Skip to main content
Log in

Comparison of heat flux in wild-type and genetically-engineered Chinese Hamster ovary cells

  • Biological/Life Sciences
  • Published:
Journal of thermal analysis Aims and scope Submit manuscript

Abstract

It is claimed, though not without dispute, that genetically engineered mammalian cells grow more slowly than their progenitor cells because the recombinant gene system causes a metabolic burden. This was found to be the case for CHO cells transfected with expression vectors forcytochrome b5. The slower growth was associated with lower metabolic activity measured by heat flux and mitochondrial activity (rhodamine 123 fluorescence). The calorimetric-respirometric ratio was similar for all cell types, implying that the greater fluxes of glucose and glutamine in the recombinant cells was channelled to biosynthesis. This demand probably restricted the supply of pyruvate to the mitochondria in these cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. F. Goochie and T. Monica, Bio/Technol., 8 (1990) 421.

    Article  Google Scholar 

  2. C. Georgopoulos and W. J. Welch, Ann. Rev. Cell Biol., 9 (1993) 601.

    CAS  Google Scholar 

  3. J. H. Seo and J. E. Bailey, Biotechnol. Bioeng., 27 (1985) 1668.

    Article  CAS  Google Scholar 

  4. W. E. Bentley, N. Mirjahli, D. C. Anderson, R. H. Davis and D. S. Kompala, Biotechnol. Bioeng., 35 (1990) 668.

    Article  CAS  Google Scholar 

  5. M. J. Betanbaugh, C. Beaty and P. Dhurjati, Biotechnol. Bioeng., 33 (1989) 1425.

    Article  Google Scholar 

  6. G. J. Pendse, S. Karkare and J. E. Bailey, Biotechnol. Bioeng., 40 (1992) 119.

    Article  CAS  Google Scholar 

  7. M. B. Gu, J. A. Kern, P. Todd and D. S. Kompala, Cytotechnology, 9 (1992) 237.

    Article  CAS  Google Scholar 

  8. M. A. Alting-Mees, J. A. Sorge and J. M. Short, Methods Enzymol., 216 (1992) 483.

    Article  CAS  Google Scholar 

  9. U. von Stockar and I. W. Marison, Thermochim. Acta, 193 (1991) 215.

    Article  Google Scholar 

  10. R. B. Kemp, P. M. Evans and Y. Guan, J. Thermal Anal., this volume.

  11. R. B. Kemp and Y. Guan, J. Thermochim. Acta, 300, in press.

  12. Y. Guan and R. B. Kemp, H. V. Westerhoff, I. F. Snoep, F. E. Sluse, J. E. Wijker and B. N. Kholodenko (Eds.), BioThermoKinetics of the Living Cell, BTK, Amsterdam, 1996, p. 387.

    Google Scholar 

  13. J. P. Belaich, in A. E. Beezer (Ed.), Biological Microcalorimetry, Academic Press, London and New York, 1980, p. 1.

    Google Scholar 

  14. E. Battley, Energetics of Microbial Growth, Wiley, New York 1987, 450 pp.

    Google Scholar 

  15. I. Wadsö, in K. N. Marsh and P. A. G. O'Hare (Eds.), Experimental Thermodynamics, Vol. IV, Solution Calorimetry, Blackwell Sci. Publ., Oxford 1994, p. 267.

    Google Scholar 

  16. M. S. M. Ardawi and E. A. Newsholme, Essays Biochem., 21 (1985) 1.

    CAS  Google Scholar 

  17. L. V. Johnson, M. L. Walsh, B. J. Bokus and L. B. Chen, J. Cell Biol., 83 (1981) 526.

    Article  Google Scholar 

  18. A. Karim, N. Kaderbhai, E. Evans, V. Harding and M. Kaderbhai, Bio/Technol., 11 (1993) 612.

    Article  CAS  Google Scholar 

  19. J. Gallager, N. Kaderbhai and M. Kaderbhai, Appl. Bio/Technol., 38 (1992) 77.

    Google Scholar 

  20. M. Mandel and A. Higa, J. Mol. Biol., 53 (1970) 159.

    Article  CAS  Google Scholar 

  21. E. M. Lederberg and S. N. Cohen. J. Bacteriol., 119 (1974) 1072.

    CAS  Google Scholar 

  22. J. Spizizen, B. E. Reilly and H. V. Evans, Ann. Rev. Microbiol., 20 (1966) 371.

    Article  CAS  Google Scholar 

  23. T. Maniatis, E. F. Frish and J. Sambrook, Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 1989, p. 1.21.

    Google Scholar 

  24. F. Sanger, S. Nicklen and A. R. Coulson, Proc. Natl. Acad. Sci. USA., 74 (1977) 5463.

    Article  CAS  Google Scholar 

  25. R. B. Kemp, in S. O. O'Hare and C. K. Atterswill (Eds.), In Vitro Toxicity Testing Protocols, Humana Press, Totawa, New Jersey 1995, p. 221.

    Google Scholar 

  26. C. Chen and H. Okayama, Mol. Cell Biol., 7 (1987) 2745.

    CAS  Google Scholar 

  27. D. E. Hultquist, Methods Enzymol., 52 (1978) 463.

    Article  CAS  Google Scholar 

  28. R. B. Kemp, Thermochim. Acta, 170 (1992) 61.

    Google Scholar 

  29. N. Borth, G. Karl and H. Katinger, Cytometry, 14 (1993) 70.

    Article  CAS  Google Scholar 

  30. E. Gnaiger, R. Steinlechner-Maran, G. Méndez, T. Eberl and R. Margreiter, J. Bioenerg. Biomembr., 27 (1995) 583.

    Article  CAS  Google Scholar 

  31. M. Kozak, Cell, 44 (1986) 283.

    Article  CAS  Google Scholar 

  32. R. E. Spier, J. B. Griffiths and W. Berthold (Eds.), Animal Cell Technology, Butterworth-Heinemann, London 1994, pp. 661.

    Google Scholar 

  33. M. B. Gu, P. Todd and D. S. Kompala, Cytotechnology, 18 (1996) 159.

    Article  Google Scholar 

  34. E. Gnaiger and R. B. Kemp, Biochim. Biophys. Acta, 1016 (1990) 328.

    Article  CAS  Google Scholar 

  35. W. L. McKeehan, in M. J. Morgan (Ed.), Carbohydrate Metabolism in Cultured Cells, Plenum Press, New York 1986, p. 111.

    Google Scholar 

  36. R. J. Reitzer, B. M. Wise and D. Kennell, J. Biol. Chem., 254 (1979) 2669.

    CAS  Google Scholar 

  37. M. B. Gu, P. Todd and D. S. Kompala, Ann. New York Acad. Sci., 721 (1994) 194.

    Article  CAS  Google Scholar 

  38. H. R. Zielke, P. T. Ozand, J. T. Tildon, D. A. Sevdalian and M. Cornblath, J. Cell Physiol., 95 (1975) 41.

    Article  Google Scholar 

  39. A. H. Kidane, Y. Guan, M. Kaderbhai and R. B. Kemp, unpublished results.

Download references

Author information

Authors and Affiliations

Authors

Additional information

The authors are grateful to the BBSRC for grant no. 2/3680 and to the University for support from the Senate Research Fund.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kidane, A.H., Guan, Y., Evans, P.M. et al. Comparison of heat flux in wild-type and genetically-engineered Chinese Hamster ovary cells. Journal of Thermal Analysis 49, 771–783 (1997). https://doi.org/10.1007/BF01996760

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01996760

Keywords

Navigation