Skip to main content

Part of the book series: Environmental Pollution ((EPOL,volume 1))

Abstract

The atmospheric processes governing the conditions in urban areas take place on scales between mesoscale and microscale. Although the main interest bears primarily on the lowest part of the atmosphere on scales as small as 50 m, the urban scale processes cannot in general be considered as isolated microscale processes. This is mainly because the city structures generate motions at scales as large as the whole city area itself. Recently Thunis and Bornstein (1996) defined a new scale called meso-δ scale (200 m to 2 km), which fits the scales of the urban atmospheric boundary layer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abart, B., Sini, J.-F. (1997) New first-order closure models for stably stratified flows, 11 th Symp. On Turbulent Shear Flows, 8–11 Sep., Grenoble, France.

    Google Scholar 

  • Almbauer, R., Pucher, K., Sturm, P.J. (1995) Air quality modeling for the city of graz, Meteorology and Atmospheric Physics, 57, 31–42.

    Article  Google Scholar 

  • Aumont, B., Jaecker-Voirol, A., Martin, B., Toupance, G. (1996) Tests of some reduction hypothesis in photochemical mechanisms: application to air quality modeling in the Paris area, Atmospheric Environment, 30, 2061–2077.

    Article  CAS  Google Scholar 

  • Borrego, C., Lemos, S., Carvalho, A.C., Coutinho, M. (1998) A modelling system for air quality anagement, 5th Int. Conf. on Harmonisation within atmospheric dispersion modelling for regulatory purposes, 18–21 May 1998, Rhodes, Greece, Proc. 641–648.

    Google Scholar 

  • Borrel, L., Perrier, M., Rosset, R., Joumard, R. (1996) Modelisation de la pollution chronique a l’echelle d’une agglomeration. Tendances Nouvelles en modelisations pour l’environnement, Actes des journees, 15–17, Janvier 1996, CNRS, Paris.

    Google Scholar 

  • Bottema, M. (1995) Parameterization of aerodynamic roughness parameters in relation with air pollutant removal efficiency of streets, Air Pollution III, Computational Mechanics Publication 2, 235–242.

    Google Scholar 

  • Bottema, M. (1997) Urban roughness modelling in relation to pollution dispersion, Atmospheric Environment, 31, 3059–3075.

    Article  CAS  Google Scholar 

  • Bottema, M., Leene, J.A., Wisse, J.A. (1992) Towards forecasting of wind comfort, J. Wind Engin. Ind. Aerodyn., 41–44, 2365–2376.

    Article  Google Scholar 

  • Bottema, M., Mestayer, P.G. (1997) Urban roughness mapping — validation techniques and some first results, 2 nd European and African conference on wind engineering, Genova, Italy, June.

    Google Scholar 

  • Bougeault, P., Lacarrere, P. (1989) Parameterization of orographic-induced turbulence in a mesobeta-scale model, Monthly Weather Review, 117, 1872–1890.

    Article  Google Scholar 

  • Bohler, T. (1998) AirQUIS — a modern air quality management system, 5th Int. Conf. on Harmonisation within atmospheric dispersion modelling for regulatory purposes, 18–21 May 1998, Rhodes, Greece, Proc. 655–659.

    Google Scholar 

  • Carissimo, B. (1997) Numerical simulation of meteorological conditions for peak pollution in Paris, 22 nd NATO/CCMS Int. Techn. Meeting on Air Poll. Modelling and its Appl., June 2–6, Clermont-Ferrand, France.

    Google Scholar 

  • Carruthers et al. (1997) ADMS-Urban — an integrated air quality modelling system for local government, Air Pollution V, Computational Mechanics Publications.

    Google Scholar 

  • Clappier, A.P., Perrochet, P., Martilli, A., Müller, F., Krüger, B.C. (1996) A new non-hydrostatic mesoscale model using a CVFE (Control Volume Finite Element) discretisation technique, in: Borell, P.M., Borell, P., Cvitas, T., Kelly, K., Sciler, W. (editors), Proc. EUROTRAC Symposium96, Computational Mechanics PubliC., Southhampton, 527–531.

    Google Scholar 

  • Costes, J.P. (1996) Simulations nuúmeriques des ecoulements atmospheriques sur sols fortement hétérogénes, Doctoral thesis, University of Nantes & Ecole Centrale de Nantes.

    Google Scholar 

  • Counihan, J. (1971) Wind tunnel determination of the roughness length as a function of the fetch and the roughness density of three-dimensional roughness elements, Atmospheric Environment, 5, 637–642.

    Article  Google Scholar 

  • Deardorff, J.W. (1978) Efficient prediction of ground surface temperature and moisture, with inclusion of a layer of vegetation, J. Geophys. Res., 83, 1889–1903.

    Article  Google Scholar 

  • Delaunay, D., Flori, J.P., Sacré, C. (1996) Numerical modelling of gas dispersion from road tunnels in urban environments: comparison with field experimental data, 4 th Workshop on Harmonisation within Atmospheric Dispersion Modelling for Regulatory purposes, Oostende, Belgium, 361–368.

    Google Scholar 

  • Droegemeier, K.K., Xue, M., Johnson, K., O’Keefe, M, Sawdey, A., Sabot, G., Wholey, S., Lin, N.T., Mills, K. (1995) Wheather prediction: A scalable storm-scale model. Chapter 3, Sabot, G. (editor), Addison-Wesley, Reading, Massachussets.

    Google Scholar 

  • Duynkerque, P.G. (1988) An application of the K-e model to the neutral and stable atmospheric Boundary layer, J. Atm. Sci., urban roughness parameters: merphometric 45, 865–880. Analysis 12th symposium on boundary layer and turbulence, 28 July — 1 August 1997, Vancouver, BC., American Met, soC., 457–458.

    Article  Google Scholar 

  • Graf, J., Moussiopoulos, N. (1991) Intercomparison of two models for the dispersion of chemically reacting pollutants, Contr. Phys. Atmos., 64, 13–25.

    Google Scholar 

  • Grimmond, C.S.B., Oke, T.R. (1997) An intercomparison of methods to determine roughness and displacement heights in urban aread.

    Google Scholar 

  • Gryning, S.E., Batchvarova, E. (1997) A model for the height of the internal boundary layer over an area with an irregular coastline, Boundary Layer Meteorology, 78, 405–413.

    Article  Google Scholar 

  • Guilbaud, C. (1996) Etude des inversions thermiques: application aux écoulements atmosphériques dans des vallées encaissées, Doctoral thesis, Univ. J. Fourier, Grenoble, France.

    Google Scholar 

  • Jaecker-Voirol, A., Lipphardt, M., Martinm, B., Quandalle, Ph., Salles, J., Carissimo, B., Dupont, E., Musson-Genon, L., Riboud, P.M., Aumont, B., Bergametti, G., Bey, I., Toupance, G. (1997) A 3D regional scale photochemical air quality model — application to a 3 day summertime episode over Paris, 4 th Int. Sci. Symp. Transport and Air Pollution, 9–13 June, Avignon, France.

    Google Scholar 

  • Karpinen, A., Kukkonen, J., Konttinen, M., Härkönen, J., Valkonen, E., Koskentalo, T., Elolähde, T. (1997) Development and verification of a modelling system for predicting urban NO2 concentrations, 22 nd NATO/CCMS Int. Techn. Meeting on Air Poll. Modelling and its Appl., Jun 2–6, Clermond-Ferrand, France.

    Google Scholar 

  • Launder, S.P., Spalding, D.B. (1974) The numerical computation of turbulent flow, Comp. Methods in Applied Mech. and Eng., 3, 269–289.

    Article  Google Scholar 

  • Lettau, H. (1969) Note on aerodynamic roughness-parameter estimation on the basis of roughness-element description, J. Applied Met., 8, 828–832.

    Article  Google Scholar 

  • McHugh, C.A., Carruthers, D.J., Edmunds, H.A. (1997) ADMS-Urban: a model of traffiC., domestic and industrial pollution. International Journal of Environment and Pollution, 8, 3–6, 666–674.

    Article  Google Scholar 

  • Mellor, G.L, Yamada, T. (1982) Development of a turbulent model for geophysical fluid problem, Review of Geophysics and Space Physics, 20, 851–875.

    Article  Google Scholar 

  • Mestayer, P.G. (1996) Development of the French communal model SUBMESO for simulating dynamics, physics and photochemistry of the urban atmosphere, in: Borrel, P.M., Borrell, P., Cvitas, T., Kelly, K., Sciler, W. (editors), Proc. EUROTRAC Symposium ‘96, Computational Mechanics PubliC., Southampton, 539–544.

    Google Scholar 

  • Mestayer, P.G., Anquetin, S. (1994) Climatology of cities, Diffusion and Transport of Pollutants in Atmospheric Mesoscale flow Fields, Gyr, A., Rys, F.S. (editors), ERCOFTAC Series, Kluwer Academic Publishers, 165–189.

    Google Scholar 

  • Mestayer, P.G., Chollet, J.-P., Coppalle, A., George, J., Chaumerlia, C.N., Ayrault, M., Toupance, G., Martin, B., Sacré, C., Carissimo, B., Courty, J.-C. (1995) Modélisation de la Dynamique, la Physique et la Photo-chimie de l’atmosphère urbaine — Le projet SUB-MESO, in: Elichegaray, C., Fontan, J., Laterasse, J., Muller, M. (editors), Pollution atmosphérique à l’échelle locale et régionale, Min. Environnement, 89–98.

    Google Scholar 

  • Monin, A.S., Obukhov, A.M. (1954) Basic laws of turbulent mixing in the ground layer of the atmosphere, Trans. Geophys. Inst. Akad., NAUK USSR, 151, 163–187.

    Google Scholar 

  • Moussiopoulos, N. (1994) The EUMAC Zooming Model (EZM): An introduction. The EUMAC Zooming Model: structure and applications, Moussiopoulos, N. (editor), EUROTRAC., Int. Sci. Secr., Garmisch- Partenkirchen, March 1994, 7–21.

    Google Scholar 

  • Oke, T.R. (1982) The energetic basis of the urban heat island, Quart. J.R. Met. Soc, 108, 1–24.

    Google Scholar 

  • Oke, T.R. (1987) Boundary layer climates. Methuen and Co., Ltd, 2nd edition, New York, USA.

    Google Scholar 

  • Oke, T.R., Johnson, G.T., Steyn, D.G., Watson, I.D. (1991) Simulation of surface urban heat islands under “ideal” conditions at night, Part 2: Diagnosis of causation, Boundary-Layer Meteorology, 56, 339–358.

    Article  Google Scholar 

  • Paeschke, W. (1938) Experimentelle Untersuchungen zum rauhigkeits- und stabilitetsproblem in der bodennahen luftschicht, Beitr. Phys. Fur Atmos., 24, 163–189.

    Google Scholar 

  • Raupach, M.R. (1994) Simplified expressions for vegetation roughness length and zero-plane displacement height as function of canopy height and area index, Boundary layer Meteorology, 71, 211–216.

    Article  Google Scholar 

  • Riou, Y. (1987) Comparison between MERCURE-GL code calculations, wind tunnel measurements and Thorney Island field Trials, J. Hazard. Mat., 16, 247–265.

    Article  CAS  Google Scholar 

  • Robin, M. (1993) Apport de L’imagerie satellitaire basse résolution NOAA-AVHRR pour l’étude des ilots de chaleur urbains: exemple des villes de Loire Atlantique, Cahier Nantais, 40, 47–60 (Publi. IGARUN, Nantes).

    Google Scholar 

  • Robin, M. (1995) La télédétection, Editions Nathan, Paris

    Google Scholar 

  • Rotach, M.W. (1993) Turbulence transfer relationships over an urban surface. I: Spectral characteristics, Q. J. Roy, Meteorol. Soc, 119, 1071–1104.

    Google Scholar 

  • Schayes, G., Thunis, P., Bornstein, R. (1996) Topographie vorticity-mode mesoscale-ß (TVM) model. Part I: Formulation. J. Appl. Meteor., 35, 1815–1823.

    Article  Google Scholar 

  • Schlüenzen, H., Bigalke, K., Niemeier, U., Von Salzen, K. (1995) The mesoscale transport- and fluid-model METRAS — model concept, model realization, METRAS Tech. Rep. No 1, Meteorologische Institute, Universität Hamburg, 173 p.

    Google Scholar 

  • Soliman, B.F. (1976) A study of wind pressure forces acting on groups of buildings, PhD thesis, University of Sheffield, UK.

    Google Scholar 

  • Stockwell, W.R., Middleton, P., Chang, J.S., Tang, X. (1990) J. Geophys. Res., 95, 16343–16367.

    Article  CAS  Google Scholar 

  • Stull, R.B. (1988) An introduction to boundary layer meteorology, Kluwer Academic Publishers.

    Book  Google Scholar 

  • Thielen, J., Wobrock, W., Mestayer, P.G., Creutin, J.-D. (1996) The influence of surface parameters on rainfall development in meso-y scale models: a sensitivity study. 12th Int. Conference On Clouds and Precipitation, 19–23 Aug., Zurich, Switzerland.

    Google Scholar 

  • Thorn, A.S. (1971) Momentum absorption by vegetation, Q. J. Roy. Meteorol. Soc, 97, 414–428.

    Article  Google Scholar 

  • Thunis, P., Bornstein, R. (1996) Hierachy of mesoscale flow assumptions and equations, J. Atmospheric Sciences, 53, 380–397.

    Article  Google Scholar 

  • Todhunter, P.E., Terjung, W.H. (1988) Intercomparison of three urban climate models, Boundary-Layer Meteorology, 42, 181–205.

    Article  Google Scholar 

  • Zang, Y., Street, R.L., Kosef, J.R. (1993) A dynamic mixed subgrid scale model and its application to turbulent recirculation flows, Physics of Fluids, A5, 3186–3196.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Mestayer, P.G. (1998). Urban Scale Models. In: Fenger, J., Hertel, O., Palmgren, F. (eds) Urban Air Pollution — European Aspects. Environmental Pollution, vol 1. Springer, Dordrecht. https://doi.org/10.1007/978-94-015-9080-8_11

Download citation

  • DOI: https://doi.org/10.1007/978-94-015-9080-8_11

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-5147-9

  • Online ISBN: 978-94-015-9080-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics