Skip to main content

Pulse Amplitude Modulated Chlorophyll Fluorometry and its Application in Plant Science

  • Chapter
Light-Harvesting Antennas in Photosynthesis

Part of the book series: Advances in Photosynthesis and Respiration ((AIPH,volume 13))

Summary

The development of the pulse amplitude modulation technique to measure chlorophyll a fluorescence has provided an important, widely used tool to investigate various photosynthetic processes in a non-invasive manner. The present chapter is focused on a number of chlorophyll fluorescence parameters that are frequently applied in plant science and can be easily determined in vascular plants. Modes of measurement and details of interpretation of these parameters, as well as examples of applications are described to provide the reader with a comprehensive treatise on the scope of the method of modulation fluorometry. This includes the discussion of still uncertain or speculative explanations, imperfection of current models and problems concerning possible errors in the exact determination of certain parameters. Particular emphasis is put on the effects of stress conditions that directly or indirectly affect the energy conversion in Photosystem II and thus influence fluorescence emission from plant leaves, i.e. are reflected by photochemical and non-photochemical fluorescence quenching phenomena. The chapter also considers the growing use of the fluorescence method including video imaging of fluorescence to identify and study plant mutants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

Ax:

antheraxanthin

Chl:

chlorophyll

LHCII:

light harvesting complex of Photosystem II

PAR:

photo-synthetically actice radiation(400–700nm)

Φp :

quantum yield of photosynthesis(O2 evolution or CO2 assimilation)

ΦPSIIPSI :

quantum efficiency of Photosystem II, Photosytem I

PQ:

plastoquinone

PS I:

Photosystem I

PS II:

Photosystem II

QA :

primary quinone-type electron acceptor of Photosystem II

VX :

violaxanthin

ZX :

Zeaxanthin

References

  1. Adams WW III, Demmig-Adams B, Winter K and Schreiber U (1990a) The ratio of variable to maximum chlorophyll fluorescence from Photosystem II, measured in leaves at ambient temperature and at 77K, as an indicator of the photon yield of photosynthesis. Planta 180: 166–174

    Article  CAS  Google Scholar 

  2. Adams WW III, Demmig-Adams B and Winter K (1990b) Relative contributions of zeaxanthin-related and zeaxanthin-unrelated types of’ high-energy-state’ quenching of chlorophyll fluorescence in spinach leaves exposed to various environmental conditions. Plant Physiol 92: 302–309

    Article  PubMed  CAS  Google Scholar 

  3. Adams WW III, Demmig-Adams B, Verhoeven AS and Barker DH(1995) ‘Photoinhibition’ during winter stress: Involvement of sustained xanthophyll cycle-dependent energy dissipation.

    Google Scholar 

  4. Aust J Plant Physiol 22: 261–276 Allen DJ, McKee IF, Farage PK and Baker NR (1997) Analysis of limitations to C02 assimilation on exposure of leaves of two Brassica napus cultivars to UV-B. Plant Cell Environ 20:633640

    Google Scholar 

  5. Allen JF (1992) Protein phosphorylation in regulation of photosynthesis. Biochim Biophys Acta 1098: 275–335

    Article  PubMed  CAS  Google Scholar 

  6. Allen JF, Bennett J, Steinback KE and Arntzen CJ (1981) Chloroplast protein phosphorylation couples plastoquinone redox state to distribution of excitation energy between photosystems. Nature 291: 25–29

    Article  CAS  Google Scholar 

  7. Anderson JM (1992) Cytochrome bf complex: Dynamic molecular organization, function and acclimation. Photosynth Res 34: 341–357

    Article  CAS  Google Scholar 

  8. Aro E-M, Kettunen R and Tyystjarvi E (1992) ATP and light regulate D1 protein modification and degradation. FEBS Lett 297: 29–33

    Article  PubMed  CAS  Google Scholar 

  9. Aro E-M, Virgin I and Andersson B (1993) Photoinhibition of Photosystem II. Inactivation, protein damage and turnover. Biochim Biophys Acta 1143: 113–134

    Google Scholar 

  10. Barth C and Krause GH (1999) Inhibition of Photosystem I and II in chilling-sensitive and chilling-tolerant plants under light and low-temperature stress. Z Naturforsch 54c: 645–657

    CAS  Google Scholar 

  11. Bassi R, Pineau B, Dainese P and Marquardt J (1993) Carotenoid-binding proteins of Photosystem II. Eur J Biochem 212: 297303

    Google Scholar 

  12. Behrenfeld MJ, Prasil O, Kolber, ZS, Babin M and Falkowski PG (1998) Compensatory changes in Photosystem II electron turnover rates protect photosynthesis from photoinhibition. Photosynth Res 58: 259–268

    Article  CAS  Google Scholar 

  13. Bennett J, Steinback KE and Arntzen CJ (1980) Chloroplast phosphoproteins: Regulation of excitation energy transfer by phosphorylation of thylakoid membrane polypeptides. Proc. Natl. Acad. Sci. USA. 77: 5253–5257

    Google Scholar 

  14. Bennoun P and Delepelaire P (1982) Isolation of photosynthesis mutants in Chlamydomonas. In: Hallick R, Edelman M and Chua N (eds) Methods in Chloroplast Molecular Biology, pp 25–38. Elsevier, New York

    Google Scholar 

  15. Bennoun P and Levine RP (1967) Detecting mutants that have impaired photosynthesis by their increased level of fluorescence. Plant Physiol 42: 1284–1287

    Article  PubMed  CAS  Google Scholar 

  16. Bilger W and Bjorkman O (1994) Relationships among violaxanthin deepoxidation, thylakoid membrane conformation, and non-photochemical chlorophyll fluorescence quenching in leaves of cotton, Gossypium hirsutum L. Planta 193: 238246

    Google Scholar 

  17. Bilger W and Schreiber U (1986) Energy-dependent quenching of dark-level chlorophyll fluorescence in intact leaves. Photosynth Res. 10: 303–308

    Article  CAS  Google Scholar 

  18. Bilger W, Heber U and Schreiber U (1988) Kinetic relationship between energy-dependent fluorescence quenching, light scattering, chlorophyll luminescence and proton pumping in intact leaves. Z. Naturforsch 43c: 877–887

    CAS  Google Scholar 

  19. Bilger W, Veit M, Schreiber L and Schreiber U (1997) Measurement of leaf epidermal transmittance of UV radiation by chlorophyll fluorescence. Physiol Plant 101: 754–763

    Article  CAS  Google Scholar 

  20. Bjorkman O (1987) Low-temperature chlorophyll fluorescence in leaves and its relationship to photon yield of photosynthesis in photoinhibition. In: Kyle DJ, Arntzen CJ and Osmond CB (eds) Photoinhibition, pp 123–144. Elsevier, Amsterdam

    Google Scholar 

  21. Bjorkman O and Demmig B (1987) Photon yield of 02 evolution and chlorophyll fluorescence characteristics at 77K among vascular plants of diverse origins. Planta 179: 489–504

    Article  Google Scholar 

  22. Bornman JF, Vogelmann TC and Martin G (1991) Measurement of chlorophyll fluorescence within leaves using a fibreoptic microprobe. Plant Cell Environ 14: 719–725

    Article  CAS  Google Scholar 

  23. Briantais J-M, Vernotte C, Picaud M and Krause GH (1979) A quantitative study of the slow decline of chlorophyll a fluorescence in isolated chloroplasts. Biochim Biophys Acta 548: 128–138

    Article  PubMed  CAS  Google Scholar 

  24. Briantais J-M, Vernotte C, Krause GH and Weis E (1985) Chlorophyll a fluorescence of higher plants: Chloroplasts and leaves. In: Govindjee, Amesz J and Fork DC (eds) Light Emission by Plants and Bacteria, pp 539–583 Academic Press, Orlando

    Google Scholar 

  25. Briantais J-M, Ducruet J-M, Hodges M and Krause GH (1992) The effects of low temperature acclimation and photoinhibitory treatments on Photosystem 2 studied by thermoluminescence and fluorescence decay kinetics. Photosynth Res 31: 1–10 Briantais J-M, Dacosta J, Goulas Y, Ducruet J-M and Moya I (1996) Heat stress induces in leaves an increase of the minimum level of chlorophyll fluorescence, F0: A time-resolved analysis. Photosynth Res 48: 189–196

    Google Scholar 

  26. Burrows PA, Sazanov LA, Svab Z, Maliga P and Nixon PJ (1998) Identification of a functional respiratory complex in chloroplasts through analysis of tobacco mutants containing disrupted plastid ndh genes. EMBO J 17: 868–876

    Article  PubMed  CAS  Google Scholar 

  27. Butler WJ (1978) Energy distribution in the photosynthetic apparatus of photosynthesis. Annu Rev Plant Physiol 29: 345378

    Google Scholar 

  28. Cao J and Govindjee (1990) Chlorophyll a fluorescence transient as an indicator of active and inactive Photosystem II in thylakoid membranes. Biochim Biophys Acta 1015: 180–188

    Article  PubMed  CAS  Google Scholar 

  29. Cornic G and Briantais J-M (1991) Partitioning of photosynthetic electron flow between CO2 and O2 reduction in a C3 leaf (.Phaseolus vulgaris L.) at different C02 concentrations and during drought stress. Planta 183: 178–184

    Article  CAS  Google Scholar 

  30. Daley PF, Raschke K, Ball JT and Berry JA (1989) Topography of photosynthetic activity of leaves obtained from video images of chlorophyll fluorescence. Plant Physiol 9: 1233–1238 Dau H (1994) Molecular mechanisms and quantitative models of variable Photosystem II fluorescence. Photochem Photobiol 60: 1–23

    Google Scholar 

  31. Demmig B and Bjorkman O (1987) Comparison of the effect of excessive light on chlorophyll fluorescence (77K) and photon yield of 02 evolution in leaves of higher plants. Planta 171: 171–184

    Article  CAS  Google Scholar 

  32. Demmig B and Winter K (1988) Characterisation of three components of non-photochemical fluorescence quenching and their response to photoinhibition. Aust J Plant Physiol 15: 163–177

    Article  Google Scholar 

  33. Demmig B, Winter K, Kriiger A and Czygan F-C (1987) Photoinhibition and zeaxanthin formation in intact leaves. A possible role of the xanthophyll cycle in the dissipation of excess light energy. Plant Physiol 84: 218–224

    Google Scholar 

  34. Demmig-Adams B and Adams WW III (1992) Photoprotection and other responses of plants to high light stress. Annu Rev Plant Physiol Plant Mol Biol 43: 599–626

    Article  CAS  Google Scholar 

  35. Demmig-Adams W and Adams WW III (1996a) The role of xanthophyll cycle carotenoids in the protection of photosynthesis. Trends Plant Sci 1: 21–26.

    Article  Google Scholar 

  36. Demmig-Adams W and Adams WW III (1996b) Xanthophyll cycle and light stress in nature: Uniform response to excess direct sunlight among higher plant species. Planta 198: 460–470

    Article  CAS  Google Scholar 

  37. Demmig-Adams B, Adams WW III, Heber U, Neimanis S, Winter K, Kriiger A, Czygan F-C, Bilger W and Bjorkman O

    Google Scholar 

  38. Inhibition of zeaxanthin formation and of rapid changes in radiationless energy dissipation by dithiothreitol in spinach leaves and chloroplasts. Plant Physiol 92: 293–301

    Google Scholar 

  39. Demmig-Adams B, Moeller DL, Logan BA and Adams WW III (1998) Positive correlation between levels of retained zeaxanthin + antheraxanthin and degree of photoinhibition in shade leaves of Schefflera arboricola (Hayata) Merrill. Planta 205: 367–374.

    Article  CAS  Google Scholar 

  40. Demmig-Adams B, Adams WW III, Effert V and Logan BA (1999) Ecophysiology of the xanthophyll cycle. In: Frank HA, Young AJ, Britton G and Cogdell RJ (eds) (1999) The Photochemistry of Carotenoids, pp 245–269, Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  41. Depka B, Jahns P and Trebst A (1998) /3-Carotene to zeaxanthin conversion in the rapid turnover of the D1 protein of Photosystem II. FEBS Lett 424: 267–270

    Google Scholar 

  42. Dinkins RD, Bandaranayake H, Green BR and Griffiths AJF (1994) A nuclear photosynthetic electron transport mutant of Arabidopsis thaliana with altered expression of the chloroplast petA gene. Curr. Genet 25: 282–288

    Google Scholar 

  43. Dinkins RD, Bandaranayake H, Baeza L, Griffiths AJF and Green BR (1997) hcf5, a nuclear photosynthetic electron transport mutant of Arabidopsis thaliana with a pleiotropic effect on chloroplast gene expression. Plant Physiol 113: 1023–1031

    Google Scholar 

  44. Duysens LNM and Sweers HE (1963) Mechanism of the two photochemical reactions in algae as studied by means of fluorescence. In: Jap Soc Plant Physiol (ed) Studies on Microalgae and Photosynthetic Bacteria, pp 353–372. University of Tokyo Press, Tokyo Edwards

    Google Scholar 

  45. GE and Baker NR (1993) Can C02 assimilation in maize leaves be predicted accurately from chlorophyll fluorescence analysis? Photosynth Res 37: 89–102

    Article  Google Scholar 

  46. Falkowski PG and Kolber Z (1995) Variations of chlorophyll fluorescence yields in phytoplankton in the world oceans. Aust J Plant Physiol 22: 341–355

    Article  Google Scholar 

  47. Färber A and Jahns P (1998) The xanthophyll cycle of higher plants: Influence of antenna size and membrane organization. Biochim Biophys Acta 1363: 47–58

    Article  PubMed  Google Scholar 

  48. Färber A, Young AJ, Ruban AV, Horton P and Jahns P (1997) Dynamics of xanthophyll-cycle activity in different antenna subcomplexes in the photosynthetic membranes of higher plants: The relationship between zeaxanthin conversion and nonphotochemical fluorescence quenching. Plant Physiol 115: 1609–1618

    Google Scholar 

  49. Fernyhough P, Foyer C and Horton P (1984) Increase in the level of thylakoid protein phosphorylation in maize mesophyll chloroplasts by decrease in the transthylakoid pH gradient. FEBS Lett 176: 133–138

    Article  CAS  Google Scholar 

  50. Frank HA, Cua A, Chynwat V, Young AJ, Goztola D and Wasielewski MR (1994) Photophysics of the carotenoids associated with the xanthophyll cycle in photosynthesis. Photosynth Res 41: 389–395

    Article  CAS  Google Scholar 

  51. Frank HA, Young AJ, Britton G and Cogdell RJ (eds) (1999) The Photochemistry of Carotenoids. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  52. Funk C, Schröder WP, Napiwotzki A, Tjius SE, Renger G and Andersson B (1995) The PS II-S protein of higher plants: A new type of pigment-binding protein. Biochemistry 34: 11133–11141

    Google Scholar 

  53. Gamier J (1967) Une méthode de détection, par photographie, de souches d’Algues vertes émettant in vitro une fluorescence anormale. CR Acad Sci Paris Ser D 265: 874–877

    Google Scholar 

  54. Genty B and Meyer S (1994) Quantitative mapping of leaf photosynthesis using chlorophyll fluorescence imaging. Aust J Plant Physiol 22: 277–284

    Article  Google Scholar 

  55. Genty B, Briantais J-M and Baker NR (1989) The relationship between quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. Biochim Biophys Acta 990: 87–92

    Article  CAS  Google Scholar 

  56. Genty B, Wonders J and Baker NR (1990a) Non-photochemical quenching of F0 in leaves is emission wavelength dependent: Consequences for quenching analysis and its interpretation. Photosynth Res 26: 133–139

    Google Scholar 

  57. Genty B, Harbinson J and Baker NR (1990b) Relative quantum efficiencies of the two photosystems of leaves in photo-respiratory and non-photorespiratory conditions. Plant Physiol Biochem 28: 1–10

    CAS  Google Scholar 

  58. Giersch C and Krause GH (1991) A simple model relating photoinhibitory fluorescence quenching in chloroplasts to a population of altered Photosystem II reaction centers. Photosynth Res. 30: 115–121

    Article  CAS  Google Scholar 

  59. Gilmore AM (1997) Mechanistic aspects of xanthophyll cycle-dependent photoprotection in higher plant chloroplasts and leaves. Physiol Plant 99: 197–209

    Article  CAS  Google Scholar 

  60. Gilmore AM and Yamamoto HY (1993) Linear models relating xanthophylls and lumen acidity to non-photochemical fluorescence quenching. Evidence that antheraxanthin explains zea-xanthin-independent quenching. Photosynth Res. 35: 67–78

    Article  CAS  Google Scholar 

  61. Gilmore AM, Mohanty N and Yamamoto H Y (1994) Epoxidation of zeaxanthin and antheraxanthin reverses non-photochemical quenching of Photosystem II chlorophyll a fluorescence in the presence of trans-thylakoid ApH. FEBS Lett 350: 271–274

    Article  PubMed  CAS  Google Scholar 

  62. Gilmore AM, Hazlett TL and Govindjee (1995) Xanthophyll cycle-dependent quenching of Photosystem II chlorophyll a fluorescence: Formation of a quenching complex with a short fluorescence lifetime. Proc Natl Acad Sci USA 92: 2273–2277

    Google Scholar 

  63. Gilmore AM, Hazlett TL, Debrunner PG and Govindjee (1996) Photosystem II chlorophyll a fluorescence lifetimes and intensity are independent of the antenna size differences between barley wild-type and chlorina mutants: Photochemical quenching and xanthophyll cycle-dependent nonphotochemical quenching of fluorescence. Photosynth Res 48: 171–187

    Google Scholar 

  64. Gilmore AM, Shinkarev VP, Hazlett TL and Govindjee (1998) Quantitative analysis of the effects of intrathylakoid pH and xanthophyll cycle pigments on chlorophyll a fluorescence lifetime distributions and intensity in thylakoids. Biochem 37: 13582–13593

    Article  CAS  Google Scholar 

  65. Gilmore AM, Itoh S and Govindjee (2000) Global spectral-kinetic analysis of room temperature chlorophyll a fluorescence from light-harvesting antenna mutants of barley. Phil Trans R Soc Lond B 355: 1371–1384

    Article  CAS  Google Scholar 

  66. Goh C-H, Schreiber U and Hedrich R (1999) New approach of monitoring changes in chlorophyll a fluorescence of single guard cells and protoplasts in response to physiological stimuli. Plant Cell Environ 22: 1057–1070

    Article  CAS  Google Scholar 

  67. Govindjee (1990) Photosystem II heterogeneity: The acceptor side. Photosynth Res 25: 151–160

    Article  CAS  Google Scholar 

  68. Govindjee (1995) Sixty-three years since Kautsky: Chlorophyll a fluorescence. Aust J Plant Physiol 22: 131–160

    Article  CAS  Google Scholar 

  69. Guenther JE and Melis A (1989) The physiological significance of Photosystem II heterogeneity in chloroplasts. Photosynth Res 23: 105–109

    Article  Google Scholar 

  70. Guenther JE, Nemson JA and Melis A (1990) Development of Photosystem II in dark grown Chlamydomonas reinhardtii. A light-dependent conversion of PS 11, QB-nonreducing centers to the PS ll a, QB-reducing form. Photosynth Res 24: 35–16

    Article  CAS  Google Scholar 

  71. Harbinson J and Woodward FI (1987) The use of light-induced absorbance changes at 820 nm to monitor the oxidation state in leaves. Plant Cell Environ 10: 131–140

    CAS  Google Scholar 

  72. Harbinson J, Genty B and Baker NR (1989) Relationship between the quantum efficiencies of Photosystems I and II in pea leaves. Plant Physiol 90: 1029–1034

    Article  PubMed  CAS  Google Scholar 

  73. Harbinson J, Genty B and Baker NR (1990) The relationship between C02 assimilation and electron transport in leaves. Photosynth Res 25: 213–224

    Article  CAS  Google Scholar 

  74. Havaux M, Strasser RJ and Greppin H (1991) A theoretical and experimental analysis of the qP and qN coefficients of chlorophyll fluorescence quenching and their relation to photochemical and nonphotochemical events. Photosynth Res 27: 41–55

    Article  CAS  Google Scholar 

  75. Holzwarth AR (1991) Excited state kinetics in chlorophyll systems and its relationship to the functional organization of the photosystems. In: Scheer H (ed) Chlorophylls, pp 1125–1151, CRC Press, Boca Raton

    Google Scholar 

  76. Holzwarth AR (1993) Is it time to throw away your apparatus for chlorophyll fluorescence induction? Biophys J 64: 1280–1281

    Article  PubMed  CAS  Google Scholar 

  77. Holzwarth AR and Roelofs TA (1992) Recent advances in the understanding of chlorophyll excited state dynamics in thylakoid membranes and isolated reaction center complexes. J Photochem Photobiol B 15: 45–62

    Article  CAS  Google Scholar 

  78. Hong S-S and Xu D-Q (1999) Light-induced increase in initial chlorophyll fluorescence F0 level and the reversible inactivation of PS II reaction centers in soybean leaves. Photosynth Res 61: 269–280

    Article  CAS  Google Scholar 

  79. Hormann H, Neubauer C and Schreiber U (1994) On the relationship between chlorophyll fluorescence quenching and the quantum yield of electron transport in isolated thylakoids. Photosynth Res 40: 93–106

    Article  CAS  Google Scholar 

  80. Horton P and Hague A (1988) Studies on the induction of chlorophyll fluorescence in isolated barley protoplasts. IV. Resolution of non-photochemical quenching. Biochim Biophys Acta 932: 107–115

    Article  CAS  Google Scholar 

  81. Horton P and Ruban AV (1992) Regulation of Photosystem II. Photosynth Res. 34: 375–385

    Article  CAS  Google Scholar 

  82. Horton P and Ruban AV (1993) ApH-dependent quenching of the F0 level of chlorophyll fluorescence in spinach leaves. Biochim Biophys Acta 1142: 203–206

    Article  CAS  Google Scholar 

  83. Horton P, Ruban AV and Walters RG (1996) Regulation of light harvesting in green plants. Annu Rev Plant Physiol Plant Mol Biol 47: 655–684

    Article  PubMed  CAS  Google Scholar 

  84. Horton P, Ruban AV and Young AJ (1999) Regulation of the structure and function of the light-harvesting complexes of Photosystem II by the xanthophyll cycle. In: Frank HA, Young AJ, Britton G and Cogdell RJ (eds) (1999) The Photochemistry of Carotenoids, pp 271–291, Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  85. Jahns P and Krause GH (1994) Xanthophyll cycle and energy-dependent fluorescence quenching in leaves from pea plants grown under intermittent light. Planta 192: 176–182

    Article  CAS  Google Scholar 

  86. Jahns P and Miehe B (1996) Kinetic correlation of recovery from photoinhibition and zeaxanthin epoxidation. Planta 198: 202210

    Google Scholar 

  87. Jahns P and Schweig S (1995) Energy-dependent fluorescence quenching in thylakoids from intermittent light grown pea plants: Evidence for an interaction of zeaxanthin and the chlorophyll a/b binding protein CP26. Plant Physiol Biochem 33: 683–687

    CAS  Google Scholar 

  88. Jahns P, Depka B and Trebst A (2000) Xanthophyll cycle mutants from Chlamydomonas reinhardtii indicate a role of zeaxanthin in the D1 protein turnover. Plant Physiol Biochem 38: 371376

    Google Scholar 

  89. Joshi MK and Mohanty P (1995) Probing photosynthetic performance by chlorophyll fluorescence: Analysis and interpretation of fluorescence parameters. J Sei Indust Res 54: 155–174

    CAS  Google Scholar 

  90. Karukstis KK (1991) Chlorophyll fluorescence as a physiological probe of the photosynthetic apparatus. In: Scheer H (ed) Chlorophylls, pp 769–795. CRC Press, Boca Raton

    Google Scholar 

  91. Kim S, Pichersky E and Yocum CF (1994) Topological studies of spinach 22 kDa protein of Photosystem II. Biochim Biophys Acta 1188: 339–348.

    Article  PubMed  Google Scholar 

  92. Klughammer C and Schreiber U (1994) An improved method, using saturating light pulses, for the determination of Photosystem I quantum yield via P700+-absorbance changes at 830 nm. Planta 192: 261–268

    Article  CAS  Google Scholar 

  93. Klughammer, C and Schreiber U (1998) Measuring P700 absorbance changes in the near infrared spectral region with a dual wavelength pulse modulation system. In: Garab G (ed) Photosynthesis: Mechanisms and Effects, Vol V, pp 43574360

    Google Scholar 

  94. Kluwer, Dordrecht Kofer W, Koop H-U, Wanner G and Steinmüller K (1998) Mutagenesis of the genes encoding subunits A, C, H, I, J and K of the plastid NAD(P)H-plastoquinone-oxidoreductase in tobacco by polyethylene glycol-mediated plastome transformation. Mol Gen Genet 258: 166–173

    Google Scholar 

  95. Kolber Z and Falkowski PG (1993) Use of active fluorescence to estimate phytoplankton photosynthesis in situ. Limnol Oceanogr 38: 1646–1665

    Article  CAS  Google Scholar 

  96. Kolber ZS, Prasil O and Falkowski PG (1998) Measurements of variable chlorophyll fluorescence using fast repetition rate techniques: defining methodology and experimental protocols. Biochim Biophys Acta 1367: 88–106

    Article  PubMed  CAS  Google Scholar 

  97. Koroleva OY, Brüggemann W and Krause GH (1994) Photoinhibition, xanthophyll cycle and in vivo chlorophyll fluorescence quenching of chilling-tolerant Oxyria digyna and chilling-sensitive Zea mays. Physiol Plant 92: 577–584

    Article  CAS  Google Scholar 

  98. Koroleva OY, Carouge N, Pelle B, Scholl S and Krause GH (1998) Sustained trans-thylakoid proton gradient induced by light stress at low temperatures? Possible effects on the xanthophyll cycle. In: Garab G (ed) Photosynthesis: Mechanisms and Effects, Vol III, pp 2325–2328. Kluwer, Dordrecht

    Google Scholar 

  99. Krall JP and Edwards GE (1992) Relationship between Photosystem II activity and C02 fixation in leaves. Physiol Plant 86: 180–187

    Article  CAS  Google Scholar 

  100. Kramer DM and Crofts AR (1996) Control and measurement of photosynthetic electron transport in vivo. In: Baker NR (ed) Photosynthesis and the Environment, pp 25–66. Kluwer, Dordrecht

    Google Scholar 

  101. Krause GH (1974) Changes in chlorophyll fluorescence in relation to light-dependent cation transfer across thylakoid membranes. Biochim Biophys Acta 333: 301–313

    Article  PubMed  CAS  Google Scholar 

  102. Krause GH (1978) Effects of uncouplers on Mg2+-dependent fluorescence quenching in isolated chloroplasts. Planta 138: 73–78

    Article  CAS  Google Scholar 

  103. Krause GH (1992) Effects of temperature on energy-dependent fluorescence quenching in chloroplasts. Photosynthetica 27: 249–252

    CAS  Google Scholar 

  104. Krause GH and Behrend U (1983) Characterization of chlorophyll fluorescence quenching in chloroplasts by fluorescence spectroscopy at 77K. II. ATP-dependent quenching. Biochim Biophys Acta 723: 176–181

    Article  CAS  Google Scholar 

  105. Krause GH and Behrend U (1986) ApH-dependent chlorophyll fluorescence quenching indicating a mechanism of protection against photoinhibition of chloroplasts. FEBS Lett 200: 298302

    Google Scholar 

  106. Krause GH and Laasch H (1987) Energy-dependent chlorophyll fluorescence quenching in chloroplasts correlated with quantum yield of photosynthesis. Z Naturforsch 42c: 581–584

    CAS  Google Scholar 

  107. Krause GH and Somersalo S (1989) Fluorescence as a tool in photosynthesis research: Application in studies of photoinhibition, cold acclimation and freezing stress. Phil Trans R Soc LondB 313: 281–293

    Article  Google Scholar 

  108. Krause GH and Weis E (1991) Chlorophyll fluorescence and photosynthesis: The basics. Annu Rev Plant Physiol Plant Mol Biol 42: 313–349

    Article  CAS  Google Scholar 

  109. Krause GH, Vernotte C and Briantais J-M (1982) Photoinduced quenching of chlorophyll fluorescence in intact chloroplasts and algae. Resolution into two components. Biochim Biophys Acta 679: 116–124

    Google Scholar 

  110. Krause GH, Somersalo S, Zumbusch E, Weyers B and Laasch H (1990) On the mechanism of photoinhibition in chloroplasts. Relationship between changes in fluorescence and activity of Photosystem II. J Plant Physiol 136: 472–479

    Google Scholar 

  111. Krause GH, Virgo A and Winter K (1995) High susceptibility to photoinhibition of young leaves of tropical forest trees. Planta 197: 583–591

    Article  CAS  Google Scholar 

  112. Krause GH, Schmude C, Garden G, Koroleva OY and Winter K (1999a) Effects of solar ultraviolet radiation on the potential efficiency of Photosystem II in leaves of tropical plants. Plant Physiol 121: 1349–1358

    Article  PubMed  CAS  Google Scholar 

  113. Krause GH, Carouge N and Garden H (1999b) Long-term effects of temperature shifts on xanthophyll cycle and photoinhibition in spinach (Spinacia oleracea). Aust J Plant Physiol 26: 125–134

    Article  Google Scholar 

  114. Kruse O, Nixon PJ, Schmid GH and Mullineaux CM (1999) Isolation of state transition mutants of Chlamydomonas reinhardtii by fluorescence video imaging. Photosynth Res 61: 43–51

    Article  CAS  Google Scholar 

  115. Lakowicz JR (1999) Principles of Fluorescence Spectroscopy. 2nd edition. Kluwer Academic Publishers/Plenum Publishers, New York

    Book  Google Scholar 

  116. Lavergne J and Trissl H-W (1995) Theory of fluorescence induction in Photosystem II: Derivation of analytical expressions in a model including exciton-radical pair equilibrium and restricted energy transfer between photosynthetic units. Biophys J 68: 2474–2492

    Article  PubMed  CAS  Google Scholar 

  117. Lazär D (1999) Chlorophyll a fluorescence induction. Biochim Biophys Acta 1412: 1–28

    Article  PubMed  Google Scholar 

  118. Leitsch J, Schnettger B, Critchley C and Krause GH (1994) Two mechanisms of recovery from photoinhibition in vivo: Reactivation of Photosystem II related and unrelated to D1–protein turnover. Planta 194: 15–21

    Article  CAS  Google Scholar 

  119. Li XP, Björkman O, Shih C, Grossman AR, Rosenqvist M, Jansson S and Niyogi KK (2000) A pigment-binding protein essential for regulation of photosynthetic light harvesting. Nature 403: 391–395

    Article  PubMed  CAS  Google Scholar 

  120. Lichtenthaler HK (1996) Vegetation stress: An Introduction to the stress concept in plants. J Plant Physiol 148: 4–14

    Article  CAS  Google Scholar 

  121. Lichtenthaler HK, Lang M, Sowinska M, Heisel F and Miehe JA (1996) Detection of vegetation stress via a new high-resolution fluorescence imaging system. J. Plant Physiol 148: 599–612

    Article  CAS  Google Scholar 

  122. Mano J, Miyake C, Schreiber U and Asada K (1995) Photoactivation of the electron flow from NADPH to plastoquinone in spinach chloroplasts. Plant Cell Physiol 36: 1589–1598

    CAS  Google Scholar 

  123. Meurer J, Meierhoff K and Westhoff P (1996) Isolation of high-chlorophyll-fluorescence mutants of Arabidopsis thaliana and their characterisation by spectroscopy, immunoblotting and Northern hybridisation. Planta 198: 385–396

    Article  PubMed  CAS  Google Scholar 

  124. Meyer S and Genty B (1998) Mapping intercellular C02 mole fraction (C-I) in Rosa rubiginosa leaves fed with abscisic acid by using chlorophyll fluorescence imaging—significance of C-I estimated from leaf gas-exchange. Plant Physiol 116: 947957

    Google Scholar 

  125. Miles CD (1980) Mutants of higher plants: Maize. Methods Enzymol 69: 3–23

    Article  CAS  Google Scholar 

  126. Miles CD (1982) The use of mutations to probe photosynthesis in higher plants. In: Hallick R, Edelman M and Chua N (eds) Methods in Chloroplasts Molecular Biology, pp 75–109.

    Google Scholar 

  127. Elsevier, New York Mohammed GH, Binder WD and Gillies SL (1995). Chlorophyll fluorescence: A review of its practical forestry applications and instrumentation. Scand J Forest Res 10: 383–410

    Google Scholar 

  128. Mohanty N, Gilmore AM and Yamamoto HY (1995) Mechanism of non-photochemical chlorophyll fluorescence quenching. II. Resolution of rapidly reversible absorbance changes at 530 nm and fluorescence quenching by the effects of antimycin, dibucaine and cation exchanger, A23187. Aust J Plant Physiol 22: 239–247

    Article  CAS  Google Scholar 

  129. Morales F, Abadía A and Abadía J (1998) Photosynthesis, quenching of chlorophyll fluorescence and thermal energy dissipation in iron-deficient sugar beet leaves. Aust J Plant Physiol 25: 403–12

    Article  CAS  Google Scholar 

  130. Mott KA, Cardón ZG and Berry JA (1993) Asymmetric patchy stomatal closure for the 2 surfaces of Xanthium strumarium L. leaves at low humidity. Plant Cell Environ 16: 25–34

    Article  Google Scholar 

  131. Mullineaux CW, Ruban AV and Horton P (1994) Prompt heat release associated with ApH-dependent quenching in spinach thylakoid membranes. Biochim Biophys Acta 1185: 119–123

    Article  CAS  Google Scholar 

  132. Neubauer C and Schreiber U (1987) The polyphasic rise of chlorophyll fluorescence upon onset of strong continuous illumination: I. Saturation characteristics and partial control by the Photosystem II acceptor side. Z Naturforsch 42c: 12461254

    Google Scholar 

  133. Niyogi KK (1999) Photoprotection revisited: Genetic and molecular approaches. Annu Rev Plant Physiol Plant Mol Biol 50: 333–359

    Article  PubMed  CAS  Google Scholar 

  134. Niyogi KK, Bjorkman O and Grossman AR (1997) Chlamy-domonas xanthophyll cycle mutants identified by video imaging of chlorophyll fluorescence quenching. Plant Cell 9: 1369 1380

    Google Scholar 

  135. Niyogi KK, Grossman AR and Bjorkman O (1998) Arabidopsis mutants define a central role for the xanthophyll cycle in the regulation of photosynthetic energy conversion. Plant Cell 10: 1121–1134

    Google Scholar 

  136. Noctor G, Rees D, Young A and Horton P (1991) The relationship between zeaxanthin, energy-dependent quenching of chlorophyll fluorescence and the trans-thylakoid pH gradient in isolated chloroplasts. Biochim Biophys Acta 1057: 320330

    Google Scholar 

  137. Noctor G, Ruban AV and Horton P (1993) Modulation of ApH- dependent nonphotochemical quenching of chlorophyll fluorescence in spinach chloroplasts. Biochim Biophys Acta 1183: 339–344

    Article  CAS  Google Scholar 

  138. Nogues S and Baker NR (1995) Evaluation of the role of damage to Photosystem II in the inhibition of C02 assimilation in pea leaves on exposure to UV-B radiation. Plant Cell Environ 18: 781–787

    Article  CAS  Google Scholar 

  139. Oberhuber W and Edwards GE (1993) Temperature dependence of the linkage of quantum yield of Photosystem II to C02 fixation in C4 and C3 plants. Plant Physiol 101: 507–512

    PubMed  CAS  Google Scholar 

  140. Oberhuber W, Dai Z-Y and Edwards GE (1993) Light dependence of quantum yields of Photosystem II and C02 fixation in C4 and C3 plants. Photosynth Res 35: 265–274

    Article  CAS  Google Scholar 

  141. Oquist G and Chow WS (1992) On the relationship between quantum yield of Photosystem II electron transport, as determined by chlorophyll fluorescence and the quantum yield of C02-dependent 02 evolution. Photosynth Res 33: 51–62

    Article  CAS  Google Scholar 

  142. Owens TG (1994) Excitation energy transfer between chlorophylls and carotenoids. A proposed molecular mechanism for non-photochemical quenching. In: Baker NR and Bowyer JR (eds) Photoinhibition of Photosynthesis. From Molecular Mechanisms to the Field, pp 95–109. Bios Scientific Publishers, Oxford

    Google Scholar 

  143. Oxborough K and Baker NR (1997) Resolving chlorophyll a fluorescence images of photosynthetic efficiency into photochemical and non-photochemical components— calculation of qP and FV’/FM’ without measuring F0’. Photosynth Res 54: 135–142

    Article  CAS  Google Scholar 

  144. Oxborough K, Lee P and Horton P (1987) Regulation of thylakoid protein phosphorylation by high-energy-state quenching. FEBS Lett 221: 211–214

    Article  CAS  Google Scholar 

  145. Peterson RB (1989) Partitioning of noncyclic photosynthetic electron transport to 02-dependent dissipative processes as probed by fluorescence and C02 exchange. Plant Physiol 90: 1322–1328

    Article  PubMed  CAS  Google Scholar 

  146. Peterson RB, Sivak MN and Walker DA (1988) Relationship between steady-state fluorescence yield and photosynthetic efficiency in spinach leaf tissue. Plant Physiol 88: 158–163

    Article  PubMed  CAS  Google Scholar 

  147. Pfannschmidt T, Nilsson A and Allen JF (1999) Photosynthetic control of chloroplast expression. Nature 397: 625–628

    Article  CAS  Google Scholar 

  148. Pfundel (1998) Estimating the contribution of Photosystem I to total leaf chlorophyll fluorescence. Photosynth Res 56: 185195

    Google Scholar 

  149. Quick WP and Stitt M (1989) An examination of factors contributing to non-photochemical quenching of chlorophyll fluorescence in barley leaves. Biochim Biophys Acta 977: 287–296

    Article  CAS  Google Scholar 

  150. Quick WP, Scheibe R and Stitt M (1989) Use of tentoxin and nigericin to investigate the possible contribution of ApH to energy dissipation and the control of electron transport in spinach leaves. Biochim Biophys Acta 974: 282–288

    Article  CAS  Google Scholar 

  151. Richter M, Ruhle W and Wild A (1990) Studies on the mechanism of Photosystem II photoinhibition. A two-step degradation of D1 protein. Photosynth Res 24: 229–235

    Article  CAS  Google Scholar 

  152. Rolfe SA and Scholes JD (1995) Quantitative imaging of chlorophyll fluorescence. New Phytol 131: 69–79

    Article  Google Scholar 

  153. Ruban AV and Horton P (1995a) Regulation of non-photochemical quenching of chlorophyll fluorescence in plants. Aust J. Plant Physiol 22: 221–230

    CAS  Google Scholar 

  154. Ruban AV and Horton P (1995b) An investigation of the sustained component of nonphotochemical quenching of chlorophyll fluorescence in isolated chloroplasts and leaves of spinach. Plant Physiol 108: 721–726

    PubMed  CAS  Google Scholar 

  155. Ruban AV, Young AJ and Horton P (1996) Dynamic properties of the minor chlorophyll a/b binding proteins of Photosystem II, an in vitro model for photoprotective energy dissipation in the photosynthetic membrane of green plants. Biochem 35: 674–678

    Article  CAS  Google Scholar 

  156. Schatz GH, Brock H and Holzwarth AR (1988) A kinetic ad energetic model for the primary processes in Photosystem II. Biophys J 54: 397–405

    Article  PubMed  CAS  Google Scholar 

  157. Schnettger B, Leitsch J and Krause GH (1992) Photoinhibition of Photosystem 2 in vivo occurring without net protein degradation. Photosynthetica 27: 261–265

    CAS  Google Scholar 

  158. Schnettger B, Critchley C, Santore UJ, Graf M and Krause GH (1994) Relationship between photo inhibition of photosynthesis, D1 protein turnover and chloroplast structure: Effects of protein synthesis inhibitors. Plant Cell Environ 17: 55–64

    Google Scholar 

  159. Schreiber U (1983) Chlorophyll fluorescence yield changes as a tool in plant physiology. I. The measuring system. Photosynth Res 4: 361–373

    CAS  Google Scholar 

  160. Schreiber U (1986) Detection of rapid induction kinetics with a new type of high-frequency modulated chlorophyll fluorometer. Photosynth Res 9: 261–272

    Article  CAS  Google Scholar 

  161. Schreiber U (1994) New emitter-detector-cuvette assembly for measuring modulated chlorophyll fluorescence of highly diluted suspensions in conjunction with the PAM fluorometer. Z. Naturforsch 49c: 646–656

    CAS  Google Scholar 

  162. Schreiber U (1998) Chlorophyll fluorescence: New instrumentation for special applications. In: Garab G (ed) Photosynthesis: Mechanisms and Effects, Vol V, pp 4253–4258

    Google Scholar 

  163. Schreiber U and Krieger A (1996) Two fundamentally different types of variable chlorophyll fluorescence in vivo. FEBS Lett 397: 131–135

    Article  PubMed  CAS  Google Scholar 

  164. Schreiber U and Neubauer C (1987) The polyphasic rise of chlorophyll fluorescence upon onset of strong continuous illumination: II. Partial control by the Photosystem II donor side and possible ways or interpretation. Z Naturforsch 42c: 1255–1264

    CAS  Google Scholar 

  165. Schreiber U, Schliwa U and Bilger W (1986) Continuous recording of photochemical and non-photochemical chlorophyll fluorescence quenching with a new type of modulation fluorometer. Photosynth Res 10: 51–62

    Article  CAS  Google Scholar 

  166. Schreiber U, Hormann H, Neubauer C and Klughammer C (1995) Assessment of Photosystem II photochemical quantum yield by chlorophyll fluorescence quenching analysis. Aust J Plant Physiol 22: 209–220

    Article  CAS  Google Scholar 

  167. Schreiber U, Kühl M, Klimant I and Reising H (1996) Measurement of chlorophyll fluorescence within leaves using a modified PAM fluorometer with a fiber-optic microprobe. Photosynth Res 47: 103–109

    Article  CAS  Google Scholar 

  168. Schreiber U, Gademan, R, Ralph PJ and Larkum A WD (1997) Assessment of photosynthetic performance of Prochloron in Lissoclinum patella in hospite by chlorophyll fluorescence measurements. Plant Cell Physiol 38: 945–951

    Article  CAS  Google Scholar 

  169. Schreiber U, Bilger W, Hormann H and Neubauer C (1998) Chlorophyll fluorescence as a diagnostic tool: Basics and some aspects of practical relevance. In: Raghavendra AS (ed) Photosynthesis. A Comprehensive Treatise, pp 320–336. Cambridge University Press, Cambridge, U.K.

    Google Scholar 

  170. Seaton GGR and Walker DA (1990) Chlorophyll fluorescence as a measure of photosynthetic carbon assimilation. Proc R Soc Lond B 242: 29–35

    Article  Google Scholar 

  171. Sharkey TD, Berry JA and Sage RF (1988) Regulation of photosynthetic electron-transport in Phaseolus vulgaris L., as determined by room-temperature chlorophyll a fluorescence. Planta 176: 415–424

    Article  CAS  Google Scholar 

  172. Siebke K and Weis E (1995) Imaging of chlorophyll-a-fluorescence in leaves—topography of photosynthetic oscillations in leaves of Glechoma hederacea. Photosynth Res 45: 225–237

    Article  CAS  Google Scholar 

  173. Simpson DJ and von Wettstein D (1980) Macromolecular physiology of plastids. XIV. Viridis mutants in barley: Genetic, fluoroscopic and ultrastructural characterisation. Carlsberg Res Commun 45: 283–314

    Article  Google Scholar 

  174. Simpson DJ, Machold O, Hoyer-Hansen G and von Wettstein D (1985) Chlorina mutants of barley (Hordeum vulgare L.). Carlsberg Res Commun 50: 223–238

    Article  Google Scholar 

  175. Skogen D, Chaturvedi R, Weidemann F and Nilsen S (1986) Photoinhibition of photosynthesis: effect of light quality and quantity on recovery from photoinhibition in Lemna gibba. J Plant Physiol 126: 195–205

    Article  CAS  Google Scholar 

  176. Somersalo S and Krause GH (1989) Photoinhibition at chilling temperature. Fluorescence characteristics of unhardened and cold-acclimated spinach leaves. Planta 177: 409–16

    Article  CAS  Google Scholar 

  177. Somersalo S and Krause GH (1990) Reversible photoinhibition of unhardened and cold-acclimated spinach leaves at chilling temperatures. Planta 180: 181–187

    Article  CAS  Google Scholar 

  178. Somerville CR (1986) Analysis of photosynthesis with mutants of higher plants and algae. Annu Rev Plant Physiol 37: 467507

    Google Scholar 

  179. Sonoike K (1996) Photoinhibition of Photosystem I: Its physiological significance in the chilling sensitivity of plants. Plant Cell Physiol 37: 239–347

    Article  CAS  Google Scholar 

  180. Spunda V, Kalina J, Marek MV and Naus J (1997) Regulation of photochemical efficiency of Photosystem 2 in Norway spruce at the beginning of winter and in the following spring. Photosynthetica 33: 91–102

    Article  CAS  Google Scholar 

  181. Srivastava A, Guisse B, Greppin, H and Strasser RJ (1997) Regulation of antenna structure and electron transport in Photosystem II of Pisum sativum under elevated temperature probed by the fast polyphasic chlorophyll a fluorescence transient: OKJIP. Biochim Biophys Acta 1320: 95–106

    Google Scholar 

  182. Strasser RJ, Srivastava A and Govindjee (1995) Polyphasic chlorophyll a fluorescence transient in plants and cyanobacteria. Photochem Photobiol 61: 32–2

    Article  CAS  Google Scholar 

  183. Streb P, Feierabend J and Bligny R (1997) Resistance to photoinhibition of Photosystem II and catalase and antioxidative protection in high mountain plants. Plant Cell Environ 20: 1030–1040

    Article  CAS  Google Scholar 

  184. Taylor WC, Barkan A and Martienssen RA (1987) Use of nuclear mutants in the analysis of chloroplast development. Dev Genet 8: 305–320

    Article  PubMed  CAS  Google Scholar 

  185. Terashima I, Noguchi K, Itoh-Nemoto T, Park Y-M, Kubo A and Tanaka K (1998) The cause of PS I photoinhibition at low temperatures in leaves of Cucumis sativus, a chilling-sensitive plant. Physiol Plant 103: 295–303

    Article  CAS  Google Scholar 

  186. Thiele A and Krause GH (1994) Xanthophyll cycle and thermal energy dissipation in Photosystem II: Relationship between zeaxanthin formation, energy-dependent fluorescence quenching and photoinhibition. J Plant Physiol 144: 324–332

    Article  CAS  Google Scholar 

  187. Thiele A, Schirwitz K, Winter K and Krause GH (1996) Increased xanthophyll cycle activity and reduced D1 protein inactivation related to photoinhibition in two plant systems acclimated to excess light. Plant Science 115: 237–250

    Article  CAS  Google Scholar 

  188. Thiele A, Winter K and Krause GH (1997) Low inactivation of D1 protein of Photosystem II in young canopy leaves of Anacardium excelsum under high-light stress. J Plant Physiol 151: 286–292

    Article  CAS  Google Scholar 

  189. Thiele A, Krause GH and Winter K (1998) In situ study of photoinhibition of photosynthesis and xanthophyll cycle activity in plants growing in natural gaps of the tropical forest. Aust J Plant Physiol 25: 189–195

    Article  Google Scholar 

  190. Trissl H-W and Lavergne J (1994) Fluorescence induction from Photosystem II: Analytical equations for yields of photochemistry and fluorescence derived from analysis of a model including exciton-radical pair equilibrium and restricted energy transfer between photosynthetic units. Aust J Plant Physiol 22: 183–193

    Article  Google Scholar 

  191. Trissl H-W, Gao Y and Wulf K (1993) Theoretical fluorescence induction curves derived from coupled differential equations describing the primary photochemistry of Photosystem II by an exciton/radical pair equilibrium. Biophys J 64: 984–998

    Article  Google Scholar 

  192. Tyystjärvi E, Ovaska J, Karunen P and Aro E-M (1989) The nature of light-induced inhibition of Photosystem II in pumpkin (’Cucurbita pepo L) leaves depends on temperature. Plant Physiol 91: 1069–1074

    Article  PubMed  Google Scholar 

  193. van Wijk KJ, Schnettger B, Graf M and Krause GH (1993) Photoinhibition and recovery in relation to heterogeneity of Photosystem II. Biochim Biophys Acta 1142: 59–68

    Article  Google Scholar 

  194. Verhoeven AS, Adams WW III and Demmig-Adams B (1996) Close relationship between the state of the xanthophyll cycle pigments and Photosystem II efficiency during recovery from winter stress. Physiol Plant 96: 567–576

    Article  CAS  Google Scholar 

  195. Verhoeven AS, Adams WW III, Demmig-Adams B, Croce R and Bassi R (1999) Xanthophyll cycle pigment localization and dynamics during exposure to low temperatures and light stress in Vinca major. Plant Physiol 120: 727–737

    Article  PubMed  CAS  Google Scholar 

  196. Vernotte C, Etienne AL and Briantais J-M (1979) Quenching of the system II chlorophyll fluorescence by the plastoquinone pool. Biochim Biophys Acta 545: 519–527

    Article  PubMed  CAS  Google Scholar 

  197. Walters RG and Horton P (1991) Resolution of components of non-photochemical chlorophyll fluorescence quenching in barley leaves. Photosynth Res. 27: 121–133

    Article  CAS  Google Scholar 

  198. Walters RG and Horton P (1993) Theoretical assessment of alternative mechanisms for non-photochemical quenching of PS II fluorescence in barley leaves. Photosynth Res 36: 119–139

    Article  CAS  Google Scholar 

  199. Weis E and Berry JA (1987) Quantum efficiency of Photosystem II in relation to ‘energy’-dependent quenching of chlorophyll fluorescence. Biochim Biophys Acta 894: 198–208

    Article  CAS  Google Scholar 

  200. White AJ and Critchley C (1999) Rapid light curves: A new fluorescence method to assess the state of the photosynthetic apparatus. Photosynth Res 59: 63–72

    Article  CAS  Google Scholar 

  201. Yahyaoui W, Harnois J and Carpentier R (1998) Demonstration of thermal dissipation of absorbed quanta during energy-dependent quenching of chlorophyll fluorescence in photosynthetic membranes. FEBS Lett 440: 59–63

    Article  PubMed  CAS  Google Scholar 

  202. Yamamoto HY, Nakayama TOM and Chichester CO (1962) Studies on the light and dark interconversions of leaf xanthophylls. Arch Biochem Biophys 97: 168–173

    Article  PubMed  CAS  Google Scholar 

  203. G. Heinrich Krause and Peter Jahns

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Krause, G.H., Jahns, P. (2003). Pulse Amplitude Modulated Chlorophyll Fluorometry and its Application in Plant Science. In: Green, B.R., Parson, W.W. (eds) Light-Harvesting Antennas in Photosynthesis. Advances in Photosynthesis and Respiration, vol 13. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-2087-8_13

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-2087-8_13

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-5468-5

  • Online ISBN: 978-94-017-2087-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics