Skip to main content

Abstract

When a localized disturbance is applied suddenly into a medium, it will propagate to other parts of this medium. The local excitation is not detected at other positions of the medium instantaneously, as some time would be necessary for the disturbance to propagate from its source to other parts of the medium. This simple fact constitutes a general basis for the interesting subject of “wave propagation.” Well-cited examples of wave propagation in different media include, for instance, the transmission of sound in air, the propagation of a seismic disturbance in the earth, the transmission of radio waves, among others. In the particular case, when the suddenly applied disturbance is mechanical, e.g., an impact force, the resulting waves in the medium are due to mechanical stress effects and, thus, these waves are referred to as “mechanical stress waves” or simply “stress waves.” Our attention in this text is restricted to the study of the propagation of stress waves in engineering materials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Achenbach, J. D. (1973) Wave Propagation in Elastic Solids, Elsevier, New York.

    MATH  Google Scholar 

  • Chou, P. C. (1968) Introduction to wave propagation in composite materials, in Composite Materials Workshop, edited by S. W. Tsai, J. C. Halpin and N. J. Pagano, Technomic, Stamford, Ct, pp. 193216.

    Google Scholar 

  • Dally, J. W., Durelli, A. J. and Riley, W. F. (1960) Photoelastic study of stress wave propagation in large plates, Proc. Soc. Exp. Stress Analysis 17, 33–50.

    Google Scholar 

  • Dally, J. W. and Riley, W.F. (1965) Experimental Stress Analysis, McGraw-Hill, NewYork.

    Google Scholar 

  • Dally, J. W. and Riley, W. F. (1967) Initial studies in three-dimensional dynamic photoelasticity, J. Appl. Mech. 34, 405–10.

    Article  ADS  Google Scholar 

  • Dally, J. W. (1968) A dynamic photoelastic study of a doubly loaded half-plane, Develop. Mech. 4, 649–64.

    Google Scholar 

  • Davis, J. L. (1988) Wave Propagation in Solids and Fluids, Springer-Verlag, New York.

    Book  MATH  Google Scholar 

  • Donnell, L. H. (1930) Trans. ASME 52 (1), 153–67.

    Google Scholar 

  • Dove, RC. and Adams, P. H. (1964) Experimental Stress Analysis and Motion Measurement, Charles Merril Books, Columbus, Ohio.

    Google Scholar 

  • Eringen, A. C. and Suhubi, E. S. (1975) Elastodynamics, Academic Press, New York.

    MATH  Google Scholar 

  • Ewing, M., Jardestsky, W. S., and Press, F. (1957) Elastic Waves in Layered Media, McGraw-Hill, New York

    MATH  Google Scholar 

  • Graff, K.F. (1975) Wave Motion in Elastic Solids, Dover Publications, New York.

    MATH  Google Scholar 

  • Hetenyi, M., Ed. (1950) Handbook of Experimental Stress Analysis, John Wiley and Sons, New York. Hillier, K. W. (1960) A review of the progress in the measurement of dynamic elastic properties, int. Symp.on Stress Wave Propagation in Materials, Ed. N. Davids, nter-science Publishers, London, pp. 183–98.

    Google Scholar 

  • Keast, D. N. (1967) Measurements in Mechanical Dynamics, McGraw-Hill, New York.

    Google Scholar 

  • Kinslow, R. (1970) High-Velocity Impact Phenomena, Academic Press, New York.

    Google Scholar 

  • Kolsky, H. (1963) Stress Waves in Solids, Dover Publications, New York.

    Google Scholar 

  • Lamb, H. (1904) On the propagation of tremors over the surface of an elastic solid, Phil. Trans. R. Soc. A203, 1–42.

    Article  ADS  Google Scholar 

  • Lamb, H. (1917) On waves in an elastic plate, Proc. Roy. Soc. A93, 114–28.

    Article  ADS  MATH  Google Scholar 

  • Magrab, E. B. and Blomquist, D.S. (1971) The Measurement of Time-Varying Phenomena, WileyInterscience, New York.

    Google Scholar 

  • McCarthy, M. F. and Hayes, M.A. (1989) Elastic Wave Propagation, Elsevier, London.

    MATH  Google Scholar 

  • Miklowitz, J. (1978) Elastic Waves and Waveguides, North Holland, New York.

    Google Scholar 

  • Miklowitz, J. and Achenbach, J. D. (1977) Modern Problems in Elastic Wave Propagation, Elsevier, New York.

    Google Scholar 

  • Morse, P. and Feshbach, H. (1953) Methods of Theoretical Physics, Vols. I and II, McGraw-Hill, New York. Pindera, J. T. (1986) New research perspectives opened by isodyne and strain gradient photoelasticity, in

    Google Scholar 

  • Proceedings of the International Symposium on Photoelasticity, Tokyo,pp. 193–202.

    Google Scholar 

  • Rayleigh, J. W. S. (1887) On waves propagated along the plane surface of an elastic solid, Proc. Lond. Math. Soc. 17, 4–11.

    Article  Google Scholar 

  • Skalak, R. (1957) Longitudinal impact of a semi-infinite circular elastic bar, J. Appl. Mech. 34, 59–64. Tolosty, I. (1973) Wave propagation, McGraw-Hill, New York.

    Google Scholar 

  • Viktorov, I.A. (1967) Rayleigh and Lamb Waves: Physical Theory and Applications, Plenum Press, New York.

    Google Scholar 

  • Worely, W. J. (Ed.) (1962) Experimental Techniques in Shock and Vibration, ASME, New York.

    Google Scholar 

  • Zukas, J. A., Nicolas, T., Swift, M. F., Greszczuk, L. B. and Curran, D. R. (1982) Impact Dynamics, Elsevier, New York.

    Google Scholar 

Further Reading

  • Abbott, B. W. and Cornish, R. H. (1965) A Stress wave technique for determining the tensile strength of brittle materials, Exp. Mech. 22, 148–53.

    Article  Google Scholar 

  • Bailey, P. and Chen, P. J. (1971) On the local and global behaviour of acceleration waves, Arch. Ration. Mech. Analysis 41, 121. Addendum: Asymptotic Behaviour, ibid 44, 212 (1972).

    Google Scholar 

  • Baker, W. E. and Dove, R.C. (1962) Measurements of internal strains in a bar subjected to longitudinal impact, Exp. Mech. 19, 307–11.

    Article  Google Scholar 

  • Barker, L. M. and Hollenbach, R E. (1964) System for measuring the dynamic properties of materials, Rev. Sci. Inst. 35(6), 742–46.

    Google Scholar 

  • Barker, L. M. and Hollenbach, R E. (1965) Interfermometer technique for measuring the dynamic mechanical properties of materials, Rev. Sci. Inst. 36, 1617–20.

    Article  ADS  Google Scholar 

  • Barker, L.M. (1968) The fine structure of compressive and release wave shapes in aluminium measured by the velocity interferometer technique, in Behaviour ofDense Media Under High Dynamic Pressures, Gordon and Breach, pp. 483–505.

    Google Scholar 

  • Barton, C.S., Volterra, E.G. and Citron, S.J. (1958) On elastic impacts of spheres on long rods, Proc. 3r d U.S. Natn. Cong. Appl. Mech., pp. 89–94.

    Google Scholar 

  • Becker, E.C.H. and Carl, H. (1962) Transient-loading technique for mechanical impedence measurement, in Experimental Techniques in Shock and Vibration, Ed. W.J. Worley, ASME, New York, pp. 1–10.

    Google Scholar 

  • Chree, C. (1889) The equations of an isotropic elastic solid in polar and cylindrical coordinates, Their solutions and applications, Trans. Camb. Phil. Soc. Math. Phys. Sci. 6, 115–17.

    Google Scholar 

  • Chu, B. T. (1965) Response of various material media to high velocity loadings. I. Linear elastic and viscoelastic materials, J. Mech. Phys. Solids 13, 165–87.

    Article  ADS  Google Scholar 

  • Daily, J. W. and Lewis, D. (1968) A Photoelastic analysis of propagation of Rayleigh waves past a step change in elevation, Bull. Seism. Soc. Am. 58, 539–63.

    Google Scholar 

  • Dally, J. W. and Thau, S. A. (1967) Observations of stress wave propagation in a half-plane with boundary loading, Int. J. Solids Struct. 3, 293–307.

    Article  Google Scholar 

  • Davies, R. M. (1948) A Critical study of the Hopkinson Pressure Bar, Phil. Trans. R. Soc. A240 375–457. Dohrenwend, C. O., Drucker, D. C. and Moore, P. (1944) Transverse impact transients, Exp. Stress Analysis 1,1–10.

    Google Scholar 

  • Doyle, J. F. (1989) Wave Propagation in Structures, Springer-Verlag, New York.

    Book  MATH  Google Scholar 

  • Dunwoody, J. (1966) Longitudinal wave propagation in a rate dependent material, Int. J. of Engineering Sci. 4, 277–87.

    Article  Google Scholar 

  • Evans, J. F., Hadley, C. F., Eisler, J. D. and Silverman, D. (1954) A three-dimensional seismic wave model with both electrical and visual observation of waves, Geophysics 19, 120–36.

    Article  Google Scholar 

  • Karnes, C.H. (1968) The plate impact configuration for determining mechanical properties of materialsat high strain rates, in Mechanical Behavior of Materials under Dynamic Loads, U.S. Lindholm, (Ed.), Springer-Verlag, New York, pp. 270–93.

    Chapter  Google Scholar 

  • Kolsky, H. and Prager, W. (1964) Stress Waves in Anelastic Solids, Springer-Verlag, New York. Leipholz, H. (1974) Theory of Elasticity, Noordhoff, The Netherlands.

    Book  Google Scholar 

  • Lindholm, U. S. (Ed.) (1968) Mechanical Behavior of Materials under Dynamic Loading, Springer-Verlag, New York.

    Google Scholar 

  • Malvern, L. E. (1969) Introduction to the Mechanics of a Continuous Medium, Prentice-Hall, New Jersey. Medick, M. A. (1961) On classical plate theory and wave propagation, J. Appl. Mech. 28, 223–8.

    Google Scholar 

  • Fisher, H. C. (1954) Stress pulse in bar with neck or swell, Appl. Scient. Res. A4, 317–28. Frederick, J. R. (1965) Ultrasonic Engineering, John Wiley and Sons, New York.

    Google Scholar 

  • Goldsmith, W., Polivka, M. and Yang, T. (1966) Dynamic behaviour of concrete, Exp. Mech. 23, 65–79. Goodier, J. N., Jahsman, W. E. and Ripperger, E. A. (1959) An experimental surface-wave method for recording force-time curves in elastic impacts, J. Appl. Mech. 26, 3–7.

    Google Scholar 

  • Gopasamy, K. and Aggarwala, B. D. (1972) Propagation of disturbances from randomly moving sources, ZAMM52, 31–35.

    Google Scholar 

  • Gorsky, W. S. (1936) On the transitions in the Cu Au Alloy III. On the influence of strain on the equilibrium in the ordered lattice of Cu Al, Phys. Zeit Sowjet 6, 77–81.

    Google Scholar 

  • Green, W. A. (1960) Dispersion relations for elastic waves in bars, in Progress in Solid Mechanics, Vol. I

    Google Scholar 

  • edited by I. N. Sneddon and R. Hill, Chapter 5, North Holland Publishing Co., Amsterdam. Green, W. A. (1964) The growth of plane discontinuities propagating into a homogeneously deformed elastic material, Arch. Ration. Mech. Anal. 16, 79–89.

    Google Scholar 

  • Harris, C. M. and Crede, E. (1961) Shock and Vibration Handbook, Vols. I, II and III, McGraw-Hill, New York.

    Google Scholar 

  • Hill, R. (1962) Acceleration waves in solids, J. Mech. Phys. Solids 10, 1–16.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Hsieh, D.Y. and Kolsky, H. (1958) An experimental study of pulse propagation in elastic cylinders, Proc. Phys. Soc. 71, 608–12.

    Article  ADS  Google Scholar 

  • Hudson, G. E. (1943) Dispersion of elastic waves in solid circular cylinders, Phys. Rev. 63, 46–51.

    Article  ADS  Google Scholar 

  • Janke, E. and Emde, F. (1945) Tables of Functions, Dover Publications, New York.

    Google Scholar 

  • Jeffrey, A. (1978) Nonlinear wave propagation, ZAMM 58, T38 - T56.

    MathSciNet  MATH  Google Scholar 

  • Jeffrey, A. and Taniuti, T. (1964) Nonlinear Wave Propagation, Academic Press, New York.

    Google Scholar 

  • Kolsky, H. (1949) An investigation of the mechanical properties of materials at very high rates of loading, Proc. Phys. Soc. B62, 676–700.

    Article  ADS  Google Scholar 

  • Kolsky, H. (1954) The Propagation of longitudinal elastic waves along cylindrical bars, Phil. Mag. 45, 71226.

    Google Scholar 

  • Kolsky, H. (1960) Experimental wave-propagation in solids, in Structural Mechanics, edited by J.N. Goodier and N. Hoff, Pergamon Press, Oxford, pp. 233–62.

    Google Scholar 

  • Kolsky, H. (1965) Experimental studies in stress wave propagation, Proc. Vth U.S. Natn. Congr. Appl. Mech., pp. 21–36.

    Google Scholar 

  • Kolsky, H. and Prager, W., Eds. (1964) Stress waves in anelastic solids, Jt7TAM Symposium, Brown University, Providence, R.I., April 3–5, 1963, Springer-Verlag, Berlin.

    Google Scholar 

  • Langhaar, H.L. (1962) Energy Methods in Applied Mechanics, John Wiley and Sons, New York.

    Google Scholar 

  • Lifshitz, J. M. and Kolsky, H. (1965) The propagation of spherical divergent stress pulses in linear viscoelastic solids, J. Mech. Phys. Solids 13, 361–76.

    Article  ADS  Google Scholar 

  • Lindholm, U. S. (1964) Some experiments with the Split Hopkinson Pressure Bar, J. Mech. Phys. Solids 12, 317–35.

    Article  ADS  Google Scholar 

  • Lindsay, R. B. (1960) Mechanical Radiation,McGraw-Hill, New York.

    Google Scholar 

  • Love, A. E. H. (1944) A Treatise on the Mathematical Theory of Elasticity, Dover Publications, New York. Malvern, L. E. (1951) Plastic wave propagation in a bar of material exhibiting a strain rate effect, Quart. Appl. Math. 8, 405–11.

    Google Scholar 

  • Mason, W. P. and McSkimin, H. J. (1947) Attenuation and scattering of high frequency sound waves in metals and glasses, J. Acoust. Soc. Amer. 19, 464–73.

    Article  ADS  Google Scholar 

  • Medick, M. A. (1961) On classical plate theory and wave propagation, J. Appl. Mech. 28, 223–28.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Meyer, M. L. (1964) On spherical near fields and far fields in elastic and viscoelastic solids, J. Mech. Phys. Solids 12, 77–111.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Orowan, E. (1934) Ztir Kristall Plastizität.III. Über den mechanismus des gleitvorganges, Zeits f. Phys. 89, 634–59.

    Article  ADS  Google Scholar 

  • Polanyl, M. (1934) Ober eine Art gitterstönmg, die einen kristall plastisch machen Könnte, Zeds! Phys. 89, 660–64.

    Article  Google Scholar 

  • Prescott, J. (1942) Elastic waves and vibrations of thin rods, Phil. Mag. 33, 703–54.

    MathSciNet  MATH  Google Scholar 

  • Press, F. and Oliver, J. (1955) Model study of air-coupled surface waves, J. Acoust. Soc. Am. 27, 45–46. Rayleigh, J. W. S. (1894) Theory of Sound, Dover Publications Inc., New York.

    Google Scholar 

  • Reinhardt, H. W. and Dally, J. W. (1970) Some characteristics of Rayleigh wave interaction with surface flaws, Mater. Eval. 28, 213–20.

    Google Scholar 

  • Riley, W. F. and Dally, J. W. (1966) A photoelastic analysis of stress wave propagation in a layered model, Geophysics 31, 881–9.

    Article  ADS  Google Scholar 

  • Ripperger, E. A. (1953) The propagation of pulses in cylindrical bars. An experimental study, Proc. 1“ Midwest Conf. Solid Mech., pp. 29–39.

    Google Scholar 

  • Rubin, J. R (1954) Propagation of longitudinal deformation waves in a prestressed rod of material exhibiting a strain-rate effect, J. Appl. Phys. 25, 528–36.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Snoek, J. E. (1941) Effect of small quantities of carbon and nitrogen on the elastic and plastic properties of iron, Physica 8, 711–33.

    Article  ADS  Google Scholar 

  • Sokolnikoff, I. S. (1956) Mathematical Theory of Elasticity, 2“ d edition, McGraw-Hill, New York. Stoneley, R. (1924) Elastic waves at the surface of separation of two Solids, Proc. R. Soc. A106, 416–28. Tatel, H. E. (1954) Note on the nature of a seismogram II., J. Geophys. Res. 59, 289–94.

    Google Scholar 

  • Thau, S. A. and Dally, J. W. (1969) Subsurface characteristics of the Rayleigh wave, Int. J. Eng. Sci. 7, 3752.

    Article  Google Scholar 

  • Thomas, T. Y. (1957) The growth and decay of sonic discontinuities in ideal gases, J. Math. Mech. 6, 455–69.

    MathSciNet  MATH  Google Scholar 

  • Thomas, T. Y. (1961) Plastic Flow and Fracture in Solids, Academic Press, New York.

    MATH  Google Scholar 

  • Timoshenko, S. P. (1921) On the correction for shear of the differential equation for transverse vibrations of prismatic bars, Phil. Mag. Ser. 6 (41), 744–46.

    Google Scholar 

  • Timoshenko, S. P. (1928) Vibration Problems in Engineering, Van Nostrand, New Jersey.

    MATH  Google Scholar 

  • Truesdell, C. and Toupin, R. A. (1960) The classical field theories, Handbuch der Physik 11111, Ed. S.Flügge, Springer, Berlin.

    Google Scholar 

  • Varley, E. and Cumberbatch, E. (1965) Nonlinear theory of wavefront propagation, J. Ins. Math. andAppl. 1, June 1965, 101–12.

    Article  MathSciNet  Google Scholar 

  • Volterra, E. (1955) A one-dimensional theory of wave propagation in elastic rods based on the ‘method of internal constraints’, Ing. Arch. 23, 410.

    Article  MathSciNet  MATH  Google Scholar 

  • Whitham, G. B. (1974) Linear and Nonlinear Waves, J. Wiley Sons, New York.

    Google Scholar 

  • Wood, D., (1963) in Response of Metals to High Velocity Deformation, P.G. Shewmon and O.F. Zackay, (Eds.), Elsevier, New York.

    Google Scholar 

  • Zemanek, J. (Jr.) and Rudnick, I. (1961) Attenuation and dispersion of elastic waves in a cylindrical bar, J. Acoust. Soc. Am. 33, 1283–8.

    Article  ADS  Google Scholar 

  • Zener, C. (1948) Elasticity and Anelasticity of Metals, Univ. Press, Chicago.

    Google Scholar 

  • Zukas, J.A. (1982) Stress waves in solids, in Impact Dynamics, Eds. J.A. Zukas et al., John Wiley Sons, New York, Chapter 1, pp. 1–27.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Haddad, Y.M. (2000). Elastic Wave Propagation. In: Mechanical Behaviour of Engineering Materials. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-2231-5_4

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-2231-5_4

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-5473-9

  • Online ISBN: 978-94-017-2231-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics