper CW14, in the Proceedings of the Conference on Lasers and Electro-Optics CLEO 95, Baltimore, USA, 1995.

    Google Scholar 

  292. M. Hofer, M. H. Ober, R. Hofer, M. E. Fermann, G. Sucha, D. Harter, K. Sugden, I. Bennion, C. A. C. Mendonca and T. H. Chiu; ‘High power neodymium soliton fibre laser that uses a chirped fibre grating’, Optics Letters, 20, 1701, 1995.

    Article  Google Scholar 

  293. P. N. Kean, J. W. D. Gray, I. Bennion and N. J. Doran; ‘Dispersion modified actively mode-locked erbium fibre laser using a chirped fibre grating’, Electronics Letters, 30, 2133, 1994.

    Article  Google Scholar 

  294. M. E. Fermann, K. Sugden and I. Bennion; ‘High power soliton fibre laser-based on pulse width control with chirped fibre Bragg gratings’, Optics Letters, 20, 172, 1995.

    Article  Google Scholar 

  295. W. H. Loh, D. Atkinson, P. R. Morkel, R. Grey, A. J. Seeds and D. N. Payne; ‘Diode-pumped self-starting passively mode-locked neodymium doped fibre laser’, Electronics Letters, 29, 808, 1993.

    Article  Google Scholar 

  296. M. H. Ober, M. Hofer, U. Keller and T. H. Chiu; ‘Self-starting diode-pumped femtosecond Nd fibre laser’, Optics Letters, 18, 1532, 1993.

    Article  Google Scholar 

  297. M. H. Ober, G. Sucha and M. E. Fermann; ‘Controllable dual-wavelength operation of a femtosecond neodymium fibre laser’, Optics Letters, 20, 219, 1995.

    Article  Google Scholar 

  298. W. H. Loh, D. Atkinson, P. R. Morkel, M. Hopkinson, A. Rivers, A. J. Seeds and D. N. Payne; ‘All-solid-state passively mode-locked erbium doped fibre laser’, Applied Physics Letters, 63, 4, 1993.

    Article  Google Scholar 

  299. W. H. Loh, D. Atkinson, P. R. Morkel, M. Hopkinson, A. Rivers, A. J. Seeds and D. N. Payne; ‘Passively mode-locked Er3+ fibre laser using a semiconductor nonlinear mirror’, IEEE Photonics Technology Letters, 5, 35, 1993.

    Article  Google Scholar 

  300. E. A. DeSouza, C. E. Soccolich, W. Pleibel, R. H. Stolen, J. R. Simpson and D. J. DiGiovanni; ‘Saturable absorber mode-locked polarisation maintaining erbium doped fibre laser’, Electronics Letters, 29, 447, 1993.

    Article  Google Scholar 

  301. O. G. Okhotnikov and J. R. Salcedo; ‘Self-starting passively mode-locked fibre laser exploiting polarisation evolution in MQW Wave-guide’, Electronics Letters, 30, 1421, 1994.

    Article  Google Scholar 

  302. O. G. Okhotnikov, F. M. Araujo and J. R. Salcedo; ‘1.48 μm pump-diode driven mode-locked Er fibre laser’, IEEE Photonics Technology Letters, 6, 933, 1994.

    Article  Google Scholar 

  303. B. C. Barnett, L. Rahman, M. N. Islam, Y. C. Chen, P. Bhattacharya, W. Riha, K. V. Reddy, A. T. Howe, K. A. Stair, H. Iwamura, S. R. Friberg and T. Mukai; ‘High power erbium doped fibre laser mode-locked by a semiconductor saturable absorber’, Optics Letters, 20, 471, 1995.

    Article  Google Scholar 

  304. D. F. Voss and L. S. Goldberg; ‘Simultaneous amplification and compression of continuous wave mode-locked Nd:YAG laser pulses’, Optics Letters, 11, 210, 1986.

    Article  Google Scholar 

  305. M. Hofer, M. H. Ober, F. Haberl, M. E. Fermann, E. R. Taylor and K. P. Jedrzejewski; ‘Regenerative Nd glass amplifier seeded with a Nd fibre laser’, Optics Letters, 17, 807, 1992.

    Article  Google Scholar 

  306. M. L. Stock and G. Mourou; ‘Chirped pulse amplification in an erbium-doped fibre oscillator fibre amplifier system’, Optics Communications, 106, 249, 1994.

    Article  Google Scholar 

  307. M. E. Fermann, A. Galvanauskas and D. Harter; ‘All-fibre source of 100 nJ subpi-cosecond pulses’, Applied Physics Letters, 64, 1315, 1994.

    Article  Google Scholar 

  308. M. E. Fermann, A. Galvanauskas, D. Harter, J. D. Minelly, J. E. Caplen, Z. J. Chen and D. N. Payne; ‘Cladding pumped Er3+ fibre amplifier generating femtosecond pulses with an average power of 0.26W’, Post Deadline Paper CDP42. Proceedings of Conference on Lasers and Electro-Optics, Baltimore, USA, 1995.

    Google Scholar 

  309. See for example W. Koechner; Solid State Laser Engineering Ch. 5, Springer-Verlag, Berlin, 1988.

    Google Scholar 

  310. I. P. Alcock, A. C. Tropper, A. I. Ferguson and D. C. Hanna; ‘Q-switched operation of a neodymium-doped monomode fibre laser’, Electronics Letters, 22, 84, 1986.

    Article  Google Scholar 

  311. R. J. Mears, L. Reekie, S. B. Poole and D. N. Payne; ‘Low threshold tunable cw and Q-switched fibre laser operating at 1.5 μm’, Electronics Letters, 22, 159, 1986.

    Article  Google Scholar 

  312. I. M. Jauncey, J. T. Lin, L. Reekie and R. J. Mears; ‘Efficient diode-pumped cw and Q-switched single-mode fibre laser’, Electronics Letters, 22, 198, 1986.

    Article  Google Scholar 

  313. L. Reekie, I. M. Jauncey, S. B. Poole and D. N. Payne; ‘Cw tunable and Q-switched operation at 939 nm of a diode laser pumped Nd3+ doped fibre laser’, Paper THM46, in Proceedings of Conference on Lasers and Electro-Optics, Anaheim, USA, 1988.

    Google Scholar 

  314. L. A. Zenteno, H. Po and N. M. Cho; ‘All solid state passively Q-switched mode-locked Nd-doped fibre laser’, Optics Letters, 15, 115, 1990.

    Article  Google Scholar 

  315. P. R. Morkel, K. P. Jedrzejewski, E. R. Taylor and D. N. Payne; ‘Short-pulse high-power Q-switched fibre laser’, IEEE Photonics Technology Letters, 4, 545, 1992.

    Article  Google Scholar 

  316. P. R. Morkel, K. P. Jedrzejewski and E. R. Taylor; ‘Q-switched neodymium doped phosphate-glass fibre laser’, IEEE Journal of Quantum Electronics, 29, 2178, 1993.

    Article  Google Scholar 

  317. I. Abdulhalim, C. N. Pannell, L. Reekie, K. P. Jedrzejewski, E. R. Taylor and D. N. Payne; ‘High-power, short-pulse acoustooptically Q switched fibre laser’, Optics Communications, 99, 355, 1993.

    Article  Google Scholar 

  318. P. Myslinski, J. Chrostowski, J. A. Koningstein and J. R. Simpson; ‘High power Q-switched erbium doped fibre laser’, IEEE Journal of Quantum Electronics, 28, 371, 1992.

    Article  Google Scholar 

  319. F. Seguin and T. Oleskevich; ‘Diode pumped Q-switched fibre laser’, Optical Engineering, 32, 2036, 1993.

    Article  Google Scholar 

  320. F. Chandonnet and G. Larose; ‘High power Q-switched erbium fibre laser using an all fibre intensity modulator’, Optical Engineering, 32, 2031, 1993.

    Article  Google Scholar 

  321. O. G. Okhotnikov and J. R. Salcedo; ‘Dispersively Q-switched Er fibre laser with intracavity 1.48 μm laser diode as pumping source and non-linear modulator’, Electronics Letters, 30, 702, 1994.

    Article  Google Scholar 

  322. P. Myslinski, J. Chrostowski, J. A. Koningstein and J. R. Simpson; ‘Self-mode-locking in a Q-switched erbium-doped fibre laser’, Applied Optics, 32, 286, 1993.

    Article  Google Scholar 

  323. O. G. Okhotnikov, F. M. Araujo and J. R. Salcedo; ‘Wavelength switching in pump diode modulated mode-locked and Q-switched Er fibre laser’, Applied Physics Letters, 65, 2910, 1994.

    Article  Google Scholar 

  324. C. Frerichs and T. Tauermann; ‘Q-switched operation of laser diode pumped erbium doped fluorozirconate fibre laser operating at 2.7 μm’, Electronics Letters, 30, 706, 1994.

    Article  Google Scholar 

  325. T. Koumaki, T. Yamamoto, T. Sugawa and Y. Miyajima; ‘Efficient up-conversion pumping at 1.064 μm of Tm3+ fluoride fibre laser operating around 1.47 μm’, Electronics Letters, 28, 830, 1992.

    Article  Google Scholar 

  326. N. Kishi, J. N. Carter, R. Mottahedeh, P. R. Morkel, R. G. Smart, A. J. Seeds, J. S. Roberts, C. C. Button, D. N. Payne, A. C. Tropper and D. C. Hanna; ‘Actively mode-locked and passively Q-switched operation of thulium doped fibre laser using multiquantum well asymmetric Fabry-Perot modulator’, Electronics Letters, 28, 175, 1992.

    Article  Google Scholar 

  327. P. Myslinski, X. Pan, C. Barnard, J. Chrostowski, B. T. Sullivan and J. F. Bayon; ‘Q-switched thulium doped fibre laser’, Optical Engineering, 32, 2025, 1993.

    Article  Google Scholar 

  328. S. M. Melle, A. T. Alavie, S. E. Karr, T. Coroy, K. Lui and R. M. Measures; ‘A Bragg grating-tuned fibre laser strain sensor system’, IEEE Photonics Technology Letters, 5, 263, 1993.

    Article  Google Scholar 

  329. G. A. Ball, W. W. Morey and P. K. Cheo; ‘Single and multipoint fibre laser sensors’, IEEE Photonics Technology Letters, 5, 267,1993.

    Google Scholar 

  330. A. Orthonos, S. Melle, A. T. Alavie, S. E. Karr and R. M. Measures; ‘Fibre Bragg grating sensors’, Optical Engineering, 32, 2841, 1993.

    Article  Google Scholar 

  331. A. T. Alavie, S. E. Karr, A. Orthonos and R. M. Measures; ‘A multiplexed Bragg grating fibre laser sensor system’, IEEE Photonics Technology Letters, 5, 1112, 1993.

    Article  Google Scholar 

  332. A. D. Kersey and W. W. Morey; ‘Multielement Bragg grating based fibre-laser strain sensor’, Electronics Letters, 29, 964, 1993.

    Article  Google Scholar 

  333. H. K. Kim, S. K. Kim, H. G. Park and B. Y. Kim; ‘Polarimetric fibre laser sensors’, Optics Letters, 18, 317, 1993.

    Article  Google Scholar 

  334. H. K. Kim, S. K. Kim and B. Y. Kim; ‘Polarimetric fibre laser sensors’, Optics Letters, 18, 1465, 1993.

    Article  Google Scholar 

  335. H. K. Kim, S. K. Kim and B. Y. Kim; ‘Polarimetric fibre laser sensors using Er-doped fibre’, Optical and Quantum Electronics, 27, 281, 1995.

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Chapman & Hall

About this chapter

Cite this chapter

Langford, N. (1998). Optical fiber lasers. In: Grattan, K.T.V., Meggitt, B.T. (eds) Optical Fiber Sensor Technology. Optoelectronics, Imaging and Sensing, vol 2. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-5787-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-5787-6_2

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7651-4

  • Online ISBN: 978-1-4615-5787-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics