Skip to main content
Log in

The starvation-survival state of microorganisms in nature and its relationship to the bioavailable energy

  • Reviews
  • Published:
Experientia Aims and scope Submit manuscript

Summary

Although one can measure the organic matter in various ecosystems in terms of organic carbon, this measurement does not indicate what portion of the organic carbon is bioavailable to the microorganisms. Most organic matter is recalcitrant and, therefore, most microorganisms do not have sufficient energy to carry on their metabolism for growth and reproduction. As a result, many species of bacteria will form ultramicrocells and enter a physiological state known as starvation-survival. This physiological state results in metabolic arrest which permits the organisms to survive for long periods of time without sufficient energy for growth and reproduction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Amy, P. S., and Morita, R. Y., Starvation-survival patterns of sixteen freshly isolated open-ocean bacteria. Appl. envir. Microbiol.45 (1983) 1109–1115.

    CAS  Google Scholar 

  2. Amy, P. S., and Morita, R. Y., Protein patterns of growing and starved cells of a marineVibrio sp. Appl. envir. Microbiol.45 (1983) 1685–1690.

    CAS  Google Scholar 

  3. Amy, P. S., Pauling, C., and Morita, R. Y., Starvation-survival processes of a marineVibrio. Appl. envir. Microbiol.45 (1983) 1041–1048.

    CAS  Google Scholar 

  4. Amy, P. S., Pauling, C., and Morita, R. Y., Recovery from nutrient starvation by a marineVibrio sp. Appl. envir. Microbiol.45 (1983) 1685–1690.

    CAS  Google Scholar 

  5. Anderson, T.-H., and Domsch, K. H., Determination of ecophysiological maintenance carbon requirements of soil microorganisms in a dormant state. Biol. Fert. Soils1 (1985) 81–89.

    CAS  Google Scholar 

  6. Anderson, T.-H., and Domsch, K. H., Maintenance carbon requirements of actively metabolizing microbial populations under in situ conditions. Soil Biol. Biochem.17 (1985) 197–203.

    CAS  Google Scholar 

  7. Bakken, L. R., and Olsen, R. A., The relationship between cell size and viability of soil bacteria. Microb. Ecol.13 (1987) 103–114.

    CAS  PubMed  Google Scholar 

  8. Christensen, D., and Blackburn, T. H., Turnover of tracer (14C,3H-labelled) alanine in inshore marine sediments. Mar. Biol. (1980) 97–103.

  9. Caldwell, B. A., Ye, C., Griffiths, R. P., Moyer, C. L., and Morita, R. Y., Plasmid expression and maintenance during long-term starvation-survival of bacteria in well water. Appl. envir. Microbiol.55 (1989) 1860–1864.

    CAS  Google Scholar 

  10. Conway, P. L., Maki, J., Mitchel, R., and Kjelleberg, S., Starvation of marine flounder, squid, and laboratory mice and its effect on the intestinal microbiota. FEMS Microbiol. Ecol.38 (1986) 187–195.

    Google Scholar 

  11. Geesey, G. G., and Morita, R. Y., Capture of arginine at low substrate concentrations by a marine psychrophilic bacterium. Appl. envir. Microbiol.38 (1979) 1092–1097.

    CAS  Google Scholar 

  12. Groat, R. G., and Matin, A., Synthesis of unique proteins at the onset of carbon starvation inEscherichia coli. J. ind. Microbiol.1 (1986) 69–73.

    CAS  Google Scholar 

  13. Guckert, J. B., Hood, M. A., and White, D. C., Phospholipid ester-linked fatty acid profile changes during nutrient deprivation ofVibrio cholerae: Increase in cis-trans ratio and proportions of cyclopropyl fatty acids. Appl. envir. Microbiol.52 (1986) 794–801.

    CAS  Google Scholar 

  14. Hood, M. A., Guckert, J. B., White, D. C., and Deck, F., Effect of nutrient deprivation on lipid, carbohydrates, DNA, RNA, and protein levels inVibrio cholerae. Appl. envir. Microbiol.52 (1986) 788–793.

    CAS  Google Scholar 

  15. Hood, M. A., and MacDonell, M. T., Distribution of ultramicrobacteria in a Gulf cost estuary and induction of ultramicrobacteria. Microb. Ecol.14 (1987) 113–127.

    CAS  PubMed  Google Scholar 

  16. Hoppe, H.-G., Determination and properties of actively metabolizing heterotrophic bacteria in the sea, investigated by means of autoradiography. Mar. Biol.36 (1976) 291–302.

    Google Scholar 

  17. Jaan, A. J., Dahllôf, E., and Kjelleberg, S., Changes in protein composition of three bacterial isolates from marine waters during short periods of nutrient deprivation. Appl. envir. Microbiol.52 (1986) 1419–1421.

    CAS  Google Scholar 

  18. Jenkinson, D. S., and Ladd, J. N., Microbial biomass in soil, measurement and turnover, Soil Biochem.5 (1981) 415–471.

    CAS  Google Scholar 

  19. Jones, R. D., and Morita, R. Y., Survival of a marine ammonium oxidizer under energy source deprivation. Mar. Ecol. Prog. Ser.26 (1985) 175–179.

    Google Scholar 

  20. Kjelleberg, S., Hermansson, M., Marden, P., and Jones, G. W., The transient phase between growth and nongrowth of heterotrophic bacteria, with emphasis on the marine environment. A. Rev. Microbiol.41 (1987) 25–50.

    CAS  Google Scholar 

  21. Kurath, G., and Morita, R. Y., Starvation-survival physiological studies of a marinePseudomonas sp. Appl. envir. Microbiol.45 (1983) 1206–1211.

    CAS  Google Scholar 

  22. Li, W. K. W., and Dickie, P. M., Growth of bacteria in seawater filtered through 0.2 μm Nuclepore membranes: implication for dilution experiments. Mar. Ecol. Prog. Ser.26 (1985) 245–252.

    Google Scholar 

  23. Lipman, C. G., Living microorganisms in ancient rocks. J. Bact.22 (1931) 183–196.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Massa, E. M., Vinals, A. L., and Farias, R. N. Influence of unsaturated fatty acids membrane components on sensitivity of anEscherichia coli fatty acid auxotroph to conditions of nutrient depletion. Appl. envir. Microbiol.54 (1988).

  25. Malmcrona-Friberg, K., Tunlid, A., Marden, P., Kjelleberg, S., and Odham, G., Chemical changes in cell envelope and poly-β-hydroxybutyrate during short term starvation of a marine bacterial isolate. Arch. Microbiol.144 (1986) 340–345.

    CAS  Google Scholar 

  26. McGill, W. B., Hunt, H. W., Woodmansee, R. G., and Reuss, J., Phoenix — a model of dynamics of carbon and nitrogen in grassland soils. Ecol. Bull.33 (1981) 49–115.

    CAS  Google Scholar 

  27. Maeda, M., and Taga, N., Comparisons of cell size of bacteria isolated from four marine localities. La Mer21 (1983) 207–210.

    Google Scholar 

  28. Marden, P., Tunlid, A., Malmcrona-Friberg, K., Odham, G., and Kjelleberg, S., Physiological and morphological changes during short term starvation of bacterial isolates. Arch. Microbiol.142 (1985) 326–332.

    Google Scholar 

  29. Marden, P., Hermansson, M., and Kjelleberg, S., Incorporation of tritiated thymidine by bacterial isolates undergoing a starvation-survival response. Arch. Microbiol.149 (1988) 427–432.

    Google Scholar 

  30. Morita, R. Y., Starvation-survival of heterotrophs in the marine environment. Adv. Microb. Ecol.6 (1982) 117–198.

    Google Scholar 

  31. Morita, R. Y., Substrate capture by marine heterotrophic bacteria in low nutrient waters, in: Heterotrophic Activity in the Sea, pp. 83–100. Eds J. E. Hobbie and P. J. Williams. Plenum Press, New York 1984.

    Google Scholar 

  32. Morita, R. Y., Starvation and miniturisation of heterotrophs, with special reference on the maintenance of the starved viable state, in: Bacteria in Natural Environments: The Effect of Nutrient Conditions, pp. 111–130. Eds M. Fletcher and G. Floodgate. Academic Press, New York 1985.

    Google Scholar 

  33. Morita, R. Y., Bioavailability of energy and its relationship to growth and starvation survival in nature. Can. J. Microbiol.34 (1988) 446–441.

    Google Scholar 

  34. Morita, R. Y., and ZoBell, C. E., Occurrence of bacteria in pelagic sediments collected during the Mid-Pacific Expedition. Deep Sea Res.3 (1955) 66–73.

    CAS  Google Scholar 

  35. Moyer, C. L., and Morita, R. Y., Effect of growth rate and starvation-survival on the viability and stability of a psychorophilic marine bacterium. Appl. envir. Microbiol.55 (1989) 1122–1127.

    CAS  Google Scholar 

  36. Nedwell, D. B., Distribution and pool sizes of microbially available carbon in sediments measured by microbiological assay. FEMS Microb. Ecol.45 (1987) 47–52.

    CAS  Google Scholar 

  37. Nissen, H., Long term starvation of a marine bacterium,Alteronomas denitrificans, isolated from a Norwegian fjord. FEMS Microbiol. Ecol.45 (1987) 173–183.

    CAS  Google Scholar 

  38. Novitsky, J. A., and Morita, R. Y., Morphological characterization of small cells resulting from nutrient starvation in a psychrophilic marine vibrio. Appl. envir. Microbiol.32 (1976) 619–622.

    Google Scholar 

  39. Novitsky, J. A., and Morita, R. Y., Survival of a psychrophilic marine vibrio under long-term nutrient starvation. Appl. envir. Microbiol.33 (1977) 635–641.

    CAS  Google Scholar 

  40. Novitsky, J. A., and Morita, R. Y., Starvation induced barotolerance as a survival mechanism of a psychrophilic marine vibrio in the waters of the Antarctic convergence. Mar. Biol.49 (1978) 7–10.

    Google Scholar 

  41. Postgate, J. R., Death in macrobes and microbes. Symp. Soc. gen. Microbiol.26 (1976) 1–18.

    Google Scholar 

  42. Resier, R., and Trask, P., Investigation of the viability of osmophile bacteria of great geological age. Trans. Kansas Acad. Sci.63 (1960) 31–34.

    Google Scholar 

  43. Roszak, D. B., and Colwell, R. R., Survival strategies of bacteria in the natural environment. Microbiol. Rev.51 (1987) 365–379.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Tabor, P. S., Ohwada, K., and Colwell, R. R., Filterable marine bacteria found in the deep sea: Distribution, taxonomy and response to starvation. Microb. Ecol.7 (1981) 67–83.

    CAS  PubMed  Google Scholar 

  45. Torrella, F., and Morita, R. Y., Microcultural study of bacteria size changes and microcolony and ultramicrocolony formation by heterotrophic bacteria in seawater. Appl. envir. Microbiol.41 (1981) 518–527.

    CAS  Google Scholar 

  46. Torrella, F., and Morita, R. Y., Starvation induced morphological changes, motility, and chemotaxis patterns in a psychrophilic marine vibrio. 2me Colloque de Microbiologie marine. Publ. Centre Nat. Exploitation des Oceans13 (1982) 45–60.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Technical paper No. 8920, Oregon Agricultural Experiment Station.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Morita, R.Y. The starvation-survival state of microorganisms in nature and its relationship to the bioavailable energy. Experientia 46, 813–817 (1990). https://doi.org/10.1007/BF01935530

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01935530

Key words

Navigation