Skip to main content

Abstract

The use of antibiotics and antibiotic resistance genes is rapidly becoming unacceptable in many areas of biotechnology, such as recombinant protein production, engineering of transgenic organisms, DNA vaccine and gene therapy applications. Plasmid-borne antibiotic resistant genes cause a considerable metabolic burden to the host bacterial cell. The resistance gene product, or even residual antibiotic contamination, can induce an immune response or cytotoxicity in patients during therapeutic applications. The risk of antibiotic resistant genes spreading from genetically-modified organisms to environmental pathogens is also of concern. Here we discuss the alternative methods of maintaining recombinant plasmids in bacteria. These include the complementation of a host auxotrophy, post-segregational killing mechanisms, the generation of minicircles by recombination, and the technique that we have developed involving the use of repressor titration. Some of these systems use antibiotics for selection of transformants but have alternative mechanisms of plasmid maintenance, whilst others are completely independent of antibiotics and their resistance genes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bentley, W.E., Mirjalili, N., Andersen, D.C., Davis, R.H., and Kompala, D.S. Plasmid-encoded protein: The principle factor in the “metabolic burden” associated with recombinant bacteria. Biotechnol Bioeng. 35 (1989): 668–681.

    Article  Google Scholar 

  • Cooper, T.F., and Heinemann, J.A. Postsegregational killing does not increase plasmid stability but acts to mediate the exclusion of competing plasmids. Proc. Natl Acad. Sci. USA 97 (2000): 12643–12648.

    Article  PubMed  CAS  Google Scholar 

  • Corchero, J.L., and Villaverde, A. Plasmid maintenance in Eschichia coli recombinant cultures is dramatically, steadily and specifically influenced by features of the encoded proteins. Biotechnol Bioeng. 58 (1998): 625–632.

    Article  PubMed  CAS  Google Scholar 

  • Cranenburgh, R.M., Hanak, J.A.J., Williams, S.G., and Sherratt, D.J. Eschichia coli strains that allow antibiotic-free plasmid selection and maintenance by repressor titration. Nucleic Acids Res. 29 (2001): e26.

    Article  PubMed  CAS  Google Scholar 

  • Darquet, A.-M., Cameron, B., Wils, P., Scherman, D., and Crouzet, J. A new DNA vehicle for nonviral gene delivery: supercoiled minicircle. Gene Ther. 4 (1997): 1341–1349.

    Article  PubMed  CAS  Google Scholar 

  • Davidson, J. Genetic exchange between bacteria in the environment. Plasmid 42 (1999): 73–91.

    Article  Google Scholar 

  • Degryse, E. Stability of a host-vector system based on complementation of an essential gene in Escherichia coli. J. Biotechnol. 18 (1991): 29–40.

    CAS  Google Scholar 

  • Droge, M., Pühler, A., and Selbitschka, W. Horizontal gene transfer as a biosafety issue: A natural phenomenon of public concern. J. Biotechnol. 64 (1998): 75–90.

    Article  PubMed  CAS  Google Scholar 

  • Galán, J.E., Nakayama, K., and Curtiss III, R. Cloning and characterization of the asd gene of Salmonella typhimurium: use in stable maintenance of recombinant plasmids in Salmonella vaccine strains. Gene 94 (1990): 29–35.

    Article  PubMed  Google Scholar 

  • Galen, J.E., Nair, J., Yuang, J., Wasserman, S.S., Tanner, M.K., Sztein, M.B., and Levine, M.M. Optimization of plasmid maintenance in the attenuated live vector vaccine strain Salmonella typhi CVD 908-htrA. Infect. Immun. 67 (1999): 6424–6433.

    PubMed  CAS  Google Scholar 

  • Hartikka, J., Sawdey, M., Cornefert-Jensen, F., Margalith, M., Barnhart, K., Nolasco, M., Vahlsing, H.L., Meek, J., Marquet, M., Hobart, P., Norman, J., and Manthorpe M. An improved plasmid DNA expression vector for direct injection into skeletal muscle. Hum. Gene Ther. 1 (1996): 1205–1217.

    Article  Google Scholar 

  • Holčík, M., and Iyer, V. N. Conditionally lethal genes associated with bacterial plasmids. Microbiology 143 (1997): 3403–3416.

    Article  PubMed  Google Scholar 

  • Miwa, K., Nakamori, S., Sano K., and Momose, H. Novel host-vector systems for selection and maintenance of plasmid-bearing, streptomycin-dependant Escherichia coli cells in antibiotic-free media. Gene 31 (1984): 275–277.

    Article  PubMed  CAS  Google Scholar 

  • Morona, R., Yeadon, J., Considine, A., Morona, J.K., and Manning, P.A. Construction of plasmid vectors with a non-antibiotic selection system based on the Escherichia coli thyA + gene: application to cholera vaccine development. Gene 107 (1991): 139–144.

    Article  PubMed  CAS  Google Scholar 

  • Murphy, D.B. Guidance for Industry. Guidance for human somatic cell therapy and gene therapy. Food and Drug Administration, Rockville, Md, USA, 1998.

    Google Scholar 

  • Panayotatos, N. Recombinant protein production with minimal-antibiotic-resistance vectors. Gene 74 (1988): 357–363.

    Article  PubMed  CAS  Google Scholar 

  • Richaud, C., Richaud, F., Martin, C., Haziza, C., and Patte, J.-C. Regulation of expression and nucleotide sequence of the Escherichia coli dapD gene. J. Biol. Chem. 259 (1984): 14824–14828.

    PubMed  CAS  Google Scholar 

  • Rosteck, P.R., and Hershberger, C.L. Selective retention of recombinant plasmids coding for human insulin. Gene 25 (1983): 29–38.

    Article  PubMed  CAS  Google Scholar 

  • Ryan, E.T., Crean, T.I., Kochi, S.K., John, M., Luciano, A.A. Killeen, K.P., Klose, K.E., and Calderwood, S.B. Development of a AglnA balanced lethal plasmid system for expression of heterologous antigens by attenuated vaccine vector strains of Vibrio cholerae. Infect. Immun. 68 (2000): 221–226.

    Article  PubMed  CAS  Google Scholar 

  • Sato, Y., Roman, M., Tighe, H., Lee, D., Corr, M., Nguyen, M.-D., Silverman, G.J., Lotz, M., Carson, D.A., and Raz, E. Immunostimulatory DNA sequences necessary for effective intradermal gene immunization. Science 273 (1996): 352–354.

    Article  PubMed  CAS  Google Scholar 

  • Schweder, T., Schmidt, I., Herrmann, H., Neubauer, P., Hecker, M., and Hofmann, K. An expression vector system providing plasmid stability and conditional suicide of plasmid-containing cells. Appl. Microbiol. Biotechnol 38 (1992): 91–93.

    Article  PubMed  CAS  Google Scholar 

  • Skogman, S.G., and Nilsson, J. Temperature-dependant retention of a tryptophan-operon-bearing plasmid in Escherichia coli. Gene 31 (1984): 117–122.

    Article  PubMed  CAS  Google Scholar 

  • Soubrier, F., Cameron, B., Manse, B., Somarriba, S., Dubertret, C., Jaslin, G., Jung, G., Le Caer, C., Dang, D., Mouvalt, J.M., Scherman, D., Mayaux, J.F., and Crouzet, J. pCOR: a new design of plasmid vectors for nonviral gene therapy. Gene Ther. 6 (1999): 1482–1488.

    Article  PubMed  CAS  Google Scholar 

  • Tacket, C.O., Kelly, S.M., Schödel, F., Losonsky, G., Nataro, J.P. Edelman, R., Levine, M.M., and Curtiss III, R. Safety and immunogenicity in humans of an attenuated Salmonella typhi vaccine vector strain expressing plasmid-encoded hepatitis B antigens stabilized by the Asd-balanced lethal vector system. Infect. Immun. 65 (1997): 3381–3385.

    PubMed  CAS  Google Scholar 

  • Thisted, T., Nielsen, A.K., and Gerdes, K. Mechanism of post-segregational killing: translation of Hok, SrnB and Pnd mRNAs of plasmids Rl, F and R483 is activated by B’-end processing. EMBO J. 13 (1994): 1950–1959.

    PubMed  CAS  Google Scholar 

  • Valera, A., Perales, J.C., Hatzoglou, M., and Bosch, F. Expression of the neomycin-resistance (neo) gene induces alterations in gene expression and metabolism. Hum. Gene Ther. 5 (1994): 449–456.

    Article  PubMed  CAS  Google Scholar 

  • Wadman, M. Genetic resistance spreads to consumers. Nature 383 (1996): 564.

    Article  PubMed  CAS  Google Scholar 

  • Williams, S.G., Cranenburgh, R.M., Weiss, A.M., Wrighton, C.J., Sherratt, D.J., and Hanak, J.A.J. Repressor titration: a novel system for selection and maintenance of recombinant plasmids. Nucleic Acids Res. 26 (1998): 2120–2124.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Hanak, J.A.J., Cranenburgh, R.M. (2001). Antibiotic-Free Plasmid Selection and Maintenance in Bacteria. In: Merten, OW., et al. Recombinant Protein Production with Prokaryotic and Eukaryotic Cells. A Comparative View on Host Physiology. Springer, Dordrecht. https://doi.org/10.1007/978-94-015-9749-4_9

Download citation

  • DOI: https://doi.org/10.1007/978-94-015-9749-4_9

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-5756-3

  • Online ISBN: 978-94-015-9749-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics