Skip to main content

Predictability and possible mechanisms of plankton response to reduction of planktivorous fish

  • Conference paper
Biomanipulation Tool for Water Management

Part of the book series: Developments in Hydrobiology ((DIHY,volume 61))

Abstract

The predictability of plankton response to reductions of planktivorous fish was investigated by comparing the plankton community in three biomanipulated lakes and ten unmanipulated lakes differing in intensity of fish predation. Data collected on total phosphorus, phytoplankton and zooplankton biomass and share of cyanobacteria and large grazers, as well as specific growth rate of phytoplankton, were further used to test some of the proposed underlying response-mechanisms. In the biomanipulated lakes the algal biomass and share of cyanobacteria decreased, specific growth rate of phytoplankton increased, and zooplankton biomass and share of large grazers increased or remained unchanged. This pattern was largely reflected in the differences in food-chain structure between the unmanipulated lakes with high versus those with low fish predation. The qualitative response to planktivorous fish reduction thus seems largely predictable. The biomanipulated lakes differed, however, in magnitude of response: the smallest hypertrophic, rotenone-treated lake (Helgetjern) showed the most dramatic response, whereas the large, deep mesotrophic lake (Gjersjøen), which was stocked with piscivorous fish, showed more moderate response, probably approaching a new steady state. These differences in response magnitude may be related to different perturbation intensity (rotenone-treatment versus stocking with piscivores), food-chain complexity and trophic state. Both decreased phosphorus concentration and increased zooplankton grazing are probably important mechanisms underlying plankton response to biomanipulation in many lakes. The results provide tentative support to the hypothesis that under conditions of phosphorus limitation, increased zooplankton grazing can decrease algal biomass via two separate mechanisms: reduction of the phosphorus pool in the phytoplankton, and reduction of the internal C: P-ratio in the phytoplankton cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Andersson, G. and G. Cronberg, 1984. Aphanizomenon flosaquae and large Daphnia: An interesting plankton association in hypertrophic lakes. In S. Bosheim and M. Nicholls (eds), Interactions between trophic levels in freshwater. Norw. Ass. Limnol. Oslo: 63–76.

    Google Scholar 

  • Benndorf, J., 1987. Food web manipulation without nutrient control: A useful strategy in lake restoration? Schweiz. Z. Hydrol. 49: 237–248.

    Article  CAS  Google Scholar 

  • Benndorf, J., 1988. Objectives and unsolved problems in ecotechnology and biomanipulation: A Preface. Limnologica 19: 5–8.

    Google Scholar 

  • Benndorf, J., H. Kneschke, K. Kossatz and E. Penz, 1984. Manipulation of the pelagic food web by stocking with predacious fishes. Int. Revue ges. Hydrobiol. 69: 407–428.

    Article  Google Scholar 

  • Bloesch, J. and H. R. Bürgi, 1989. Changes in phytoplankton and zooplankton biomass and composition reflected by sedimentation. Limnol. Oceanogr. 34: 1048–1061.

    Article  CAS  Google Scholar 

  • Brabrand, A., B. Faafeng and J. P. M. Nilssen, 1990. Phosphorus supply to phytoplankton production–fish excretion versus external loading. Can. J. Fish. aquat. Sci. 47: 364–372.

    Article  Google Scholar 

  • Brabrand, A., B. A. Faafeng and J. P. M. Nilssen, 1990. Phosphorus supply to phytoplankton production–fish excretion versus external loading. Can. J. Fish. aquat. Sci. 47: 364–372.

    Article  Google Scholar 

  • Brooks, J. L. and S. I. Dodson, 1965. Predation, body size and composition of the plankton. Science 150: 28–35.

    Article  PubMed  CAS  Google Scholar 

  • Carpenter, S. R., J. F. Kitchell, J. R. Hodgson, P. A. Cochran, J. J. Elser, M. M. Elser, D. M. Lodge, D. Kretchmer, X. He and C. N. von Ende, 1987. Regulation of lake primary productivity by food web structure. Ecology 68: 1863–1876.

    Article  Google Scholar 

  • De Bernardi and G. Giussani, 1990. Are blue-green algae a suitable food for zooplankton? An overview. Hydrobiologia 201: 29–41.

    Article  Google Scholar 

  • Droop, M. R., 1974. The nutrient status of algal cells in continuous culture. J. mar. biol. Ass. U.K. 54: 825–855.

    Article  CAS  Google Scholar 

  • Faafeng, B. A. and A. Brabrand, in press. Biomanipulation of a small urban lake - removal of fish exclude bluegreen blooms. Verh. int. Ver. Limnol. 24.

    Google Scholar 

  • Faafeng, B. A. and J. P. Nilssen, 1981. A twenty year study of eutrophication in a deep, soft-water lake. Verh. int. Ver. Limnol. 21: 412–424.

    Google Scholar 

  • Gliwicz, Z. M., 1980. Filtering rates, food size selection and feeding rates in cladocerans–another aspect of inter-specific competition in filter-feeding zooplankton. In: Kerfoot, W. C. (ed.). Evolution and ecology of zooplankton communities. Hanover, N. Hampshire: 282–291.

    Google Scholar 

  • Gliwicz, Z. M., 1990. Why do cladocerans fail to control algal blooms? Hydrobiologia 200: 83–97.

    Article  Google Scholar 

  • Hall, D. J., S. T. Threlkeld, C. W. Burns and P. H. Crowley, 1976. The size efficiency hypothesis and the structure of zooplankton communities. Ann. Rev. Ecol. System. 7: 177–208.

    Article  Google Scholar 

  • Heldal, M., S. Norland and O. Tumyr, 1985. X-ray micro-analytic method for measurement of dry matter and elemental content of individual bacteria. Appl. Envir. Microbiol. 50: 1251–1257.

    CAS  Google Scholar 

  • Hrbâcek, J., 1958. Typologie and Produktivität der teichartigen Gewasser. Verh. int. Ver. Limnol. 13: 394–399.

    Google Scholar 

  • Hrbâcek, J., 1962. Species composition and the amount of the zooplankton in relation to fish stock. Rozpr. Ceskoslov. Akad. Ved. Rada Mat. Prir. Ved. 72, 10: 1–115.

    Google Scholar 

  • Jeppesen, E., M. Sendergaard, E. Mortensen, P. Kristensen, B. Riemann, H. J. Jensen, J. P. Müller, O. Sortkjær, J. P. Jensen, K. Christoffersen, S. Bosselmann and E. Dall, 1990. Fish manipulation as a lake restoration tool in shallow, eutrophic temperate lake 1: cross-analysis of three Danish case-studies. Hydrobiologia 200: 205–218.

    Article  Google Scholar 

  • Lamarra, V. A., 1975. Digestive activities of carp as a major contributor to the nutrient loading of lakes. Verh. int. Ver. Limnol. 19: 2461–2468.

    Google Scholar 

  • Lyche, A., 1989. Plankton community response to reduction of planktivorous fish populations.–A review of 11 case studies. Aqua Fennica 19: 59–66.

    Google Scholar 

  • Lyche, A., 1990. Cluster analysis of plankton community structure in 21 lakes along a gradient of trophy. Verh. int. Ver. Limnol. 24.

    Google Scholar 

  • McCauley, E. and J. Kalif, 1981. Empirical relationships between phytoplankton and zooplankton biomass in lakes. Can. J. Fish. aquat. Sci. 38: 458–463.

    Article  Google Scholar 

  • Mills, E. L. and J. L. Forney, 1988. Trophic dynamics and development of freshwater pelagic food webs. In S. R. Carpenter (ed.): Complex interactions in lake communities. New York: 11–30.

    Google Scholar 

  • Murphy, T. P., D. R. Lean and C. Nalewajko, 1976. Blue-green algae: Their excretion of Fe-selective chelators enables them to dominate other algae. Science 192: 900–902.

    Article  PubMed  CAS  Google Scholar 

  • Nakashima, B. S. and W. C. Leggett, 1980. The role of fishes in the regulation of phosphorus availability in lakes. Can. J. Fish. aquat. Sci. 37: 1540–1549.

    Article  Google Scholar 

  • Nost, T. and J. I. Koksvik, 1981. Ferskvannsbiologiske og hydrografiske undersokelser i Snâsavatnet 1980 (in Norwegian). Det Kongelige Videnskabers Selskap. Museet. Rapport Zoologisk serie 1981–19.

    Google Scholar 

  • Olsen, Y., 1984. Estimering av algebiomasse i naturlige algesamfunn (in Norwegian). Limnos 3: 1–12.

    Google Scholar 

  • Olsen, Y., 1988. Phosphate kinetics and competitive ability of planktonic blooming cyanobacteria under variable phosphate supply. Dissertation thesis, SINTEF, Techn. Univ. of Trondheim, Norway.

    Google Scholar 

  • Olsen, Y. and O. Vadstein, 1989. NTNF’s program for eutrofieringsforskning, faglig sluttrapport for fase 1–3, 1978–88 (in Norwegian): 79 pp.

    Google Scholar 

  • Olsen, Y., A. Jensen, H. Reinertsen and B. Rugstad, 1983. Comparison of different algal carbon estimates by use of the Droop-model for nutrient limited growth. J. Plankton Res. 5: 43–51.

    Article  Google Scholar 

  • Pace, M. L., 1984. Zooplankton community structure, but not biomass, influences the phosphorus-chlorophyll a relationship. Can. J. Fish. aquat. Sci. 41: 1089–1096.

    Article  Google Scholar 

  • Paine, R. T., 1980. Food webs: linkage, interaction strength and community infrastructure. J. anim. Ecol. 49: 667–686.

    Article  Google Scholar 

  • Post, J. R. and D. J. McQueen, 1987. The impact of planktivorous fish on the structure of a plankton community. Freshwat. Biol. 17, 1: 79–90.

    Google Scholar 

  • Reinertsen, H., A. Jensen, A. Langeland and Y. Olsen, 1986. Algal competition for phosphorus: the influence of zooplankton and fish. Can. J. Fish. aquat. Sci. 43: 1135–1141.

    Article  Google Scholar 

  • Reinertsen, H., A. Jensen, J. I. Koksvik, A. Langeland and Y. Olsen, 1990. Effects of fish removal on the limnetic ecosystem of a eutrophic lake. Can. J. Fish. aquat. Sci. 47: 166–173.

    Article  Google Scholar 

  • Reynolds, C. R., 1984. Phytoplankton periodicity: the interactions of form, function and environmental variability. Freshwat. Biol. 14: 111–142.

    Article  Google Scholar 

  • Sanni, S., 1989. Overvâking av Mosvatnet for og etter rotenonbehandling. Arsrapport 1988. (in Norwegian). Rogalandsforskning 27 /89. 16 pp.

    Google Scholar 

  • Sanni, S. and S. B. Wærvâgen, 1990. Oligobrophication as a result of plankbivorous fish removal with rotenone in the small, eutrophic, Lake Mosvatn, Norway. Hydrobiologia 200: 263–274.

    Article  Google Scholar 

  • Sas, H., Ahlgren, H. Bernhardt, B. Bostrom, J. Clasen, C. Forsberg, D. Imboden, L. Kamp-Nielsen, L. Mur, N. de Oude, C. Reynolds, H. Schreurs, K. Seip, U. Sommer and S. Vermij, 1989. Lake restoration by reduction of nutrient loading: Expectations, experiences, extrapolations. Academia Verlag, St. Augustin, 497 pp.

    Google Scholar 

  • Scheffer, M., 1990. Multiplicity of stable states in freshwater systems. Hydrobiologia 200: 475–486.

    Article  Google Scholar 

  • Shapiro, J. and D. I. Wright, 1984. Lake restoration by biomanipulation: Round Lake, Minnesota, the first two years. Freshwat. Biol. 14: 371–383.

    Article  Google Scholar 

  • Shapiro, J., C. Forsberg, V. A. Lamarra, G. Lindmark, M. Lynch, E. Smeltzer and G. Soto, 1982. Experiments and experiences in biomanipulation. Interim report No. 19 of the Limnological Research Center, Univ. of Minnesota, Minneapolis: 1–251.

    Google Scholar 

  • Smith, V. H., 1983. Low nitrogen to phosphorus ratios favor dominance by bluegreen algae in lake phytoplankton. Science 221: 669–671.

    Article  PubMed  CAS  Google Scholar 

  • Sommer, U., 1990. The application of the Droop-model of nutrient limitation to natural phytoplankton. Verh. int. Ver. Limnol. 24.

    Google Scholar 

  • Stenson, J. A., T. Bohlin, L. Henrikson, B. I. Nilsson, H. G. Nyman, H. G. Oscarson and P. Larsson, 1978. Effects of fish removal from a small lake. Verh. int. Ver. Limnol. 20: 794–801.

    Google Scholar 

  • Straskraba, M., 1965. The effect of fish on the number of invertebrates in ponds and streams. Mitt. int. Ver. Limnol. 13: 106–127.

    Google Scholar 

  • Threlkeld, S. T., 1987. Experimental evaluation of trophiccascade and nutrient-mediated effects of planktivorous fish on plankton community structure. In: Kerfoot, W. C. and Sih, A. (eds.). Predation: direct and indirect impacts on aquatic communities. Univ. Press N. England, Hanover, N. Hampshire: 161–187.

    Google Scholar 

  • Threlkeld, S. T., 1988. Planktivory and planktivore biomass effects on zooplankton, phytoplankton and the trophic cascade. Limnol. Oceanogr. 33, 6: 1362–1375.

    Google Scholar 

  • Tilman, D., S. S. Kilham and P. Kilham, 1982. Phytoplankton community ecology: the role of limiting nutrients. Ann. Rev. Ecol. Syst. 13: 349–372.

    Article  Google Scholar 

  • Vadstein, O., A. Jensen, Y. Olsen and H. Reinertsen, 1988. Growth and phosphorus status of limnetic phytoplankton and bacteria. Limnol. Oceanogr. 33: 489–503.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Lyche, A., Faafeng, B.A., Brabrand, Å. (1990). Predictability and possible mechanisms of plankton response to reduction of planktivorous fish. In: Gulati, R.D., Lammens, E.H.R.R., Meijer, ML., van Donk, E. (eds) Biomanipulation Tool for Water Management. Developments in Hydrobiology, vol 61. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-0924-8_21

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-0924-8_21

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-4074-9

  • Online ISBN: 978-94-017-0924-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics