Skip to main content

Can macrophytes be useful in biomanipulation of lakes? The Lake Zwemlust example

  • Conference paper
Biomanipulation Tool for Water Management

Part of the book series: Developments in Hydrobiology ((DIHY,volume 61))

Abstract

Lake Zwemlust (area 1.5 ha, Zm 1.5 m) has been the object of an extensive limnological study since its biomanipulation involving removal of planktivorous fish (bream) in March 1987 and emptying of the lake. In the subsequent summer period of 1987 the Secchi depth increased to the lake bottom (2.5 m), compared with ca 30 cm in the earlier summers. The reaction of submerged macrophytes to improving under-water light climate was rapid. In summer 1987, besides the introduced Chara globularis, 5 species of submerged macrophytes occurred and colonized 10% of the lake area. In 1988 and 1989 only quantitative changes were observed; new species did not appear, but the area colonized by macrophytes increased by 7 and 10 times, respectively. Elodea nuttallii was dominant among the macrophytes and Mougeotia sp. among the filamentous green algae. Their abundance, contributed to transient N-limination of phytoplankton causing a persistent clear water phase in 1988 and 1989, unlike in 1987 when zooplankton grazing contributed chiefly to the water clarity. Laboratory bioassays on macrophytes confirmed nitrogen limitation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Barko, J. W., G. J. Filbin, 1983. Influences of light and temperature on chlorophyll composition in submersed freshwater macrophytes. Aquat. Bot. 15: 249–255.

    Google Scholar 

  • Barko, J. W., R. M. Smart, 1981. Comparative influences of light and temperature on the growht and metabolism of selected submersed freshwater macrophytes. Ecol. Monogr. 51: 219–235.

    Google Scholar 

  • Boyd, C. E., 1971. The limnological role of aquatic macrophytes and their relationship to reservoir management. Res. Fish Limnol. 8: 153–166.

    Google Scholar 

  • Carpenter, S. R., D. M. Lodge, 1986. Effects of submerged macrophytes on ecosystem processes. Aquat. Bot. 26: 341–370.

    Google Scholar 

  • Davis, J. C., 1975. Minimal dissolved oxygen requirements of aquatic life with emphasis on Canadian species: a review. J. Fish Res. Bd Can. 32: 2295–2332..

    Google Scholar 

  • Engel, S., 1988. The role and interactions of submerged macrophytes in a shallow Wisconsin Lake. J. Freshwat. Ecol. 4: 229–341.

    Google Scholar 

  • Fitzgerald, G. P., 1969. Some factors in the competition or antagonism among bacteria, algae, and aquatic weeds. J. Phycol. 5: 351–359.

    Article  Google Scholar 

  • Golterman, H. L., 1969. Methods for chemical analysis of freshwaters. IBP Handbook 8, Blackwell Scientific Publications, Oxford, 166 pp.

    Google Scholar 

  • Goulder, R., 1969. Interactions between the rates of productions of a freshwater macrophyte and phytoplankton in a pond. Oikos 20: 300–309.

    Article  Google Scholar 

  • Grimm, M. P., 1989. Northern pike (Esox lucius L.) and aquatic vegetation, tools in the management of fisheries and water quality in shallow waters. Hydrobiol. Bull. 23: 59–65.

    Google Scholar 

  • Gulati, R. D., 1989. Structure and feeding activities of zooplankton community in Lake Zwemlust, in the two years after biomanipulation. Hydrobiol. Bull. 23: 35–48. Howard-Williams, C., 1981. Studies on the ability of a Potamogeton pectinatus community to remove dissolved nitrogen and phosphorus compounds from water. J. appl. Ecol. 18: 619–637.

    Google Scholar 

  • Kuni, H., 1982. The critical water temperature for the active growth ofElodea nuttalli (Planch.) St. John. Jap. J. Ecol. 32: 111–112.

    Google Scholar 

  • Lachavanne, J. B., 1985. The influence of accelerated eutrophication on the macrophytes of Swiss lakes: abundance and distribution. Verh. int. Ver. Limnol. 22: 2950–2955.

    Google Scholar 

  • Landers, D. H., 1982. Effects of naturally senescing aquatic macrophytes on nutrient chemistry and chlorophyll a of surrounding waters. Limnol. Oceanogr. 27: 428–439.

    Google Scholar 

  • Lampert, W., 1988. The relation between zooplankton biomass and grazing. A review. Limnologica 19: 11–20.

    Google Scholar 

  • Meijer, M. L., A. J. P. Raat, E. W. Doef, 1989. Restoration by biomanipulation of Lake Bleiswijkse Zoom (The Netherlands): first results. Hydrobiol. Bull. 23: 49–57.

    Google Scholar 

  • Mickle, A. M., R. G. Wetzel, 1978. Effectiveness of submersed angiosperm-epiphyte complexes on exchange of nutrients and organic carbon in littoral systems. Aquat. Bot. 4: 303–329.

    Google Scholar 

  • Moss, B., (1990). Engineering and biological approaches to the restoration from eutrophication of shallow lakes in which aquatic plant communities are important components. Hydrobiologia 200 /201: 367–377.

    Article  Google Scholar 

  • Murphy, J., J. P. Riley, 1962. A modified single solution method for determination of phosphate in natural waters. Analyt. chim. Acta 26: 31–36.

    Google Scholar 

  • Ozimek. T., 1978. Effects of municipal sewage on the submerged macrophytes of lake littoral. Ekol. pol. 26: 1–39.

    Google Scholar 

  • Ozimek, T., A. Kowalczewski, 1984. Long-term changes of the submerged macrophytes in eutrophic Lake Mikolajskie (North Poland). Aquat. Bot. 19: 1–11.

    Google Scholar 

  • Phillips, G. L., D. Eminson, B. Moss, 1978. A mechanism to account for macrophyte decline in progressively eutrophicated freshwaters. Aquat. Bot. 4: 103–126.

    Google Scholar 

  • Pieczynska, E., T. Ozimek, 1976. Ecological significance of lake macrophytes. Int. J. Ecol. Envir. Sci. 2: 115–128.

    Google Scholar 

  • Pokorny, Ondok, 1982. Photosynthesis and primary production in submerged macrophyte stands. In: B. Gopal, R. E. Turner, R. G. Wetzel, D. E. Whigham (eds). Wetlands: Ecology and management, Internat. Sci. Publ. Jaipur, India: 206–214.

    Google Scholar 

  • Prejs, A., 1984. Herbivory by temperature freshwater fishes and its consequences. Envir. Biol. Fishes 10: 281–296.

    Google Scholar 

  • Prenki, R. T., T. D. Gustafson, M. S. Adams, 1978. Nutrient movements in lakeshore marshes. In: R. E. Good, D. F. Zhigham, R. L. Simpson (eds). Freshwater Wetlands. Academic Press, New York, London: 169–194.

    Google Scholar 

  • Shapiro, J., D. I. Wright, 1984. Lake restoration by biomanipulation: Round lake Minnesota, the first two years. Freshwat. Biol. 14: 371–383.

    Google Scholar 

  • Simpson, P. S., J. W. Eaton, 1986. Comparative studies of photosynthesis of the submerged macrophyte Elodea canadensis and filamentous algae Cladophora glomerata and Spirogyra sp. Aquat. Bot. 14: 1–22.

    Google Scholar 

  • Spence, D. H. N., 1972. Light on freshwater macrophytes. Botanical Society of Edinburgh Transactions, 41: 491–505.

    Article  Google Scholar 

  • Stainton, M. P., M. J. Capel, P. J. Armstrong, 1974. The chemical analysis of freshwater. Miscellaneous special publications no. 25. Research and Development Directorate Freshwater Institute, Winnipeg, Manitoba.

    Google Scholar 

  • Van Donk, E., in press. Changes in community structure and growth limitation of phytoplankton duc to top-down food-web manipulation. Verh. int. Ver. Limnol. 24.

    Google Scholar 

  • Van Donk, E, R. D. Gulati, M. P. Grimm, 1989. Food-web manipulation in Lake Zwemlust: positive and negative effects during the first two years. Hydrobiol. Bull. 23: 19–34.

    Google Scholar 

  • Van Donk, E., M. P. Grimm, R. D. Gulati, J. P. G. Klein-Breteler (1990). Whole-lake food-web manipulation as a means to study community interactions in a small ecosystem. Hydrobiologia 200 /201: 275–289.

    Article  Google Scholar 

  • Verdouw, H., C. J. A. Echteld, E. M. J. Dekkers, 1977. Ammonia determination based on indophenol formation with sodium salicylate. Wat. Res. 12: 399–402.

    Google Scholar 

  • Wium-Andersen, S. U., U. Anthoni, C. Cristophersen, G. Houen, 1982. Allepathic effects on phytoplankton by substances isolated from aquatic macrophytes ( Charales ). Oikos 39: 187–190.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Ozimek, T., Gulati, R.D., van Donk, E. (1990). Can macrophytes be useful in biomanipulation of lakes? The Lake Zwemlust example. In: Gulati, R.D., Lammens, E.H.R.R., Meijer, ML., van Donk, E. (eds) Biomanipulation Tool for Water Management. Developments in Hydrobiology, vol 61. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-0924-8_34

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-0924-8_34

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-4074-9

  • Online ISBN: 978-94-017-0924-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics