Skip to main content
  • 603 Accesses

Abstract

The maintenance of high plasmid copy-number and the over-expression of foreign proteins in recombinant bacteria and yeasts is known to result in a metabolic load, which adversely affects the growth rate. Reports suggest that recombinant mammalian systems are similarly affected, however in comparison to bacterial systems, relatively little information exists. It was the aim of this study to test the effects of recombinant gene expression on the growth and metabolism of two industrially important mammalian cell lines. BHK 570 and CHO-K1 cells were stably transfected with the human gastric inhibitory peptide (h-GIP) and glucagon receptor respectively. Selection was by way of the neomycin resistance (neo’) gene using G418 as the selective agent. On removal of G418, production of both receptors was stable for the course of the experiments. The growth and metabolism of both cell lines was affected by the presence of G418 in a manner indicative of an increased metabolic load, caused by over-expression of the neo’ protein. The two cell lines differed in their response to the metabolic load, suggesting a cell-line or clone dependent response. Growth under the increased metabolic load could be modulated by serum, insulin and glutamine addition to the growth medium. Implications for the use of G418 are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bentley W.E., Mirjalili N., Andersen D.C., Davis R.H. and Kompala D.S. Plasmid-encoded protein: The principal factor in the “metabolic burden” associated with recombinant bacteria. Biotechnol. Bioeng. 35 (1990): 668–681.

    Article  PubMed  CAS  Google Scholar 

  • Betenbaugh M. J., Beaty C. and Dhurjati P. Effects of plasmid amplification and recombinant gene expression on the growth kinetics of recombinant Escherichia coli. Biotechnol Bioeng. 33 (1989): 1425–1436.

    Article  CAS  Google Scholar 

  • Christie A. and Butler M. The adaptation of BHK cells to a non-ammoniagenic glutamate-based culture medium. Biotechnol Bioeng. 64 (1999): 298–309.

    Article  PubMed  CAS  Google Scholar 

  • Cserjan-Puschmann M., Kramer W., Duerrschmid E., Striedner G. and Bayer K. Metabolic approaches for the optimisation of recombinant fermentation processes. Appl. Microbiol Biotechnol. 53 (1999): 43–50.

    Article  PubMed  CAS  Google Scholar 

  • Furfine E.S., White T.C., Wang A.L. and Wang C.C. A single-stranded RNA copy of the Giardia lamblia virus double-stranded RNA genome is present in the infected Giardia lamblia. Nucleic Acids Res. 17 (1989): 7453–7467

    Article  PubMed  CAS  Google Scholar 

  • Glick B.R. Metabolic load and heterogeneous gene expression. Biotechnol. Advances 13 (1995): 247–261.

    Article  CAS  Google Scholar 

  • Gu M.B., Kern J.A., Todd P. and Kompala D.S. Effect of amplification of dhfr and lacZ genes on growth and β-galactosidase expression in suspension cultures of recombinant CHO cells. Cytotechnology 9 (1992):237–245.

    Article  PubMed  CAS  Google Scholar 

  • Gu M.B., Todd P., Kompala D.S. Metabolic burden in recombinant CHO cells: effect of dhfr gene amplification and lacZ expression. Cytotechnology 18 (1996): 159–166.

    Article  Google Scholar 

  • Katayama T. and Nagata T. Inhibition of cell growth and stable DNA replication by over-expression of the bla gene of plasmid pBR322. Mol Gen. Genet. 223 (1990): 353–360.

    Article  PubMed  CAS  Google Scholar 

  • Kidane A.H., Guan Y., Evans P.M., Kaderbhai M.A. and Kemp R.B. Comparison of heat flux in wild-type and genetically-engineered chínese hamster ovary cells. J. Thermal Analysis 49 (1997): 771–783.

    Article  CAS  Google Scholar 

  • Kim S.J., Kim N.S., Ryu C.J., Hong, H.J. and Lee G.M. Characterisation of chimeric antibody-producing CHO cells in the course of dihydrofolate reductase-mediated gene amplification and their stability in the absence of selective pressure. Biotechnol. Bioeng. 58 (1998): 73–84.

    Article  PubMed  CAS  Google Scholar 

  • Kyslik P., Dobisova M., Maresova H. and Sobotkova L. Plasmid burden in chemostat culture of Escherichia coli: It’s effect on the selection for over-producers of host enzymes. Biotechnol Bioeng. 41 (1993): 325–329.

    Article  PubMed  CAS  Google Scholar 

  • Lee S.W. and Edlin G. Expression of tetracycline resistance in pBR322 derivatives reduces the reproductive fitness of plasmid-containing Escherichia coli. Gene 39 (1985): 173–180.

    CAS  Google Scholar 

  • Linz M., Zeng A-P., Wagner R. and Deckwer W-D. Stochiometry, kinetics and regulation of glucose and amino acid metabolism of a recombinant BHK cell line in batch and continuous culture. Biotechnol. Prog. 13 (1997): 453–463.

    Article  PubMed  CAS  Google Scholar 

  • Lund P. Determination with glutaminase and glutamate dehydrogenase. In: Bergmeyer HU (ed.) Methods of Enzymatic Analysis. Vol. 4, Academic Press, London (1974): 1719–1722.

    Google Scholar 

  • McKay G.A and Wright G.D. Kinetic mechanism of aminoglycoside phosphotransferase type Ilia: Evidence for a Theorell-Chance mechanism. J. Biol. Chem. 270 (1995): 24686–24692.

    Article  PubMed  CAS  Google Scholar 

  • O’Kennedy R.D. and Patching J. W. Effects of medium composition and nutrient limitation on loss of the recombinant plasmid pLG669-z and β-galactosidase expression by Saccharomyces cerevisiae. J. Ind. Microbiol Biotechnol 18 (1997): 319–325.

    Article  PubMed  Google Scholar 

  • Pendse G.J., Karkare S. and Bailey J.E. Effect of cloned gene dosage on cell growth and hepatitis B surface antigen synthesis and secretion in recombinant CHO cells. Biotechnol. Bioeng. 40 (1992): 119–129.

    Article  PubMed  CAS  Google Scholar 

  • Ryan W. and Parulekar S.J. Recombinant protein synthesis and plasmid instability in continuous cultures of Escherichia coli JM103 harbouring a high copy number plasmid. Biotechnol Bioeng. 37 (1991): 415–429.

    Article  PubMed  CAS  Google Scholar 

  • Sambrook J., Fritsch E.F. and Maniatis T. Molecular Cloning, a laboratory manual, 2nd edn., Cold Springs Harbor Laboratory Press, New York, 1989.

    Google Scholar 

  • Schroder M. and Friedl P. Overexpression of recombinant human antithrombin III in Chinese hamster ovary cells results in malformation and decreased secretion of recombinant protein. Biotechnol Bioeng. 53 (1997): 547–559.

    Article  PubMed  CAS  Google Scholar 

  • Seo J-H. and Bailey J.E. Effects of recombinant plasmid content on growth properties and cloned gene product formation in Escherichia coli. Biotechnol Bioeng. 27 (1985): 1668–1674.

    Article  PubMed  CAS  Google Scholar 

  • Yu D.C., Wang A.L. and Wang C.C. Stable co-expression of a drug-resistance gene and a heterologous gene in an ancient parasitic protozoan Giardia lamblia. Mol Biochemical Parasitol 83 (1996): 81–91.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Yallop, C.A., Svendsen, I. (2001). The Effects of Recombinant Protein Expression on the Growth and Metabolism of Mammalian Cells. In: Merten, OW., et al. Recombinant Protein Production with Prokaryotic and Eukaryotic Cells. A Comparative View on Host Physiology. Springer, Dordrecht. https://doi.org/10.1007/978-94-015-9749-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-94-015-9749-4_3

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-5756-3

  • Online ISBN: 978-94-015-9749-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics