Skip to main content

Part of the book series: Advances in Cellular and Molecular Biology of Plants ((CMBP,volume 2))

Abstract

Genetically determined self-incompatibility has arisen many times in the course of evolution, and there is a broad diversity of mechanisms by which these loci prevent self-fertilization (de Nettancourt 1977). Population geneticists have provided a rich theory for the origin and maintenance of genetically-determined self-incompatibility, and the problem is sufficiently intricate that there remain many unanswered questions about the evolution of self-incompatibility. Recent progress in the molecular basis for self-incompatibility has revealed common features, including highly divergent molecular sequences of alleles. High allelic sequence divergence has been observed in mating system genes of Neurospora (Glass et al. 1988), Ustilago (Schulz et al. 1990), sporophytic incompatibility loci in Brassica (Nasrallah et al. 1985, 1987; Nasrallah and Nasrallah 1989), and the gametophytic self-incompatibility locus in Solanaceae (Ioerger et al. 1990; Newbigin et al. (Chapter 1), this volume). This chapter will focus on the gametophytic system of self-incompatibility in Solanaceae. A more general review of the evolution of self-incompatibility, including the special case of heterostyly, can be found in Barrett (1988; see also Barrett (Chapter 10), this volume).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Ai, Y., Singh, A., Coleman, C.E., Ioerger, T.R., Kheyr-Pour, A. and Kao, T.-h. (1990) Self-incompatibility in Petunia inflata: isolation and characterization of cDNAs encoding three S-allele associated proteins. Sex. Plant Reprod. 3: 130–138.

    Google Scholar 

  • Ai, Y., Kron, E. and Kao, T.-h. (1991) S-alleles are retained and expressed in a self-compatible cultivar of Petunia hybrida. Mol. Gen. Genet. 230: 233–238.

    Article  Google Scholar 

  • Anderson, M.A., Cornish, E.C., Mau, S.L., Williams, E.G., Hoggart, R., Atkinson, A. et al. (1986) Cloning of cDNA for a stylar glycoprotein associated with expression of self-incompatibility in Nicotiana alata. Nature 321: 38–44.

    Article  CAS  Google Scholar 

  • Anderson, M.A., McFadden, G.I., Bernatzky, R., Atkinson, A., Orpin, T., Dedman, H. et al. (1989) Sequence variability of three alleles of the self-incompatibility gene of Nicotiana alata. Plant Cell 1: 483–491.

    PubMed  CAS  Google Scholar 

  • Barrett, S.C.H. (1988) The evolution, maintenance and loss of self-incompatibility systems. In: J.L. Doust and L.L. Doust (eds.), Plant Reproductive Ecology: Patterns and Strategies, pp. 114–127. Oxford University Press, New York.

    Google Scholar 

  • Broothaerts, W.J., Vanvinckenroye, P., Decock, B., van Damme, J. and Vendrig, J.C. (1991) Petunia hybrida S-proteins: ribonuclease activity and the role of their glycan side chains in self-incompatibility. Sex. Plant Reprod. 4: 258–266.

    Article  Google Scholar 

  • Charlesworth, D. and Charlesworth, B. (1979) The evolution and breakdown of S-allele systems. Heredity 43: 41–55.

    Article  Google Scholar 

  • Clark, A.G. (1992) Evolutionary inferences from molecular characterization of self-incompatibility alleles. In: N. Takahata and A.G. Clark (eds.), Mechanisms of Molecular Evolution, pp. 79–108. Sinauer Associates, Inc., Sunderland, MA.

    Google Scholar 

  • Clark, A.G. and Kao, T.-h. (1991) Excess nonsynonymous substitution at shared polymorphic sites among self-incompatibility alleles of Solanaceae. Proc. Natl. Acad. Sci. U.S.A. 88: 9823–9827.

    Article  PubMed  CAS  Google Scholar 

  • Coleman, C.E. and Kao, T.-h. (1992) The flanking regions of two Petunia inflata S-alleles are heterogeneous and contain repetitive sequences. Plant Mol. Biol. 18: 725–737.

    Article  PubMed  CAS  Google Scholar 

  • East, E.M. and Mangelsdorf, A.J. (1925) A new interpretation of the hereditary behavior of self-sterile plants. Proc. Natl. Acad. Sci. U.S.A. 11: 166–171.

    Article  PubMed  CAS  Google Scholar 

  • Ebert, P.R., Anderson, M.A., Bernatzky, R., Altschuler, M. and Clarke, A.E. (1989) Genetic polymorphism of self-incompatibility in flowering plants. Cell 56: 255–262.

    Article  PubMed  CAS  Google Scholar 

  • Ellstrand, N.C., Ritter, K. and Levin, D.A. (1979) Protein polymorphism in the narrow endemic Oenothera organensis. Evolution 33: 534–542.

    Article  Google Scholar 

  • Emerson, S. (1938) The genetics of self-incompatibility in Oenothera organensis. Genetics 23: 201–202.

    Google Scholar 

  • Emerson, S. (1939) A preliminary survey of the Oenothera organensis population. Genetics 24: 535–537.

    Google Scholar 

  • Ewens, W.J. (1964) On the problem of self-sterility alleles. Genetics 50: 1433–1438.

    PubMed  CAS  Google Scholar 

  • Ewens, W.J. and Ewens, P.M. (1966) The maintenance of alleles by mutation. Monte Carlo results for normal and self-sterility alleles. Heredity 21: 371–378.

    Article  PubMed  CAS  Google Scholar 

  • Fisher, R.A. (1958) The Genetical Theory of Natural Selection, pp. 104–110. Dover, New York.

    Google Scholar 

  • Fisher, R.A. (1961) A model for the generation of self-fertility alleles. J. Theor. Biol. 1: 411–414.

    PubMed  CAS  Google Scholar 

  • Gillespie, J.H. (1989) Molecular evolution and polymorphism: SAS-CFF meets the mutational landscape. Am. Nat. 134: 638–658.

    Article  Google Scholar 

  • Glass, N.L., Vollmer, S.J., Staben, C., Grotelueschen, J., Metzenberg, R.L. and Yanofsky, C. (1988) DNAs of the two mating-type alleles of Neurospora crassa are highly dissimilar. Science 29: 570–573.

    Article  Google Scholar 

  • Gyllensten, U.B., Sundvall, M. and Erlich, H.A. (1991) Allelic diversity is generated by intraexon sequence exchange at the DRB1 locus of primates. Proc. Natl. Acad. Sci. U.S.A. 88: 3686–3690.

    Article  PubMed  CAS  Google Scholar 

  • Haring, V., Gray, J.E., McClure, B.A., Anderson, M.A. and Clarke, A.E. (1990) Self incompatibility: a self-recognition system in plants. Science 250: 937–941.

    Article  PubMed  CAS  Google Scholar 

  • Hudson, R.R. (1990) Gene genealogies and the coalescent process. Oxford Surveys in Evol. Biol. 7: 1–44.

    Google Scholar 

  • Hughes, A.L. and Nei, M. (1988) Pattern of nucleotide substitution at major histocompatibility complex class I loci reveals overdominant selection. Nature 335: 167–170.

    Article  PubMed  CAS  Google Scholar 

  • Ioerger, T.R., Clark, A.G. and Kao, T.-h. (1990) Polymorphism at the self-incompatibility locus in Solanaceae predates speciation. Proc. Natl. Acad. Sci. U.S.A. 87: 9732–9735.

    Article  PubMed  CAS  Google Scholar 

  • Ioerger, T.R., Goldke, J.R., Xu, B. and Kao, T.-h. (1991) Primary structural features of the self-incompatibility protein in Solanaceae. Sex. Plant Reprod. 4: 81–87.

    Article  Google Scholar 

  • Jost, W., Bak, H., Glund, K., Terpstra, P. and Beintema, J.J. (1991) Amino acid sequence of an extracellular, phosphate-starvation-induced ribonuclease from cultured tomato (Lycopersicon esculentum) cells. Eur. J. Biochem. 198: 1–6.

    Article  CAS  Google Scholar 

  • Kaufmann, H., Salamini, F. and Thompson, R.D. (1991) Sequence variability and gene structure at the self-incompatibility locus of Solanum tuberosum. Mol. Gen. Genet. 226: 457–466.

    Article  PubMed  CAS  Google Scholar 

  • Kheyr-Pour, A., Bintrim, S.B., Ioerger, T.R., Remy, R., Hammond, S.A. and Kao, T.-h. (1990) Sequence diversity of pistil S-proteins associated with gametophytic self-incompatibility in Nicotiana alata. Sex Plant Reprod. 3: 88–97.

    Article  Google Scholar 

  • Kimura, M. and Crow, J.F. (1964) The number of alleles that can be maintained in a finite population. Genetics 49: 725–738.

    PubMed  CAS  Google Scholar 

  • Lewis, D. (1948) Mutation of the incompatibility gene. I. Spontaneous mutation rate. Heredity 2: 219–236.

    Article  PubMed  CAS  Google Scholar 

  • Lewis, D. (1949) Mutation of the incompatibility gene. II. Induced mutation rate. Heredity 3: 339–355.

    Article  PubMed  CAS  Google Scholar 

  • Lewis, D. (1951) Structure of the incompatibility gene. III. Types of spontaneous and induced mutation. Heredity 5: 399–414.

    Article  Google Scholar 

  • Lewis, D. (1962) The generation of self-incompatibility alleles. J. Theor. Biol. 2: 69–71.

    Article  Google Scholar 

  • Li, W.-H., Wu, C.-I. and Luo, C.C. (1985) A new method for estimating synonymous and nonsynonymous rates of nucleotide substitution considering the relative likelihood of nucleotide and codon changes. Mol. Biol. Evol. 2: 150–174.

    PubMed  Google Scholar 

  • Lipman, D.J., Altschul, S.F. and Kececioglu, J.D. (1989) A tool for multiple sequence alignment. Proc. Natl. Acad. Sci. U.S.A. 86: 4412–4415.

    Article  PubMed  CAS  Google Scholar 

  • Martin, F.W. (1961) The inheritance of self-incompatibility in hybrids of Lycopersicon esculentum Mill x L. chilense Dun. Genetics 46: 1443–1454.

    PubMed  CAS  Google Scholar 

  • Martin, F.W. (1966) The genetic control of unilateral incompatibility between two tomato species. Genetics 56: 391–398.

    Google Scholar 

  • Martin, F.W. (1968) The behavior of Lycopersicon incompatibility alleles in an alien genetic milieu. Genetics 60: 101–109.

    PubMed  CAS  Google Scholar 

  • Maruyama, T. and Nei, M. (1981) Genetic variability maintained by mutation and overdominant selection in finite populations. Genetics 98: 441–459.

    PubMed  CAS  Google Scholar 

  • Mather, K. (1943) Specific differences in Petunia I. Incompatibility, J. Genetics 45: 215–235.

    Article  Google Scholar 

  • Mayo, A. (1966) On the problem of self-incompatibility alleles. Biometrics 22: 111–120.

    Article  Google Scholar 

  • McClure, B.A. Haring, V., Ebert, P.R., Anderson, M.A., Simpson, R.J., Sakiyama, F. and Clarke, A.E. (1989) Style self-incompatibility gene products of Nicotiana alata are ribonucleases. Nature 342: 955–957.

    Article  PubMed  CAS  Google Scholar 

  • McClure, B., Gray, J.E., Anderson, M.A. and Clarke, A.E. (1990) Self-incompatibility in Nicotiana alata involves degradation of pollen rRNA. Nature 347: 757–760.

    Article  Google Scholar 

  • Moran, P.A.P. (1962) The Statistical Processes of Evolutionary Theory. Clarendon Press, Oxford.

    Google Scholar 

  • Mu, J. and T.-h. Kao (1992) Expression of two S-ribonucleases of Petunia inflata using baculovirus expression system. Bioch. Biophys. Res. Corn. 187: 299–304.

    Google Scholar 

  • Nagylaki, T. (1975) The deterministic behavior of self-incompatibility alleles. Genetics 79: 545–550.

    PubMed  CAS  Google Scholar 

  • Nasrallah, J.B. and Nasrallah M.E. (1989) The molecular genetics of self-incompatibility in Brassica. Ann. Rev. Genet. 23: 121–139.

    Article  PubMed  CAS  Google Scholar 

  • Nasrallah, J.B., Kao, T.-h., Goldberg, M.L. and Nasrallah, M.E. (1985) A cDNA clone encoding an S-locus-specific glycoprotein from Brassica oleracea. Nature 318: 263–267.

    Article  CAS  Google Scholar 

  • Nasrallah, J.B., Kao, T.-h., Chen, C.H., Goldberg, M.L. and Nasrallah, M.E. (1987) Amino acid sequence of glycoproteins encoded by three alleles of the S-locus of Brassica oleracea. Nature 326: 617–618.

    Article  CAS  Google Scholar 

  • Nei, M. and Gojobori, T. (1986) Simple methods for estimating the numbers of synonymous and nonsynonymous nucleotide substitutions. Mol. Biol. Evol. 3: 418–426.

    PubMed  CAS  Google Scholar 

  • de Nettancourt, D. (1977) Incompatibility in Angiosperms. Springer-Verlag, Berlin.

    Google Scholar 

  • Pandey, K.K. (1965) Centric chromosome fragments and pollen-part mutation of the incompatibility gene in Nicotiana alata. Nature 206: 792–795.

    Article  Google Scholar 

  • Saitou, N. and Nei, M. (1987) The neighbor joining method: A new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4: 406–425.

    PubMed  CAS  Google Scholar 

  • Sawyer, S. (1989) Statistical tests for detecting gene conversion. Mol. Biol. Evol. 6: 526–538.

    PubMed  CAS  Google Scholar 

  • Schulz, B., Banuett, F., Dahl, M., Schlesinger, R., Schäfer, W., Martin, T. et al. (1990) The b alleles of U. maydis, whose combinations program pathogenic development, code for polypeptides containing a homeodomain-related motif. Cell 60: 295–306.

    Article  PubMed  CAS  Google Scholar 

  • She, J.X., Boehme, S.A., Wang, T.W., Bonhomme, F. and Wakeland, E.K. (1991) Amplification of major histocompatibility complex class II gene diversity by intraexonic recombination. Proc. Natl. Acad. Sci. U.S.A. 88: 453–457.

    Article  PubMed  CAS  Google Scholar 

  • Singh, A., Ai, Y. and Kao, T.-h. (1991) Characterization of ribonuclease activity of three S-alleleassociated proteins of Petunia inflata. Plant Physiol. 96: 61–68.

    Article  PubMed  CAS  Google Scholar 

  • Stephens, J.C. (1985) Statistical methods of DNA sequence analysis: Detection of intragenic recombination or gene conversion. Mol. Biol. Evol. 2: 539–556.

    PubMed  CAS  Google Scholar 

  • Tajima, F. (1989) The effect of change in population size on DNA polymorphism. Genetics 123: 597–601.

    PubMed  CAS  Google Scholar 

  • Takahata, N. (1990) A simple genealogical structure of strongly balanced allelic lines and trans species evolution of polymorphism. Proc. Natl. Acad. Sci. U.S.A. 87: 2419–2423.

    Article  PubMed  CAS  Google Scholar 

  • Takahata, N. and Nei, M. (1990) Allelic genealogy under overdominant and frequency-dependent selection and polymorphism of major histocompatibility complex loci. Genetics 124: 967–978.

    PubMed  CAS  Google Scholar 

  • Taylor, C.B. and Green, P.J. (1991) Genes with homology to fungal and S-gene RNases are expressed in Arabidopsis thaliana. Plant Physiol. 96: 980–984.

    Article  PubMed  CAS  Google Scholar 

  • Tsai, D.-S., Lee, H.-S., Post, L.C., Kreiling, K.M., and Kao, T.-h. (1992) Sequence of an S-protein of Lycopersicon peruvianum and comparison with other solanaceous S-proteins. Sex. Plant. Reprod. 5: 256–263.

    Article  Google Scholar 

  • Uyenoyama, M. (1988a) On the evolution of genetic incompatibility systems. II. Initial increase of strong gametophytic self-incompatibility under partial selfing and half-sib mating. Am. Nat. 131: 700–722.

    Article  Google Scholar 

  • Uyenoyama, M. (1988b) On the evolution of genetic incompatibility systems. III. Introduction of weak gametophytic self-incompatibility under partial inbreeding. Theor. Popul. Biol. 34: 47–91.

    Article  CAS  Google Scholar 

  • Uyenoyama, M. (1988c) On the evolution of genetic incompatibility systems. IV. Modification of response to an existing antigen polymorphism under partial selfing. Theor. Popul. Biol. 34: 347–376.

    Article  CAS  Google Scholar 

  • Uyenoyama, M. (1991) On the evolution of genetic incompatibility systems. VI. A three-locus modifier model for the origin of gametophytic self-incompatibility. Genetics 128: 453–469.

    PubMed  CAS  Google Scholar 

  • Watterson, G.A. (1984) Allele frequencies after a bottleneck. Theor. Popul. Biol 26: 387–407.

    Article  Google Scholar 

  • Wolfe, K.H., Sharp, P.M. and Li, W.-H. (1989) Rates of synonymous substitution in plant nuclear genes. J. Mol. Evol. 29: 208–211.

    Article  CAS  Google Scholar 

  • Wright, S. (1939) The distribution of self-fertility alleles in populations. Genetics 24: 538–552.

    PubMed  CAS  Google Scholar 

  • Wright, S. (1960) On the number of self-incompatibility alleles maintained in equilibrium by a given mutation rate in the population of a given size: A re-examination. Biometrics 16: 61–85.

    Article  Google Scholar 

  • Wright, S. (1964) The distribution of self-incompatibility alleles in populations. Evolution 18: 609–619.

    Article  Google Scholar 

  • Yokoyama, S. and Hetherington, L.E. (1982) The expected number of self-incompatibility alleles in finite plant populations. Heredity 48: 299–303.

    Article  Google Scholar 

  • Yokoyama, S. and Nei, M. (1979) Population dynamics of sex-determining alleles in honey bees and self-incompatibility alleles in plants. Genetics 91: 609–626.

    PubMed  CAS  Google Scholar 

  • Xu, B., Grun, P., Kheyr-Pour, A. and Kao, T.-h. (1990a) Identification of pistil-specific proteins associated with three self-incompatibility alleles in Solanum chacoense. Sex. Plant Reprod. 3: 54–60.

    Article  Google Scholar 

  • Xu, B., Mu, J.H., Nevins, D.L., Grun, P. and Kao, T.-h. (1990b) Cloning and sequencing of cDNAs encoding two self-incompatibility associated proteins in Solanum chacoense. Mol. Gen. Genet. 224: 341–346.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Clark, A.G., Kao, TH. (1994). Self-incompatibility: theoretical concepts and evolution. In: Williams, E.G., Clarke, A.E., Knox, R.B. (eds) Genetic control of self-incompatibility and reproductive development in flowering plants. Advances in Cellular and Molecular Biology of Plants, vol 2. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-1669-7_11

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-1669-7_11

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-4340-5

  • Online ISBN: 978-94-017-1669-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics