Advertisement

Error Characteristics Estimated from Champ, GRACE and GOCE Derived Geoids and from Satellite Altimetry Derived Mean Dynamic Topography

  • E. J. O. Schrama
Chapter
Part of the Space Sciences Series of ISSI book series (SSSI, volume 17)

Abstract

This paper presents a review of geoid error characteristics of three satellite gravity missions in view of the general problem of separating scientifically interesting signals from various noise sources. The problem is reviewed from the point of view of two proposed applications of gravity missions, one is the observation of the mean oceanic circulation whereby an improved geoid model is used as a reference surface against the long term mean sea level observed by altimetry. In this case we consider the presence of mesoscale variability during assimilation of derived surface currents in inverse models. The other experiment deals with temporal changes in the gravity field observed by GRACE in which case a proposed experiment is to monitor changes in the geoid in order to detect geophysical interesting signals such as variations in the continental hydrology and non-steric ocean processes. For this experiment we will address the problem of geophysical signal contamination and the way it potentially affects monthly geoid solutions of GRACE.

Keywords

Gravity Field Error Characteristic Spherical Harmonic Degree Dynamic Topography Ocean Tide Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Colombo. O.L.: 1986. The global mapping of gravity with two satellites, Netherlands Geodetic Commission. New Series No. 30. pp. 1–180.Google Scholar
  2. Dickey, J.O.: 1997, Satellite Gravity and the Geosphere, National Research Council Report, Nat. Acad. Washington D.C.. 112 pp.Google Scholar
  3. ESA: 1999, Gravity field and steady slate ocean circulation mission, ESA SP-1233. pp 217Google Scholar
  4. Fu, L.L., et at.: 1994. ‘TOPEX/POSE1DON mission overview’, JGR 99, 24.369–24.382.Google Scholar
  5. Fu, L.L. and Cazenave, A.: 2001, Satellite isUtimetry and Earth Sciences, A handbook of techniques and applications, International Geophysics Series, Vol 69. Academic Press.Google Scholar
  6. Ganachaud. A,, Wunsch, C., Kim, M.-C.. and Tapley, B.: 1997, ‘Combination of TOPEX/POSE1DON data with a hydrographic inversion for determination of the oceanic general circulation and its relation to geoid accuracy’. Geophysical J. Int. 128, 708–722.Google Scholar
  7. Hciskancn. W.A. and Moritz, H.; 1979. Physical Geodesy, Reprint Institute of Physical Geodesy, TU Graz. AustriaGoogle Scholar
  8. Hurlburt, H.E. and Thompson, J.D.: 1980, ‘A numerical study of Loop Current intrusions and eddy-shedding’, J. Phys. Oceanogr. 10. 1611–1651.CrossRefGoogle Scholar
  9. Knudsen. P. and Andersen. O.: 2002. ‘Correcting GRACE gravity liclds lor ocean tide effects’. Geophysical Research Letters 29, 19.1–19.4Google Scholar
  10. Koch. K.-R.: 1986. “Maximum likelihood estimate of variance components’. Bulletin Geodesique 60. 329–338.Google Scholar
  11. Koch. K.-R.: 1990. Bayesian Inference with Geodetic Applications. Lecture notes in Earth Sciences. Springer. Berlin.Google Scholar
  12. Lefüvre. F.. Lyard. F., Le Provost. C.. and Schrama. E.: 2002. ‘FES99: A global tide finite element solution assimilating tide gauge and altimetric information’. Journal of Atmospheric and Oceanic Technology 19. 1345–1356.Google Scholar
  13. Lerch, F.J.: 1991, ‘Optimum data weighting and error calibration for estimation of gravitational parameters’. Bulletin Geodesique 65. 44–52.CrossRefGoogle Scholar
  14. LeGrand. P.: 2001, ‘Impact of the Gravity Field and Steady State Ocean Circulation Explorer (GOCE) mission on ocean circulation estimates: Volume fluxes in a climatological inverse model of the Atlantic’. Journal of Geophysical Research 106. 19.597–19.610.Google Scholar
  15. LeGrand. P.. Schrama, E.. and Tournadre, J.: 2002. “An Inverse Estimate of the Dynamic Topography of the Ocean’. Geophysical Research Letters. 30(2). 34–1, cite ID 1062. DOI I0.1029/2002GL0I4917Google Scholar
  16. Lemoine. et al.: 1998. ‘The development of the joint NASA GSFC and NIM A geopotential model EGM-96 gravity model’. NASA/TP-1998–206861.Google Scholar
  17. Lillibridge, J., et al.: 2000. ‘ERS-2 altimetry in operational NOAA forecast models’. Proc. 4th ERS Symp.. Gothenberg. Sweden.Google Scholar
  18. Moritz. H.: 1980. Advanced Physical Geodesy. H. Wichman Verlag, Karlsruhe.Google Scholar
  19. NRL: 2002, http://www.ocean.nrlssc.navy.mil/altimetry/.
  20. Ray. R.: 1999. ‘A Global Ocean Tidel Model from TOPEX/POSEIDON Altimetry: GOT99.2’. NASA TM 1999–209478.Google Scholar
  21. Ray, R.. Rowlands. D.. and Egbert. G.: 2003, “Tidal models in a New Era of Satellite Gravimetry”. Space Science Reviews, this volume.Google Scholar
  22. Reigber. et al.: 2002. ‘A High-Quality Global Gravity Field Model from CHAMP GPS Tracking Data and Accelerometry (EIGEN-IS)’, Geophysical Research Letters 29. 10129/20O2GLO15064.Google Scholar
  23. Schrama, E.: 1991, ‘Gravity Field Error Analysis: Applications of Global Positioning System Receivers and Gradiometers on Low Orbiting Platforms’, Journal of Geophysical Research 96. 20.041–20,051.Google Scholar
  24. Schrama. E. and Ray. R.: 1994. ‘A preliminary tidal analysis of TOPEX/POSEIDON altimetry’. JGR 99. 24,799–24,808.Google Scholar
  25. Schrama. E.: 1995. ‘Gravity missions reviewed in the light of the indirect ocean tide potential’. Proceedings IAG symposia proceedings No 116, 131–140. Springer Verlag.Google Scholar
  26. Schröter J., Losch, M.. and Sloyan. B.: 2002. “Impact of the Gravity Field and Steady-State Ocean Circulation Explorer (GOCE) mission on ocean circulation estimates 2: Volume and heal fluxes across hydrographic section of unequally spaced stations’. JGR 107. 4. 1–4. 20.Google Scholar
  27. Velicogna, L, Wahr. J., and van den Dool. H.: 2001, ‘Can surface pressure be used to remove atmospheric contributions from GRACE data with sufficient accuracy to recover hydrological signals?’. JGR 106. 16. 415.Google Scholar
  28. Verhagen. S.: 2001. Time variations in the gravity field, the effect of the atmosphere. MSc report. 81 pages, TU Delft Geodesy.Google Scholar
  29. Wahr. J.. Molenaar. M.. Bryan, F.: 1998. ‘Time variability of the Earth’s gravity field: Hydrological and oceanic effects and their possible detection using GRACE“. JGR 103. 30. 205–30. 229.Google Scholar
  30. Wunsch. C.: 1996. The Ocean Circulation Inverse Problem, Cambridge University Press.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2003

Authors and Affiliations

  • E. J. O. Schrama
    • 1
  1. 1.Department of Geodesy, FMRTU DelftThe Netherlands

Personalised recommendations