Skip to main content

Dormancy in Non-Sporulating Bacteria: Its Significance for Environmental Monitoring

  • Chapter
Rapid Methods for Analysis of Biological Materials in the Environment

Part of the book series: NATO ASI Series ((ASDT,volume 30))

  • 226 Accesses

Abstract

In natural ecosystems, the total cell count obtained microscopically typically exceeds the viable count on non-selective media by orders of magnitude. The question therefore arises as to whether the “invisible”, apparently nonculturable cells are dead, are killed by our isolation media, or are merely in a dormant state from which we might in principle be able to resuscitate them if only we knew how. In particular the suggested “viable-but-nonculturable” (VBNC) bacteria have been invoked to explain phenomena as divergent as the epidemiology of some infections and the persistence of genetically marked organisms in the environment (e.g. the failure to isolate Vibrio cholerae and Campylobacter jejuni from clearly implicated sources or reservoirs of infection could be accounted for on the basis of their being present in a VBNC or dormant state). Application of flow cytometry may be a useful tool to visualize bacteria without their growing and to discriminate between dead and dormant bacteria. We found that dormant Micrococcus luteus can be physically separated from dead cells by flow cytometry sorter after cell staining with rhodamine 123. Resuscitation of dormant M.luteus cells in liquid medium does not proceed in the absence of a culture supernatant from batch-grown cells. This suggests that viable cells can excrete a pheromone-like substance necessary for the resuscitation of dormant cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kaprelyants, A. S., Gottschal, J. C., and Kell, D. B (1993) Dormancy in non-sporulating bacteria. FEMS Microbiol. Rev. 104, 271–286.

    Article  CAS  Google Scholar 

  2. Roszak, D. B and Colwell, R. R (1987) Survival strategies of bacteria in the natural environment. Microbiol. Rev. 51, 365–379.

    PubMed  CAS  Google Scholar 

  3. Matin A. (1992) Physiology, molecular biology and applications of the bacterial starvation response. Journal of Applied Bacteriology Symposium Supplement 73, 49S–57S.

    Article  Google Scholar 

  4. Barer, M. R., Gribbon, L. T, Harwood, C. R., and Nwoguh, C.E. (1993) The viable but non-culturable hypothesis and medical microbiology. Rev. Med. Microbiol. 4, 183–91.

    Article  Google Scholar 

  5. Morita, R. Y. (1990) The starvation-survival state of microorganisms in nature and its relationship to bioavailable energy. Experientia 46, 813–817

    Article  Google Scholar 

  6. Kaprelyants, A. S. and Kell, D. B (1992) Rapid assessment of bacterial viability and vitality using rhodamine 123 and flow cytometry. J.Appl. Bacteriol. 72, 410–422.

    Article  CAS  Google Scholar 

  7. Kell, D. B, Ryder, H. M, Kaprelyants, A.S., and Westerhoff, H. V. (1991) Quantifying heterogeneity: flow cytometry of bacterial cultures. Antonie van Leeuwenhoek 60, 145–158.

    Article  PubMed  CAS  Google Scholar 

  8. Kaprelyants, A. S. and Kell, D. B. (1993) Dormancy in stationary-phase cultures of Micrococcus luteus: flow cytometric analysis of starvation and resuscitation. Appl. Env. Microbiol., 59, 3187–3196.

    CAS  Google Scholar 

  9. Roszak, D. B. and Colwell, R. R. (1987a). Metabolic activity of bacterial cells enumerated by direct viable count. Appl. Environ. Microbiol. 53, 2889–2983.

    PubMed  CAS  Google Scholar 

  10. Domingue, G. J. (1995). Electron dense cytoplasmic particles and chronic infection —a bacterial pleomorphy hypothesis. Endocytobiosis Cell Res. 11, 19–40.

    Google Scholar 

  11. Domingue, G. J., Ghoniem, G. M., Bost, K. L., Fermin, C. and Human, L. G. (1995). Dormant microbes in interstitial cystitis. Journal of Urology 153, 1321–1326

    Article  PubMed  CAS  Google Scholar 

  12. Amann, R. I., Ludwig, W. and Schleifer, K. H. (1995). Phylogenese identification and in situ detection of individual microbial cells without cultivation. Microbiological Reviews 59, 143–169.

    PubMed  CAS  Google Scholar 

  13. Fredricks, D. N. and Relman, D. A. (1996). Sequence-Based Identification of Microbial Pathogens —a Reconsideration of Koch’s Postulates. Clinical Microbiology Reviews 9, 18.

    Google Scholar 

  14. Brayton, P. R., M. L. Tamplin, A. Huq and R. R. Colwell (1987) Enumeration of Vibrio cholerae Ol in Bangladesh waters by fluorescent-antibody direct viable count. Appl Env Microbiol 53, 2862–2865.

    CAS  Google Scholar 

  15. Pearson, A. D., M. Greenwood, T. D. Healing, D. Rollins, M. Shahamat, J. Donaldson and R. R. Colwell (1993) Colonization of broiler chickens by waterborne Campylobacter jejuni. Appl Env Microbiol 59, 987–996.

    CAS  Google Scholar 

  16. Xu, H. S., Roberts, N., Singleton, F. L., Attwell, R. W., Grimes, D. J., and Colwell, R. R. (1982) Survival and Viability of Nonculturable Escherichia Coli and Vibrio Cholerae in the estuarine and marine environment. Microbial Ecology 8, 313–323.

    Article  Google Scholar 

  17. Rollins, D. M. and Colwell, R. R. (1986) Viable but nonculturable stage of Campylobacter jejuni and its role in survival in the natural aquatic environment. Appl Env Microbiol 52, 531–538.

    CAS  Google Scholar 

  18. Kaprelyants, A. S. and Kell, D. B. (1996) Do bacteria need to communicate with each other for growth? Trends Microbiol., 4, 237–242.

    Article  PubMed  CAS  Google Scholar 

  19. Davey, H. M. and Kell, D. B. (1996) Flow cytometry and cell sorting of heterogeneous microbial populations: the importance of single cell analysis. Microbiol Rev 60, 641–696.

    PubMed  CAS  Google Scholar 

  20. Ferguson, Y., Glover, L. A., McGillivray, D. M., and Prosser, J. I. (1995) Survival and activity of Lux- Marked Aeromonas salmonicida in seawater. Appl Env Microbiol 61, 3494–3498.

    CAS  Google Scholar 

  21. Kell, D. B., Kaprelyants, A. S., Weichart, D. H., Harwood, C. R., and Barer, M. R. (1997) On bacterial viability and culturability. Microbiology, in press.

    Google Scholar 

  22. Husevag, B. (1995) Starvation survival of the fish pathogen Aeromonas salmonicida in seawater. FEMS Microbiol Ecology 16, 25–32.

    Article  CAS  Google Scholar 

  23. Morgan, J., P., C. and R., P. (1991) Survival of Aeromonas salmonicida in lake water. Appl Env Microbiol 57, 1777–1782.

    CAS  Google Scholar 

  24. Morgan, J. A.W., Clarke, K. J., Rhodes, G., and Pickup, R. W. (1992) Non-culturable Aeromonas salmonicida in lake water. Microbial Releases 1, 71–78.

    PubMed  CAS  Google Scholar 

  25. Beumer, R. R., Devries, J., and Rombouts, F.M. (1992) Campylobacter jejuni nonculturable coccoid cells. Int J Food Microbiol 15, 153–163.

    Article  PubMed  CAS  Google Scholar 

  26. Jones, D. M., Sutcliffe, E. M., and Curry, A. (1991). Recovery of viable but non-culturable Campylobacter jejuni. Journal of General Microbiology 137, 2477–2482.

    CAS  Google Scholar 

  27. Lappin-Scott, H. M., Cusack, F., Macleod, A., and Costerton, J. W. (1988) Starvation and nutrient resuscitation of Klebsiella pneumoniae isolated from oil well waters. J Appl Bact 64, 541–549.

    Article  CAS  Google Scholar 

  28. Yamamoto, H., Hashimoto, Y., and Ezaki, T. (1996) Study of nonculturable Legionella pneumophila cells during multiple nutrient starvation. FEMS Microbiol Ecology 20, 149–154.

    Article  CAS  Google Scholar 

  29. Kaprelyants, A. S., Mukamolova, G. V., and Kell, D. B. (1994) Estimation of dormant Micrococcus luteus cells by penicillin lysis and by resuscitation in cell-free spent medium at high dilution. FEMS Microbiol Lett 115, 347–352.

    Article  Google Scholar 

  30. Magarinos, B., Romalde, J., Barja, J., and Toranzo, A. E. (1994) Evidence of a dormant but infective state of the fish pathogen Pasteurella piscicida in seawater and sediment. Appl Env Microbiol 60, 180–186.

    CAS  Google Scholar 

  31. Chmielewski, R. A. N. and Frank, J. F. (1995) Formation of viable but nonculturable Salmonella during starvation in chemically-defined solutions. Lett Appl Microbiol 20, 380–384.

    Article  PubMed  CAS  Google Scholar 

  32. Roszak, D. B., Grimes, D. J., and Colwell, R. R. (1984). Viable but nonrecoverable stage of Salmonella enteritidis in aquatic systems. Canadian Journal of Microbiology 30, 334–338.

    Article  PubMed  CAS  Google Scholar 

  33. Binnerup, S. J., Jensen, D. F., Thordal-Christensen, H. and Sorgensen, J. (1993) Detection of viable, but non-culturable Pseudomonas fluorescens DF57 in soil using a microcolony epifluorescence technique. FEMS Microbiol Ecol. 12, 97–105.

    Article  Google Scholar 

  34. Evdokimova, N. V., Dorofeev, A. G., and Panikov, N. S. (1994) Dynamics of survival and transition to dormant state of nitrogen- starving bacteria Pseudomonas fluorescens. Microbiol (Russia) 63, 99–104.

    Google Scholar 

  35. Colwell, R. R., Brayton, B. R., Grimes, D. J., Roszak, D. B., Huq, S. A., and Palmer, L. M. (1985) Viable but non-culturable Vibrio cholerae and related pathogens in the environment: implications for release of genetically engineered microorganisms. Bio/Technology 3, 817–820.

    Article  Google Scholar 

  36. Ravel, J., Knight, I. T., Monahan, C. E., Hill, R. T., and Colwell, R. R. (1995) Temperature-Induced recovery of Vibrio cholerae from the viable but nonculturable state —growth or resuscitation. Microbiol-UK 141, 377–383.

    Article  Google Scholar 

  37. MacDonell, M. and Hood, M. (1982) Isolation and characterization of ultramicrobacteria from a gulf coast estuary. Appl Env Microbiol 43, 566–571.

    CAS  Google Scholar 

  38. Jiang, X. P. and Chai, T. J. (1996) Survival of Vibrioparahaemolyticus at low temperatures under starvation conditions and subsequent resuscitation of viable, nonculturable cells. Appl Env Microbiol 62, 1300–1305.

    CAS  Google Scholar 

  39. Wai, S. N., Moriya, T., Kondo, K., Misumi, H., and Amako, K. (1996) Resuscitation of Vibrio cholerae Ol strain tsi4 from a viable but nonculturable state by heat shock. FEMS Microbiol Lett 136, 187–191.

    Article  PubMed  CAS  Google Scholar 

  40. Colwell, R. R., Brayton, P., Herrington, D., Tall, B., Huq, A., and Levine, M. M. (1996) Viable but nonculturable Vibrio cholerae-O1 revert to a cultivable state in the human intestine. World J Microbiol Biotechnol 12, 28–31.

    Article  Google Scholar 

  41. Oliver, J. D. and Bockian, R. (1995) In vivo resuscitation, and virulence towards mice, of viable but nonculturable cells of Vibrio vulnificus. Appl Env Microbiol 61, 2620–2623.

    CAS  Google Scholar 

  42. Oliver, J. D., Hite, F., McDougald, D., Andon, N. L., and Simpson, L. M (1995) Entry into, and resuscitation from, the viable but nonculturable state by Vibrio vulnificus in an estuarine environment. Appl Env Microbiol 61, 2624–2630.

    CAS  Google Scholar 

  43. Weichart, D. and Kjelleberg, S. (1996) Stress resistance and recovery potential of culturable and viable but nonculturable cells of Vibrio vulnificus. Microbiol-UK 142, 845–853.

    Article  CAS  Google Scholar 

  44. Romalde, J. L., Barja, J. L., Magarinos, B., and Toranzo, A. E. (1994) Starvation survival processes of the bacterial fish pathogen Yers ia ruckeri. Syst Appl Microbiol 17, 161–168.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Kaprelyants, A.S., Mukamolova, G.V., Votyakova, T.V., Davey, H.M., Kell, D.B. (2000). Dormancy in Non-Sporulating Bacteria: Its Significance for Environmental Monitoring. In: Stopa, P.J., Bartoszcze, M.A. (eds) Rapid Methods for Analysis of Biological Materials in the Environment. NATO ASI Series, vol 30. Springer, Dordrecht. https://doi.org/10.1007/978-94-015-9534-6_4

Download citation

  • DOI: https://doi.org/10.1007/978-94-015-9534-6_4

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-5455-5

  • Online ISBN: 978-94-015-9534-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics