Skip to main content

Part of the book series: Proceedings of the Phytochemical Society of Europe ((PPSE,volume 47))

  • 698 Accesses

Abstract

Since ancient times mankind has exploited nature for all kinds of useful products and enjoyed the colors, flavors and fragrances of flowers, food etc. Presently, many fine chemicals are derived from plants and used as medicaments, dyes, flavors, fragrances, insecticides, etc. Originally most drugs were derived from plants, however, after the first successful introduction of synthetic drugs such as aspirin about 100 years ago, gradually synthesis became the most important source for drug development. Only in case of antibiotics and antitumor compounds, nature remained a major source for drug development. Major reason was the difficulty in finding the active compounds in crude extracts, assays using whole animals or isolated organs for testing activity are not suited for rapid bioassay guided fractionation of extracts. The methods for the antibiotic and antitumor activity on the other hand were more suitable for this purpose, explaining the success of natural products in these fields. In the past years, however, with the development of assays on the level of molecules (receptor binding and enzyme inhibition) a complete new perspective for natural products as the source for new leads has evolved. High throughput screens now allow the testing of thousands of samples per day. In combination with rapid and efficient separation methods and powerful spectrometric methods for identification and structure elucidation, active compounds from extracts from plants or any natural source can rapidly be identified. To fully exploit these new possibilities prefractionation of extracts and HPLC-on line bioassays are important tools to open up the full potential of nature. It offers the possibility to also find minor compounds and find new active components in the presence of known compounds. At the same time the developments in biotechnology are important in this connection. Plant cell biotechnology offers the possibility to produce compounds of rare plants. Moreover, metabolic engineering can be used for improving productivity in plant and plant cell cultures, and even result in the production of complete new compounds (recombinatorial biochemistry). Using the biochemical capacities of plants or microorganisms, bioconversions as part of synthetic approaches to complex molecules are a further important aspect of modern biotechnology. These new perspectives have resulted in a rapidly expanding interest in natural products research, further supported by the developing awareness that in our food many secondary metabolites are present that play an important role in preventing diseases (e.g. cholesterol lowering, antioxidants). Food industry is thus now putting a large effort in studies of the secondary metabolites involved, eventually resulting in improved quality of our food, including the development of functional foods and nutraceuticals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Baker, J.T., Bonis, R.P., Carte, B., Cordell, G.A., Soejarto, D.D., Cragg, G.M., Gupta, M.P., Iwu, M.W., Madulid, D.R. and Tyler, V.E. (1995). Natural product drug discovery and development: new perspectives on international collaboration. J. Nat. Prod., 58, 1325–1357.

    Article  CAS  Google Scholar 

  • Berlin, J., Ruegenhagen, C., Dietze, P., Fecker, L., Goddijn, O.J.M. and Hoge, J.H.C. (1993). Increased production of serotonin by suspension and root cultures of Peganum harmala transformed with a tryptophan decarboxylase cDNA clone from Catharanthus roseus. Transgen. Res. 2, 336–344.

    Article  CAS  Google Scholar 

  • Berlin, J. and Fecker, L.F. (2000). Genetic engineering of enzymes diverting amino acids into secondary metabolsim. In R. Verpoorte and A.W. Alfermann (Eds.), Metabolic engineering of plant secondary metabolism (pp. 195–216 ). Dordrecht: Kluwer Academic Press.

    Chapter  Google Scholar 

  • Bohlin, L. and Bruhn, J.G. (Eds.) (1999). Bioassay methods in natural product research and drug development. Proceedings of the Phytochemical Society of Europe. (Vol. 43 ). Dordrecht: Kluwer Academic Publishers.

    Google Scholar 

  • Buss, A.D. (1990). Bioassay methods in natural product research and drug development. In L. Bohlin and J.G. Bruhn (Eds.), Proceedings of the Phytochemical Society of Europe. (Vol. 43, pp. 183–193 ). Dordrecht: Kluwer Academic Publishers.

    Google Scholar 

  • Canel, C., Lopez-Cardoso, M.I., Whitmer, S., van der Fits, L., Pasquali, G.,van der Heijden, R., Hoge, J.H.C., and Verpoorte, R. (1998). Effects of over-expression of strictosidine synthase and tryptophan decarboxylase on alkaloid production by cell cultures of Catharanthus roseus. Planta, 205, 414–419.

    CAS  Google Scholar 

  • Chapman and Hall (1998). Dictionary Natural Products on CD-ROM,London.

    Google Scholar 

  • Chavadej, S., Brisson, N. and McNeil, J.N. (1994). Redirection of tryptophan leads to production of low indole glucosinolate canola. Proc. Natl. Acad. Sci. USA, 91, 2166–2170.

    Article  CAS  Google Scholar 

  • Cordell, G.A. (1995). Changing strategies in natural products chemistry. Phytochemistry, 40, 1585–1612.

    Article  CAS  Google Scholar 

  • Corley, D.G. and Durley, R.C. (1994). Strategies for dtabase dereplication of natural products. J. Nat. Prod., 57, 1484–1490.

    Article  CAS  Google Scholar 

  • Cragg, G.M. (1998). Paclitaxel (Taxol): a success story with valuable lessons for natural product discovery and development. Med. Res. Rev., 18, 315–331

    Article  CAS  Google Scholar 

  • Cragg, G.M., Schepartz, S.A., Suffness, M. and Greyer, M.R. (1993). The taxol supply crisis. New NCI policies for handling the large-scale production of novel natural product anticancer and anti-HIV agents. J. Nat. prod., 56, 1657–1668.

    Article  CAS  Google Scholar 

  • Cragg, G.M., Newman, D.J. and Snader, K.M. (1997). Natural products in drug discovery and development. J. Nat. Prod., 60, 52–60.

    Article  CAS  Google Scholar 

  • Dagnino, D., Schripsema, J. and Verpoorte, R (1994). Terpenoid indole alkaloid biotransformation of suspension cultures of Tabernaemontana divaricata. Phytochemistry, 35, 671–676.

    Article  CAS  Google Scholar 

  • Davies, K.M. (2000). Plant colour and fragrance. In R. Verpoorte and A.W. Alfermann (Eds.), Metabolic engineering of plant secondary metabolism (pp. 127–163 ). Dordrecht: Kluwer Academic Press.

    Chapter  Google Scholar 

  • De Luca, V. and St-Pierre, B. (2000). The cell and developmental biology of alkaloid biosynthesis. Trends Plant Sci., 5, 168–173.

    Article  Google Scholar 

  • dos Santos, R, Schripsema, J. and Verpoorte, R. (1994). Ajmalicine metabolism in Catharanthus roseus cell cultures. Phytochemistry, 35, 677–681.

    Article  Google Scholar 

  • The EU Arabidopsis Genome project (1998). Nature, 391, 485.

    Article  Google Scholar 

  • Foucault, A.P. (1994). Centrifugal partitioning chromatography. New York: Marcel Dekker Inc.

    Google Scholar 

  • Fu, T.J., Singh, G. and Curtis, W.R. (1999). Plant Cell and Tissue Culture for the Production of Food Ingredients. New York: Kluwer Academic/Plenum Press.

    Book  Google Scholar 

  • Fuyita, Y. and Tabata, M. (1987). Secondary metabolites from plant cells–Pharmaceutical applications and progress in commercial production. In C. E. Green et al. (Eds.), Plant tissue and cell culture (pp. 169–185 ). New York: Alan R. Riss.

    Google Scholar 

  • Geerlings, A. (1999). Strictosidine ß-glucosidase.Doctoral Dissertation, Leiden University, The Netherlands

    Google Scholar 

  • Geerlings, A., Verpoorte, R, van der Heijden, R. and Memelink, J. (1998). A method for producing terpenoidindole alkaloids. International Patent Application PCT/NL99/00733, EP 98204116. 2

    Google Scholar 

  • Geerlings, A., Redondo, F.J., Contin, A., Memelink, J., van der Heijden, R. and Verpoorte, R (2001). Biotransformation of tryptamine and secologanin into plant terpenoid indole alkaloids by transgenic yeast. Appl. Microbiol. Biotechnol., 56, 420–424.

    Article  CAS  Google Scholar 

  • Goddijn, O.J.M., Pennings, E.J.M. van der Helm, P. Verpoorte, R. and Hoge, J.H.C. (1995). Overexpression of a tryptophan decarboxylase cDNA in Catharanthus roseus crown gall calli results in increased tryptamine levels but not in increased terpenoid indole alkaloid production. Transgen. Res. 4, 315–323.

    CAS  Google Scholar 

  • Grotewold, E., Chamberlin, Snook, M. Siame, Butler, M. Swenson, B. Maddock, L., St Clair, G. J. S. and Bowen, B. (1998). Engineering secondary metabolism in maize cells ectopic expression of transcription factors. Plant Cell, 10, 721–740.

    CAS  Google Scholar 

  • Hain, R, Bieseler, B. Kindl, H. Schroder, G. and Stocker, R. (1990). Expression of a stilbene synthase gene in Nicotiana tabacum results in synthesis of the phytoalexin resveratrol. Plant Mol. Biol., 15, 325–335.

    CAS  Google Scholar 

  • Hain, R., Reif, H.J., Krause, E., Langebartels, R., Kindl, H., Vornam, B.,Wiese, W., Schmelzer, E., Schreier, P.H., Stoecker, R.H. and Stenzel, K. (1993). Disease resistance results from foreign phytoalexin expression in a novel plant. Nature, 361, 153–156.

    Article  CAS  Google Scholar 

  • Hain, R. and Grimmig, B. (2000). Modification of plant secondary metabolism by genetic engineering. In R. Verpoorte and A.W. Alfermann (Eds), Metabolic engineering of plant secondary metabolism (pp.. 217–231 ). Dordrecht: Kluwer Academic Press.

    Chapter  Google Scholar 

  • Hall, R.D. and Yeoman, M.M. (1986). Temporal and spatial heterogeneity in the accumulation of anthocyanins in cell cultures of Catharanthus roseus (L.) G.Don. J. Exp. Bot., 37, 48–60.

    Article  CAS  Google Scholar 

  • Hall, R.D. and Yeoman, M.M. (1986). Factors determining anthocyanin yield in cell cultures of Catharanthus roseus (L.) G. Don. New Phytol, 103, 33–43.

    Article  CAS  Google Scholar 

  • Hallard, D. (2000). Transgenic plant cells for the production of indole alkaloids. Doctoral Dissertation, Leiden University, The Netherlands.

    Google Scholar 

  • Harvey, A.L. (1999). Medicines from nature: are natural products still relevant to drug discovery? Trends Pharmacol. Sci., 20, 196–198.

    Article  CAS  Google Scholar 

  • Hashimoto, T., Hayashi, A., Amano, Y., Kohno, J., Iwanari, H., Usuda, S. and Yamada, Y. (1991). Hyoscyamine 613-hydroxylase, an enzyme involved in tropane alkaloid biosynthesis, is localized at the pericycle of the root. J. Biol Chem., 266, 4648–4653.

    CAS  Google Scholar 

  • Hashimoto,T., Yun, D.-J. and Yamada, Y. (1993). Production of tropane alkaloids in genetically engineered root cultures. Phytochemistry, 32, 713–718.

    Article  Google Scholar 

  • Henkel, T, Brunne, R.M., Mueller, H. and Reichel, F. (1999). Statistical investigation into the structural complementarity of natural products and synthetic compounds. Angew. Chem. Int. Ed., 38, 643–647.

    Article  CAS  Google Scholar 

  • Hibion, K. and Ushiyama, K. (1999). Commercial production of Ginseng by plant cell culture technology. In T.J. Fu, G. Singh and W.R. Curtis (Eds.), Plant cell and tissue culture for the production of food ingredients (pp. 215–224 ). Dordrecht: Kluwer Academic Publishers.

    Chapter  Google Scholar 

  • Hill, D.C. (1998). Advanced screening technology and informatics for natural products drug discovery. In A.L. Harvey (Ed.), Advanced Drug Discovery Techniques (pp. 25–37). Chichester, UK:. Wiley.

    Google Scholar 

  • Hogan, J.C. (1997). Combinatorial chemistry in drug discovery. Nature Biotechnol., 15, 328–330.

    Article  CAS  Google Scholar 

  • Homans, A.L. and Fuchs, A. (1970). Direct bioautography on thin-layer chromatograms as a method for detecting fungitoxic substances. J. Chromatogr., 51, 327–329.

    Article  CAS  Google Scholar 

  • Hook, D.J., Pack, E.J., Yacobucci, J.J. and Guss, J. (1997). Approaches to automating the dereplication of bioactive natural products - The key step in high throughput screening of bioactie materials form natural sources. J. Biomol. Screening, 2, 145–152

    Google Scholar 

  • Hooykaas, P.J.J. (2000). In R Verpoorte and A.W. Alfermann (Eds.), Metabolic engineering of plant secondary metabolism (pp. 51–67 ). Dordrecht: Kluwer Academic Press.

    Google Scholar 

  • Ingkaninan, K., Hermans-Lokkerbol, A. and Verpoorte, R (1999a). Comparison of some Centrifugal Partition Chromatography systems for a general separation of plant extracts. J. Liq. Chrom. and Rel. TechnoL, 22, 885–896.

    Article  CAS  Google Scholar 

  • Ingkaninan, K., von Frijtag Drabbe Kuenzel, J.K., Uzerman, A.P. and Verpoorte, R (1999b). Interference of linoleic acid fraction in some receptor binding assays. J. Nat. Prod., 62, 912–914.

    Article  CAS  Google Scholar 

  • Ingkaninan, K., Uzerman, A.P., Taesotikul, T. and Verpoorte, R. (1999c). Isolation of opioid-active compounds from Tabernaemontana pachysiphon leaves. J. Pharm. Pharmacol., 51, 1441–1446.

    Article  CAS  Google Scholar 

  • Ingkaninan, K., de Best, C.M., van der Heijden, R., Hofte, A.J.P., Karabatak, B., Irth, H., Tjaden, U.R., van der Greef, J. and Verpoorte, R. (2000). HPLC with on-line coupled UV, mass spectrometric and biochemical detection for identification of acetylcholinesterase inhibitors from natural products. J. Chromatogr. A, 872, 61–73.

    Article  CAS  Google Scholar 

  • Jang, M.S., Cai, E.N., Udeani, G.O., Slowing, K.V., Thomas, C.F., Beecher, C.W.W., Fong, H.H.S., Farnsworth, N.R., Kinghorn, A.D., Mehta, R.G., Moon, R.C. and Pezzuto, J.M. (1997). Cancer chemopreventive activity of resveratrol, a natural product derived from grapes. Science, 275, 218–220.

    Article  CAS  Google Scholar 

  • Jaspars, M. (1999). Computer assisted structure elucidation of natural products using two-dimensional NMR spectroscopy. Nat. Prod. Rep., 16, 241–248.

    Article  CAS  Google Scholar 

  • Kingston, D.G.I. (2000). Recent advances in the chemistry of taxol. J. Nat. Prod., 63, 726–734.

    Article  CAS  Google Scholar 

  • Koch, C., Neumann, T., Thiericke, R. and Grabley, S. (1999). A central natural product pool–New approach in drug discovery strategies. In S. Grabley and R. Thiericke (Eds.), Drug Discovery fro Nature (pp. 51–55 ). Berlin: Springer Verlag.

    Google Scholar 

  • Leech, M.J., Burtin, D., Hallard, D., Hilliou, F., Kemp, B., Palacios, N., Rocha, P., O’Callaghan, D., Verpoorte, R., and Christou, P. (2000). Particle gun methodology as a tool in metabolic engineering. In R. Verpoorte and A.W. Alfermann (Eds.), Metabolic engineering of plant secondary metabolism (pp. 69–86 ). Dordrecht: Kluwer Academic Press.

    Chapter  Google Scholar 

  • Lloyd, A.M., Walbot, V. and Davis, R.W. (1992). Arabidopsis and Nicotiana anthocyanin production activated by maize regulators R and Cl. Science, 258, 1773–1775.

    Article  CAS  Google Scholar 

  • Luckner, M. (1990). Secondary metabolism in microorganisms, plants, and animals. New York: Springer Verlag.

    Google Scholar 

  • Madduri, K., Kennedy, J. and Rivola, G. (1998). Production of the antitumor drug epirubicin (4“-epidoxorubicin) and its precursor by a genetically engineered strain of Streptomyces peucetius. Nature Biotechnol., 156, 69–74.

    Article  Google Scholar 

  • Maher, E.A., Bate, N.J., Ni, W.T., Elkind, Y., Dixon, R.A. and Lamb, C.J. (1994). Increased disease susceptibility of transgenic tobacco plants with suppressed levels of preformed phenylpropanoids products. Proc. Natl. Acad. Sci. USA, 91, 7802–7806.

    Article  CAS  Google Scholar 

  • Martin, C. (1996). Transcription factors and the manipulation of plant traits. Curr Biol, 7, 130–138.

    CAS  Google Scholar 

  • Massiot, G., Lavaud, C. and Nuzillard, J.M. (1999). Structure elucidation of plant secondary products. In B.N.J. Walton and D.E. Browne (Eds.), Chemistry of plants (pp. 187–214 ). London: Imperial College Press.

    Google Scholar 

  • McAlpine, J.B., Pazoles, C. and Stafford, A. (1999). Bioassay methods in natural product research and drug development. In L. Bohlin and J.G. Bruhn, (Eds.),. Proceedings of the Phytochemical Society of Europe (Vol. 43, pp. 159–166 ). Dordrecht: Kluwer Academic Publishers.

    Google Scholar 

  • Memelink, J., Menke, F.L.H., van der Fits, L. and Kijne, J.W. (2000). Transcriptional regulators to modify secondary metabolism. In R. Verpoorte and A.W. Alfermann (Eds.), Metabolic engineering of plant secondary metabolism. (pp. 111–125 ). Dordrecht: Kluwer Academic Press.

    Chapter  Google Scholar 

  • Menke, F.L.H. (1999). Elicitor signal transduction in Catharanthus roseus leading to terpenoid indole alkaloid biosynthetic gene expression. Doctoral Dissertation, Leiden University.

    Google Scholar 

  • Menke, F.L.H., Champion, A., Kijne, J.W. and Memelink, J. (1999a). A novel jasmonate-and elicitor-responsive element in the periwinkle secondary metabolite biosynthetic gene Str interacts with a jasmonate-and elicitor-inducible AP2-domain transcription factor, ORCA2. EMBO J 18, 4455–4463.

    Article  CAS  Google Scholar 

  • Menke, F.L.H., Parchmann, S., Mueller, M.J., Kijne, J.W. and Memelink, J. (1999b). Involvement of the octadecanoid pathway and protein phosphorylation in fungal elicitor-induced expression of terpenoid indole alkaloid biosynthetic genes in Catharanthus roseus. Plant Physiol., 119, 1289–1296.

    Article  CAS  Google Scholar 

  • Oksman-Caldentey, K.M. and Arroo, R. (2000). In R. Verpoorte and A.W. Alfermann (Eds.), Metabolic engineering of plant secondary metabolism (pp. 253–280 ). Dordrecht: Kluwer Academic Press.

    Google Scholar 

  • Oosterkamp, A.J., Hock, B., Seifert, M. and Irth, H. (1997a). Novel monitoring strategies for xenoestrogens. Trends Anal. Chem., 16, 544–553.

    Article  CAS  Google Scholar 

  • Oosterkamp, A.J., Irth, Villaverde Herraiz, H. M.T., Tjaden, U.R. and van der Greef, J. (1997b). Theoretical concepts of on-line liquid chromatographic-biochemical detection systems. I. detection systems based on labelled ligands. J. Chromatogr. A, 787, 27–35.

    CAS  Google Scholar 

  • Pallas, J.A., Paiva, N.L., Lamb, C. and Dixon, R.A. (1996). Tobacco plants epigenetically suppressed in phenylalanine ammonia-lyase expression do not develop systemic acquired resistance in response to infection by tobacco mosaic virus. Plant J., 10, 281–293.

    Article  CAS  Google Scholar 

  • Paululat, T., Tang, Y.Q., Grabley, S. and Thiericke, R. (1999). Combinatorial chemistry. The impact of natural products. Chim. Oggi, 17, 52–56.

    Google Scholar 

  • Pimm, S.L., Russell, G.J. and Gittleman, T.M. (1995). The future of biodiversity. Science, 269, 347–350.

    Article  CAS  Google Scholar 

  • Quinn, R.J. (1998). Browsing biodiversity: HTS and natural products libraries. Chem. Aust., 65, 8–11.

    CAS  Google Scholar 

  • Quinn, R.J. (1999). QPRI’s system for screening natural products. In L. Bohlin and J.G. Bruhn (Eds.), Bioassay methods in natural product research and drug development. Proceedings of the Phytochemical Society of Europe (Vol. 43, pp. 151–158 ). Dordrecht: Kluwer Academic Publishers.

    Chapter  Google Scholar 

  • Robbins, M.P. and Morris, P. (2000). Metabolic engineering of condensed tannins and other phenolic pathways in forage and fodder crops. In R. Verpoorte and A.W. Alfermann (Eds), Metabolic engineering of plant secondary metabolism, (pp. 165–177 ). Dordrecht: Kluwer Academic Press.

    Chapter  Google Scholar 

  • Salas, A. and Mendez, C. (1998). Genetic manipulation of antitumor agent biosynthesis to produce novel drugs. TIBTECH, 16, 475–482.

    Article  CAS  Google Scholar 

  • Sato, F., Endo, T. Hashimoto, T. and Yamada, Y. (1982). Production of berberine in cultures of Coptis japonica cells. In A. Fujiwara (Ed.), Plant Tissue Culture (pp. 319–327 ), Mazuren, Tokyo.

    Google Scholar 

  • Sato, F. and Yamada, Y. (1984). High berberine producing cultured Coptis japonica cells. Phytochemistry, 23, 281–285.

    Article  CAS  Google Scholar 

  • Schripsema, J., Dagnino, D., dos Santos, R. and Verpoorte, R. (1994). Breakdown of indole alkaloids in suspension cultures of Tabernaemontana divaricata and Catharanthus roseus. Plant Cell Tiss. Org. Cult., 38, 301–307.

    Google Scholar 

  • Schripsema, J., Fung, S.Y. and Verpoorte, R. (1996). Screening of plant cell cultures for new industrially interesting compounds. In F. DiCosmo and M. Misawa (Eds.), Plant Cell Culture Secondary Metabolism. Toward Industrial Application (pp. 1–10 ). Boca Raton, Florida: CRC Press.

    Google Scholar 

  • Shu, Y.Z. (1998). Recent natural products based drug development: a pharmaceutical industry. J.Nat. Prod. 61, 1053–1071.

    Article  CAS  Google Scholar 

  • Siebert, M., Sommer, S., Li, S.-M., Wang, Z., Severin, K. and Heide, L. (1996). Genetic engineering of plant secondary metabolism. Accumulation of 4-hydroxybenzoate glucosides results from the expression of the bacterial ubiC gene in tobacco. Plant PhysioL, 112, 811–819.

    Article  CAS  Google Scholar 

  • Soleas, T.J., Diamandis, E.P and Goldberg, D.M. (1997). Resveratrol–a molecule whose time has come–and gone. Clin. Biochem., 30, 91–113.

    Article  CAS  Google Scholar 

  • Somerville, C. and Somerville, S. (1999). Plant functional genomics. Science, 285, 380–383.

    Article  CAS  Google Scholar 

  • St-Pierre, B., Vazquez-Flota, F.A. and De Luca, V. (1999). Multicellular compartmentation of Catharanthus roseus alkaloid biosynthesis predicts intercellular translocation of a pathway intermediate. Plant Cell, 11, 887–900.

    CAS  Google Scholar 

  • Valkema, F. (1999). Organon investeert in high speed synthesis. Chem. Weekblad, 16, 9.

    Google Scholar 

  • van der Heijden, R, Threlfall, D.R., Verpoorte, R. and Whitehead, I.M. (1989). Regulation and enzymology of pentacyclic triterpenoid phytoalexin biosynthesis in cell suspension cultures of Tabernaemontana divaricata. Phytochemistry, 28, 2981–2988.

    Article  Google Scholar 

  • van der Heijden, R. and Verpoorte, R (1989). Cell and tissue culture of Catharanthus roseus (L.) G. Don: a literature survey. Plant Cell, Tiss. Org. Cult., 18, 231–280.

    Article  Google Scholar 

  • van der Fits, L. (2000). Transcriptional regulation of stress-induced plant secondary metabolism. Doctoral Dissertation, Leiden University.

    Google Scholar 

  • van der Fits, L. and Memelink, J. (2000). ORCA3, a jasmonate-responsive transcriptional regulator of plant primary and secondary metabolism. Science, 289, 295–297.

    Article  Google Scholar 

  • van der Fits, L., Mang, H. Menke, F.L.H., Deneka, M. and Memelink, J. (2000). A Catharanthus roseus BPF-1 homologue interacts with an elicitor-responsive region of the secondary metabolite biosynthetic gene Str and is induced by elicitor via a JA-independent signal transduction pathway. Plant Mol. Biol.,in press.

    Google Scholar 

  • van Gulik, W.M, Meijer, J.J., van der Heijden, R., Verpoorte, R. and ten Hoopen, H.J.G. (1988). Feasibility of raubasine production by cell cultures of Catharanthus roseus. Report of Biotechnology Delft Leiden.

    Google Scholar 

  • Verberne, M., Verpoorte, R., van Tegelen, L.J.P., Moreno, P.R.H., Croes, A.F., Wullems, G.J., Bol, J.F. and Linthorst, H.J.M. (1998). Salicylic acid pathway genes and their use for the induction of resistance in plants. International Patent Application no 9 62 00 3189, 31/03/98, 6049 US P, 04/04/98 6049 US P2.

    Google Scholar 

  • Verberne, M., Verpoorte, R, Bol, J.F., Mercado-Blanco, J. and Linthorst, H.J.M. (2000). Overproduction of salicylic acid in plants by bacterial trabnsgenes enhances pathogen resistance. Nature Biotechnol, 18, 779–783.

    Article  CAS  Google Scholar 

  • Verhoeyen, M., Muir, S., Collins, G., Bovy, A. and de Vos, R. (2000). Increasing flavonoid levels in tomatoes by means of metabolic engineering. Abstract at the 10`x` Symposium ALW-Discussion group Secondary metabolism in plant and plant cell.

    Google Scholar 

  • Verpoorte, R. (1986). Methods in structure elucidation of alkaloids. J. Nat. Prod., 49, 1–25.

    Article  CAS  Google Scholar 

  • Verpoorte, R (1998). Exploration of nature’s chemodiversity: the role of secondary metabolites as lead for drug development. Drug Development Today, 3, 232–238.

    Article  CAS  Google Scholar 

  • Verpoorte, R. (2000). Pharmacognosy in the new millenium: leadfinding and biotechnology. J. Pharm. Pharmacol., 52, 253–262.

    Article  CAS  Google Scholar 

  • Verpoorte, R and Alfermann, A.W. (2000). Metabolic engineering of plant secondary metabolism. Dordrecht: Kluwer Academic Publishers.

    Book  Google Scholar 

  • Verpoorte, R., van der Heijden, R., van Gulik, W.M. and ten Hoopen, H.J.G. (1991). Plant biotechnology for the production of alkaloids: present status and prospects. In A. Brossi (Ed.), The Alkaloids (Vol. 40, pp. 1–187 ). San Diego: Academic Press.

    Google Scholar 

  • Verpoorte, R, van der Heijden, R, Schripsema, J., Hoge, J.H.C. and ten Hoopen, H.J.G. (1993). Plant Cell biotechnology for the production of alkaloids: present status and prospects. J. Nat. Prod, 56, 186–207.

    Article  CAS  Google Scholar 

  • Verpoorte, R., van der Heijden, R. and Memelink, J. (1998). Plant biotechnology and the production of alkaloids. Prospects of metabolic engineering. In G.A. Cordell (Ed.), The Alkaloids (Vol. 50, pp. 453–508 ), San Diego: Academic Press.

    Google Scholar 

  • Verpoorte, R., van der Heijden, R., ten Hoopen, H.J.G. and Memelink, J. (1999). Metabolic engineering of plant secondary metabolite pathways for the production of fine chemicals. Biotechnol. Lett., 21, 467–479.

    Article  CAS  Google Scholar 

  • Viktorin, M. (1999). Das Heilmittel aus der Weidenrinde: 100 Jahre Aspirin. Laborpraxis, 23, 82–85.

    CAS  Google Scholar 

  • Westphal, K. (1990). Large-scale production of new biologically active compounds in plant cell cultures. In H.J.J. Nijkamp, L.H.W. van der Plas and J. van Aartrijk (Eds.), Progress in plant cellular and molecular biology.(pp. 601–660 ). Dordrecht: Kluwer Academic Publishers.

    Chapter  Google Scholar 

  • Whitmer, S. (1999). Aspects of terpenoid indole alkaloid formation by transgenic cell lines of Catharanthus roseus over-expressing tryptophan decarboxylase and strictosidine synthase. Doctoral Dissertation, Leiden University, 1999.

    Google Scholar 

  • Wolfender, J.L., Rodriguez, S. and Hostettmann, K. (1998a). Liquid chromatography coupled to mass spectrometry and nuclear magnetic resonance spectroscopy for the screening of plant constituents. J. Chromatogr., A794, 299–316chemistry. Curr.

    Google Scholar 

  • Wolfender, J.L., Ndjoko, K. and Hostettmann, K. (1998b). LC/NMR in natural products Org. Chem., 2, 575–596.

    CAS  Google Scholar 

  • Yun, D.-J., Hashimoto, T. and Yamada, Y. (1992). Metabolic engineering of medicinal plants; Transgenic Atropa belladonna with an improved alkaloid composition. Proc. Natl. Acad. Sci. USA, 89, 11799–11803.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Verpoorte, R., Ingkaninan, K., Memelink, J., Van Der Heijden, R. (2002). New Perspectives for Plant Secondary Metabolite Production. In: Rauter, A.P., Palma, F.B., Justino, J., Araújo, M.E., dos Santos, S.P. (eds) Natural Products in the New Millennium: Prospects and Industrial Application. Proceedings of the Phytochemical Society of Europe, vol 47. Springer, Dordrecht. https://doi.org/10.1007/978-94-015-9876-7_35

Download citation

  • DOI: https://doi.org/10.1007/978-94-015-9876-7_35

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-6186-7

  • Online ISBN: 978-94-015-9876-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics