Skip to main content

Proteins of the Conifer Extracellular Matrix

  • Chapter
Molecular Biology of Woody Plants

Part of the book series: Forestry Sciences ((FOSC,volume 64))

Abstract

Cell walls have many critical roles in plant physiology and development including the control of cell shape, plant morphogenesis, mechanical strength, and water transport. In addition to the structural roles, recent research suggests that the plant cell surface, including the cell wall, plasma membrane, and middle lamella, plays important roles in many cellular and developmental processes (Nothnagel 1997). Signals present in or on cell walls have been shown to influence cell fate and to be involved in defense against insects and pathogens (Carpita and Gibeaut 1993). In addition to their roles in plant physiology and development, cell walls are the primary component of wood and are therefore, ecologically and economically important. Wood is by far the most abundant component of the terrestrial biomass and therefore has a significant influence upon the planetary carbon cycle and the global climate. Wood is also a leading industrial raw material and an important component of the global economy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

AGP:

arabinogalactan-protein

EST:

expressed sequence tag

GRP:

glycine-rich protein

HRGP:

hydroxyproline-rich glycoprotein

PHRGP:

proline/hydroxyproline-rich glycoprotein

PRP:

Paraproline-rich protein

References

  • Allona I., Quinn M., Shoop E., Swope K., St. Cyr S., Carlis J., Riedl J., Retzel E., Campbell M.M., Sederoff R., and Whetten, R.W. (1998) Analysis of xylem formation in pine by cDNA sequencing. Proc. Natl. Acad. Sci. USA 95 9693–9698.

    Google Scholar 

  • Bao W., O’Malley D.M., and Sederoff, R.R. (1992) Wood contains a cell-wall structural protein. Proc. Natl. Acad. Sci. USA 89, 6604–6608.

    Article  PubMed  CAS  Google Scholar 

  • Bobalec J.F. and Johnson, M.A. (1983) Arabinogalactan-proteins from Douglas fir and loblolly pine. Phytochemistry 22, 1500–1503.

    Article  Google Scholar 

  • Carpita N. and Gibeaut, D. (1993) Structural models of primary cell walls in flowering plants: consistency of molecular structure with the physical properties of the walls during growth. Plant J. 3, 1–30.

    Article  PubMed  CAS  Google Scholar 

  • Carpita N. McCann M., and Griffing L.R. (1996) The plant extracellular matrix: News from the cell’s frontier. Plant Cell 8, 1451–1463.

    Google Scholar 

  • Cassab G.I. (1998) Plant cell wall proteins. Annual Rev. Plant Physiology and Plant Molecular Biology 49, 281–309.

    Article  CAS  Google Scholar 

  • Chang S,. Puryear J.D., Dias M.A.D.L., Funkhouser E.A., Newton R.J., and Cairney, J. (1996) Gene expression under water deficit in loblolly pine (Pinus taeda): Isolation and characterization of cDNA clones. Physiologia Plantarum 97, 139–148.

    Google Scholar 

  • Cheng S.-H., Keller, B. and Condit, C.M. (1996) Common occurrence of homologues of petunia glycine-rich protein-1 among plants. Plant Molecular Biology 31, 163–168.

    Article  PubMed  CAS  Google Scholar 

  • Condit C. (1993) Developmental expression and localization of petunia glycine-rich protein 1. Plant Cell 5, 277–288.

    PubMed  CAS  Google Scholar 

  • Dias M.A.D.L. (1995) Analysis of Water Deficit Stress Responsive cDNA Clones and the Characterization of the Genomic Clone of Gene “1p5” of Loblolly Pine (Pious taeda L.). Ph.D. Thesis. Texas AandM University.

    Google Scholar 

  • Dong J.Z. and Dunstan, D.I. (1996) Expression of abundant mRNAs during somatic embryogenesis of white spruce (Picea glauca (Moench) Voss). Planta 199, 459–466.

    Article  PubMed  CAS  Google Scholar 

  • Egertsdotter U. and von Arnold, S. (1995) Importance of arabinogalactan proteins for the development of somatic embryos of Norway spruce (Picea abies). Physiologia Plantarum 93, 334–345.

    Article  CAS  Google Scholar 

  • Fincher G.B., Stone B.A., and Clarke, A.E. (1983) Arabinogalactan-proteins: Structure, biosynthesis, and function. Annual Rev. Plant Physiol. 34, 47–70.

    Article  CAS  Google Scholar 

  • Fong C.., Kieliszewski M.J., de Zacks R., Keykam J.F., and Lamport, D.T.A. (1992) A gymnosperm extensin contains the serine-tetrahydroxyroline motif. Plant Physiol. 99, 548–552.

    Article  PubMed  CAS  Google Scholar 

  • John M.E. (1995) Characterization of a cotton (Gossypium hirsutum L.) fiber mRNA. Plant Physiol 107, 1477–1478.

    Article  PubMed  CAS  Google Scholar 

  • John M.E. and G. Keller, G. (1995) Characterization of niRNA for a proline-rich protein of cotton fiber. Plant Physiol. 108, 669–676.

    Article  PubMed  CAS  Google Scholar 

  • Karacsonyi S., Patoprsty V., and Kubackova, M. (1998) Structural study on arabinogalactan-proteins from Picea abies L. Karst. Carbohydrate Res. 307, 271–279.

    Article  CAS  Google Scholar 

  • Kieliszewski M.J. and Lamport, D.T.A. (1994) Extensin: Repetitive motifs, functional sites, post-translational codes, and phylogeny. Plant J. 5, 157–172.

    Article  PubMed  CAS  Google Scholar 

  • Kieliszewski M.J., de Zacks R., Leykam J.F., and Lamport, D.T.A. (1992) A repetitive proline-rich protein from the gymnosperm Douglas fir is a hydroxyproline-rich glycoprotein. Plant Physiol. 98, 919–926.

    Article  PubMed  CAS  Google Scholar 

  • Kreuger M. and van Holst, G.-J. (1996) Arabinogalactan proteins and plant differentiation. Plant Molecular Biology 30, 1077–1086.

    Article  PubMed  CAS  Google Scholar 

  • Kreuger M. and van Holst, G.-J. (1993) Arabinogalactan-proteins are essential in somatic embryogenesis of Daucus ca rota L. Planta 189, 243–248.

    Article  CAS  Google Scholar 

  • Loopstra C.A. and Sederoff, R.R. (1995) Xylem-specific gene expression in loblolly pine. Plant Mol. Biol. 27, 277–291.

    Article  PubMed  CAS  Google Scholar 

  • Nothnagel E.A., (1997) Proteoglycans and related components in plant cells. International Review of Cytology 174, 195–291.

    Article  PubMed  CAS  Google Scholar 

  • Pennell R.I. and Roberts, K. (1990) Sexual development in the pea is presaged by altered expression of arabinogalactan protein. Nature 344: 547–549.

    Article  Google Scholar 

  • Ryser U. and Keller, B. (1992) Ultrastructural localization of a bean glycine-rich protein in unlignified primary walls of protoxylem cells. Plant Cell 4, 773–783.

    PubMed  CAS  Google Scholar 

  • Schneiderbauer, A., Back, E., Sandermann H. Jr. and Ernst, D. (1995) Ozone induction of extensin mRNA in Scots pine, Norway spruce and European beach. New Phytologist 130, 225–230.

    Article  CAS  Google Scholar 

  • Showalter A.M., (1993) Structure and function of plant cell wall proteins. Plant Cell 5, 9–23.

    PubMed  CAS  Google Scholar 

  • Showalter A.M. and Varner, J.E. (1989) Plant hydroxyproline-rich glycoproteins, in A. Marcus (ed.), The Biochemistry of Plants Vol. 15, Academic Press, San Diego, pp. 485–520.

    Google Scholar 

  • Sommer-Knudsen J., Bacic A. and Clarke, A.E. (1998) Hydroxyproline-rich plant glycoproteins. Phytochemistry 47, 483–497.

    Article  CAS  Google Scholar 

  • Sterky F., Regan S., Karlsson J., Hertzberg M., Rohdo A., Holmberg A., Amini B., Bhalerao, R., Larsson, M., Villarroel, R., Van Montagu, M., Sandberg, G., Olsson, O., Terri, T.T., Boerfan, W., Gustafsson, P., Uhlen M., Sundberg, B., and Lundeberg, J. (1998) Gene discovery in the wood-forming tissues of poplar: Analysis of 5,692 expressed sequence tags. Proc. Natl. Acad. Sci. USA 95, 13330–13335.

    Google Scholar 

  • Thomas, R.J. (1991) Wood: Formation and morphology, in M. Lewin and I.S. Golstein (eds.) Wood Structure and Composition, Marcel Dekker, Inc., NY, pp. 7–47.

    Google Scholar 

  • Youl J.J., Bacic A. and Oxley, D. (1998) Arabinogalactan-proteins from Nicotiana alata and Pyrus communis contain glycosylphosphatidylinositol membrane anchors. Proc. Natl. Acad. Sci. USA 95, 7921–7926.

    Article  PubMed  CAS  Google Scholar 

  • Zhang Y., Allona I., Kieliszewski M. and Sederoff, R. (1998) Isolation and characterization of putative cell wall proteins in loblolly pine, in Proceedings of the American Society of Plant Physiologists annual meeting. Madison, WI June 27 — July 1, 1998. Abstract 1002.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Loopstra, C.A. (2000). Proteins of the Conifer Extracellular Matrix. In: Jain, S.M., Minocha, S.C. (eds) Molecular Biology of Woody Plants. Forestry Sciences, vol 64. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-2311-4_11

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-2311-4_11

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-5338-1

  • Online ISBN: 978-94-017-2311-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics