Skip to main content

Abstract

Rice fields are considered to be among the highest sources of atmospheric methane, an important source of global warming. In order to meet the projected rice needs of the increasing world population, it is estimated that the annual world’s rough rice production must increase to 760 million tons (a 65% increase) in the next 30 years. This will increase methane emissions from rice-fields if current technologies are kept. Methane emissions from ricefields are affected by climate, water regime, soil properties, and various cultural practices like irrigation and drainage, organic amendments, fertilization, and rice cultivars. Irrigated rice comprises 50% of the world-harvested rice area and contributes 70% to total rice production. Because of assured flooding during the growing period it is the primary source of methane. Rainfed rice emits less methane due to periods of droughts. Upland rice, being never flooded for a significant period of time, is not a significant source of methane. There is great potential to develop ‘no regret’ mitigation options that are in accordance with increasing rice production.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abram, J. W. and Nedwell, D. B.: 1978, ‘Inhibition of Methanogenesis by Sulfate Reducing Bacteria Competing from Transferred Hydrogen’, Arch. Microbiol. 117, 89–92.

    Article  Google Scholar 

  • Aselmann, I. and Crutzen, P. J.: 1989, ‘The Global Distribution of Natural Freshwater Wetlands and Rice Paddies, Their Net Primary Productivity, Seasonality and Possible Methane Emission’, J. Atm. Chem. 8, 307–358.

    Article  Google Scholar 

  • Balderstone, W. L. and Payne, W. J.: 1976, ‘Inhibition of Methanogenesis in Salt Marsh Sediments and Whole-Cell Suspensions of Methanogenic Bacteria by Nitrogen Oxides’, Appl. Environ. Microbiol. 32, 264–269.

    Google Scholar 

  • Bingemer, H. G. and Crutzen, P. J.: 1987, ‘The Production of Methane from Solid Wastes’, J. Geophys. Res. 92(D), 2181–2187.

    Article  Google Scholar 

  • Blake, D. R. and Rowland, F. S.: 1988, ‘Continuing Worldwide Increase in Tropospheric Methane, 1978 to 1987’, Science 239, 1129–1131.

    Article  Google Scholar 

  • Bouwman, A. F.: 1990, ‘Exchange of Greenhouse Gases Between Terrestrial Ecosystems and the Atmosphere’, in Bouwman, A. F. (ed.), Soil and the Greenhouse Effect, John Wiley and Sons, pp. 62–127.

    Google Scholar 

  • Bremner, J. M. and Blackmer, A. M.: 1982, ‘Composition of Soil Atmospheres’, in Methods of Soil Analysis, Part 2, Chemical and Microbiological Properties, Agronomy Monograph No. 9, 873–901.

    Google Scholar 

  • Bronson, K. F. and Mosier, A. R.: 1991, ‘Effect of Encapsulated Calcium Carbide on Dinitrogen, Nitrous Oxide, Methane and Carbon Dioxide Emissions from Flooded Rice’, Biol. Fertil Soils 3, 116–120.

    Article  Google Scholar 

  • Butterbach-Bahl, K.: 1992, ‘Mechanisms of Production and Emission of Methane in Rice Fields’, Dissertation. Technical University Munich, Germany, in German.

    Google Scholar 

  • Cicerone, R. J. and Oremland, R. S.: 1988, ‘Biogeochemical Aspects of Atmospheric Methane’, Glob. Biogeochem. Cycl. 2, 299–327.

    Article  Google Scholar 

  • Cicerone, R. J. and Shetter, J. D.: 1981, ‘Sources of Atmospheric Methane: Measurements in Rice Paddies and a Discussion’, J. Geophys. Res. 86, 7203–7209.

    Article  Google Scholar 

  • Cicerone, R. J., Shetter, J. D., and Delwiche, C. C.: 1983, ‘Seasonal Variation of Methane Flux from a California Rice Paddy’, J. Geophys. Res. 88, 7203–7209.

    Google Scholar 

  • Conrad, R.: 1989, ‘Control of Methane Production in Terrestrial Ecosystems’, in Exchange of Trace Gases between Terrestrial Ecosystems and the Atmosphere, Andreae, M. O. and Schimel, D. S. (eds.), pp. 39–58.

    Google Scholar 

  • Craig, H. and Chou, C. C.: 1982, ‘Methane: The Record in Polarice Core’, Geophys. Res. Lett. 9, 1221–1224.

    Article  Google Scholar 

  • Crutzen, P. J.: 1985, The Role of the Tropics in Atmospheric Chemistry’, in Geophysiology of Amazonia, Dickinson, R. (ed.), J. Wiley, Chichester, pp. 107–132.

    Google Scholar 

  • Dickinson, R. E. and Cicerone, R. J.: 1986, ‘Future Global Warming from Atmospheric Trace Gases’, Nature 319, 109–115.

    Article  Google Scholar 

  • Ehhalt, D. H. and Schmidt, U.: 1978, ‘Sources and Sinks of Atmospheric Methane’, Pure Appl Geophys. 116, 452–464.

    Article  Google Scholar 

  • Graedel, T. E. and McRae, J. E.: 1980, ‘On the Possible Increase of the Atmospheric Methane and Carbon Monoxide Concentrations During the Last Decade’, Geophys. Res. Lett. 7, 977–979.

    Article  Google Scholar 

  • Holzapfel-Pschorn, A. and Seiler, W.: 1986, ‘Methane Emission during a Cultivation Period from an Italian Rice Paddy’, J. Geophys. Res. 91, 11803–11814.

    Article  Google Scholar 

  • Holzapfel-Pschorn, A., Conrad, R., and Seiler, W.: 1985, ‘Production, Oxidation, and Emission of Methane in Rice Paddies’, FEMS Microbiol. Ecol. 31, 343–351.

    Article  Google Scholar 

  • IRRI (International Rice Research Institute): 1991, ‘World Rice Statistics 1990’, P.O. Box 933, Manila, Philippines.

    Google Scholar 

  • IRRI (International Rice Research Institute): 1993, ‘Program report for 1992’, P.O. Box 933, Manila, Philippines.

    Google Scholar 

  • Khalil, M. A. K. and Rasmussen, R. A.: 1983, ‘Sources, Sinks and Seasonal Cycles of Atmospheric Methane’, J. Geophys. Res. 88, 5131–5144.

    Article  Google Scholar 

  • Khalil, M. A. K. and Rasmussen, R. A.: 1989, ‘Climate Induced Feedback for the Global Cycles of Methane and Nitrous Oxide’, Tellus 41B, 554–559.

    Google Scholar 

  • Khalil, M. A. K., Rasmussen, R. A., Wang, M. X., and Ren, L.: 1991, ‘Methane Emission from Rice fields in China’, Environ. Sci. Technol. 25, 979–981.

    Article  Google Scholar 

  • Koyama, T.: 1964, ‘Biogeochemical Studies on Lake Sediments and Paddy Soils and the Production of Hydrogen and Methane’, Recent Researches in the Field of Hydrosphere. Atm. Geochem. Miyazaki, T. and Koyama, T. (eds.), Maruzen, Tokyo, pp. 143–177.

    Google Scholar 

  • Kumagi, K., Yagi, K., Tsuruta, H., and Minami, K.: 1993, ‘Emission, Production and Oxidation of Methane from Japanese Paddy Fields’, Jpn. J. Soil Sci. Plant Nutr., in press.

    Google Scholar 

  • Lindau, C. W., Bollich, P. K., DeLaune, R. D., Patrick, W. H. Jr., and Law, V. J.: 1991, ‘Effect of Urea Fertilizer and Environmental Factors on CH4 Emissions from a Louisiana, U.S.A. Rice field’, Plant Soil 136, 195–203.

    Article  Google Scholar 

  • Lindau, C. W., Bollich, P. K., DeLaune, R. D., Mosier, A. L., and Bronson, K. F.: 1993, ‘Methane Mitigation in Flooded Louisiana Rice Fields’, Biol. Fert. Soils, in press.

    Google Scholar 

  • Matthews, E., Fung, I., and Lerner, J.: 1991, ‘Methane Emission from Rice Cultivation; Geographic and Seasonal Distribution of Cultivated Areas and Emissions’, Glob. Biogeochem. Cycl. 5, 3–24.

    Article  Google Scholar 

  • Minami, K. and Yagi, K.: 1988, ‘Method for Measuring Methane Flux from Rice Paddies’, Jpn. J. Soil Sci. Plant Nutr. 59, 458–463, in Japanese.

    Google Scholar 

  • Neue, H. U.: 1991, ‘A Holistic View of the Chemistry of Flooded Soils’, pp. 5–32 in Soil Management for Sustainable Rice Production in the Tropics, International Board for Soil Research and Management, IBSRAM Monograph No. 2.

    Google Scholar 

  • Neue, H. U. and Bloom, P. R.: 1989, ‘Nutrient Kinetics and Availability in Flooded Soils’, pp. 173–190 in Progress in Irrigated Rice Research, International Rice Research Institute, P.O. Box 933, Manila, Philippines.

    Google Scholar 

  • Neue, H. U. and Scharpenseel, H. W.: 1984, ‘Gaseous Products of the Decomposition of Organic Matter in Submerged Soils’, pp. 311–328 in Organic Matter and Rice, International Rice Research Institute, P.O. Box 933, Manila, Philippines.

    Google Scholar 

  • Neue, H. U., Becker-Heidmann, P., and Scharpenseel, H. W: 1990, ‘Organic Matter Dynamics, Soil Properties, and Cultural Practices in Rice Lands and Their Relationship to Methane Production’, pp. 457–466 in Bouwman, A. F. (ed.), Soils and the Greenhouse Effect, John Wiley and Sons, Chichester.

    Google Scholar 

  • Neue, H. U. and Roger, P. A.: 1993, ‘Rice Agriculture: Factors Controlling Emissions’, pages 254–298, in Khalil, M. A. K. (ed.), The Global cycle of Methane: Sources, Sinks, Distribution and Role in Global Change, NATO Advanced Science Series, Springer Verlag, Berlin.

    Chapter  Google Scholar 

  • Neue, H. U., Lantin, R. S., Wassmann, R., Aduna, J. B., Alberto, M. C. R., and Andales, J. F.: 1994, ‘Methane Emission from Rice Soils of the Philippines’, in Methane and Nitrous Oxide Emission from Natural and Anthropogenic Sources, National Institute of Agro-Environmental Sciences (NIAES), Japan, in press.

    Google Scholar 

  • Nouchi, I., Mariko, S., and Aoki, K.: 1990, ‘Mechanisms of Methane Transport from the Rhizosphere to the Atmosphere through Rice Plant’, Plant Physiol. 94, 59–66.

    Article  Google Scholar 

  • Parashar, D., Rai, C. J., Gupta, P. K., and Singh, N.: 1991, ‘Parameters Affecting Methane Emission from Paddy Fields’, Indian J. Radio Space Physics 20, 12–17.

    Google Scholar 

  • Patrick, W. H. Jr., and DeLaune, R. D.: 1977, ‘Chemical and Biological Redox Systems Affecting Nutrient Availability in the Coastal Wetlands’, Geosci. Man. 28, 131–137.

    Google Scholar 

  • Patrick, W. H. Jr.: 1981, ‘The Role of Inorganic Redox Systems in Controlling Reduction in Paddy Soils’, in Proc. Symp. Paddy Soil, 107–117, Science Press, Beijing, Spring Verlag.

    Chapter  Google Scholar 

  • Ponnamperuma, F. N.: 1972, ‘The Chemistry of Submerged Soils’, Adv. Agron. 24, 29–96.

    Article  Google Scholar 

  • Ponamperuma, F. N.: 1984, ‘Effects of Flooding on Soils’, pp. 9–45 in Kozlowski, T. T. (ed.), Flooding and Plant Growth, Academic Press, New York.

    Google Scholar 

  • Ramanathan, V., Cicerone, R. J., Singh, H. B., and Kiehl, J. T.: 1985, ‘Trace Gas Trends and Their Potential Role in Climate Change’, J. Geophys. Res. 90(D), 5547–5566.

    Article  Google Scholar 

  • Rasmussen, R. A. and Khalil, M. A. K.: 1981, ‘Increase in the Concentration of Atmospheric Methane’, Atmos. Environ. 15, 883–886.

    Article  Google Scholar 

  • Rasmussen, R. A. and Khalil, M. A. K.: 1984, ‘Atmospheric Methane in the Recent and Ancient Atmospheres: Concentrations, Trends and Interhemispheric Gradient’, J. Geophys. Res. 89(D), 11599–11605.

    Article  Google Scholar 

  • Rowland, F. S.: 1991, ‘Stratospheric Ozone in the 21st Century, The Chlorofluorocarbon Problem’, Environ. Sci. Technol. 25, 622–628.

    Article  Google Scholar 

  • Sass, R. L., Fisher, F. M., Harcombe, P. A., and Turner, F. T.: 1990, ‘Methane Production and Emission in a Texas Rice Field’, Glob. Biogeochem. Cycl. 4, 47–68.

    Article  Google Scholar 

  • Sass, R. L., Fisher, F. M., Turner, F. T., and Jund, M. F.: 1991, ‘Methane Emission from Rice Fields as Influenced by Solar Radiation, Temperature, and Straw Incorporation’, Glob. Biogeochem. Cycl 5, 335–350.

    Article  Google Scholar 

  • Schütz, H., Holzapfel-Pschorn, A., Conrad, R., Rennenberg, H., and Seiler, W.: 1989a, ‘A Three-Year Continuous Record on the Influence of Daytime Season and Fertilizer Treatment on Methane Emission Rates from an Italian Rice Paddy Field’, J. Geophys. Res. 94, 16405–16416.

    Article  Google Scholar 

  • Schütz, H., Seiler, W., and Conrad, R.: 1989b, ‘Processes Involved in Formation and Emission of Methane in Rice Paddies’, Bio geochemistry 7, 33–53.

    Google Scholar 

  • Schütz, H., Seiler, W., and Rennenberg, H.: 1990, ‘Soil and Land Use Related Sources and Sinks of Methane in the Context of the Global Methane Budget’, pp. 268–285 in Bouwman, A. F. (ed.), Soils and the Greenhouse Effect, John Wiley and Sons, Ltd., New York.

    Google Scholar 

  • Seiler, W.: 1984, ‘Contribution of Biological Processes to the Global Budget of CH4 in the Atmosphere’, pp. 468–477 in Kleig, M. J. and Reddy, C. A. (eds.), Current Perspectives in Microbial Ecology, American Society of Microbiology, Washington, DC.

    Google Scholar 

  • Seiler, W. and Conrad, R.: 1987, Contribution of Tropical Ecosystems to the Global Budget of Trace Gases Especially CH4, H2, CO and N2O, pp. 133–162 in The Geography of Amazonia: Vegetation and Climate Interactions, Dickinson, R. E. (ed.), Wiley, New York.

    Google Scholar 

  • Seiler, W., Holzapfel-Pschorn, A., Conrad, R., and Scharffe, D.: 1984, ‘Methane Emissions from Rice Paddies’, J. Atmos. Chem. 1, 241–268.

    Article  Google Scholar 

  • Sheppard, J. C., Westberg, H., Hopper, J. F., Ganesan, K., and Zimmerman, P.: 1982, ‘Inventory of Global Methane Sources and Their Production Rates’, J. Geophys. Res. 87(C), 1305–1312.

    Article  Google Scholar 

  • Takai, Y.: 1970, ‘The Mechanism of Methane Fermentation in Flooded Paddy Soil’, Soil Sci. Plant Nutr. 16, 238–244.

    Article  Google Scholar 

  • Takai, Y.: 1980, ‘Microbial Study on the Behavior of the Paddy Soils’, Fert. Sci. 3, 17–55, in Japanese.

    Google Scholar 

  • Takai, Y., Koyama, T., and Kamura, T.: 1956, ‘Microbial Metabolism in Reduction Process of Paddy Soils (Part 1)’, Soil Plant Food 2, 63–66.

    Article  Google Scholar 

  • Thompson, A. M. and Cicerone, R. J.: 1986, ‘Possible Perturbations to Atmospheric CO, CH4 and OH’, 7. Geophys. Res. 91(D), 10858–10864.

    Article  Google Scholar 

  • Wang, M. X., Dai, A., Shen, R. X., Wu, H. B., Schütz, H., Rennenberg, H., and Seiler, W.: 1990, ‘CH4 Emission from a Chinese Rice Paddy Field’, Acta Meteorol. Sin. 4, 265–275.

    Google Scholar 

  • Wang, W. C., Yung, Y. L., Lacis, A. A., Mo, J. E., and Hansen, J. E.: 1976, ‘Greenhouse Effects due to Man-Made Perturbations of Trace Gases’, Science 194, 685–690.

    Article  Google Scholar 

  • Wang, Z. P., DeLaune, R. D., Masscheleyn, P. H., Patrick, W. H. Jr.: 1993, ‘Soil Redox and pH Effects on Methane Production in a Flooded Rice Soil’, Soil Sci. Soc. Am. J., in press.

    Google Scholar 

  • Ward, D. M. and Winfrey, M. R.: 1985, ‘Interactions between Methanogenic and Sulfate-Reducing Bacteria in Sediments’, Adv. Aquatic Microbiol. 3, 141–179.

    Google Scholar 

  • Watson, R. T., Rode, H., Oeschger, H., and Siegenthaler, U.: 1990, ‘Greenhouse Gases and Aerosol’, in Houghton, J. T., Jenkins, G. J., and Ephraums, J. J. (eds.), Climate Change, the IPCC Scientific Assessment, Cambridge Univ., New York 1–40.

    Google Scholar 

  • Watson, R. T., Meira Filho, L. G., Sanhueza, E., and Janetos, A.: 1992, ‘Greenhouse Gases; Sources and Sinks’, in Houghton, J. T., Callander, B. A., and Varney, S. K. (eds.), Climate Change 1992, The Supplementary Reports on the IPCC Scientific Assessment, Cambridge Univ., New York, pp. 25–46.

    Google Scholar 

  • Williams, R. T. and Crawford, R. L.: 1985, ‘Methanogenic Bacteria Including an Acid Tolerant Strain from Peatlands’, Appl. Environ. Microbiol. 50, 1542–1544.

    Google Scholar 

  • Yagi, K. and Minami, K.: 1990a, ‘Effect of Organic Matter Application on Methane Emission from Some Japanese Paddy Fields’, Soil Sci. Plant Nutr. 36, 599–610.

    Article  Google Scholar 

  • Yagi, K. and Minami, K.: 1990b, ‘Estimation of Global Methane Emission from Paddy Fields’, Res. Rep. Div. Environ. Planning, NIAES, 6, 131–142.

    Google Scholar 

  • Yagi, K. and Minami, K.: 1992, ‘Spatial and Temporal Variations of Methane Flux from a Rice Paddy Field’, 10th Int. Symp. Environ. Biogeochem., in press.

    Google Scholar 

  • Yagi, K., Tsuruta, H., and Minami, K.: 1992, ‘Methane Emission from Japanese and Thai Paddy Fields’, CH4 and N2O Workshop, Tsukuba, in press.

    Google Scholar 

  • Yamane, I. and Sato, K.: 1961, ‘Effect of Temperature on the Formation of Gases and Ammonium Nitrogen in the Water-Logged Soils’, Sci. Rep. Res. Inst. Tohoku Univ. D(Agr.) 12, 31–46.

    Google Scholar 

  • Yamane, I. and Sato, K.: 1963, ‘Decomposition of Plant Constituents and Gas Formation in Flooded Soil’, Soil Sci. Plant Nutr. 9, 28–31.

    Article  Google Scholar 

  • Yamane, I. and Sato, K.: 1964, ‘Decomposition of Glucose and Gas Formation in Flooded Soil’, Soil Sci. Plant Nutr. 10, 127–133.

    Article  Google Scholar 

  • Yoshida, T.: 1978, ‘Microbial Metabolism in Rice soils’, in Soils and Rice, Int. Rice Res. Inst., 445–463.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Minami, K., Neue, HU. (1994). Rice Paddies as a Methane Source. In: White, D.H., Howden, S.M. (eds) Climate Change: Significance for Agriculture and Forestry. Springer, Dordrecht. https://doi.org/10.1007/978-94-015-8328-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-94-015-8328-2_3

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-4426-6

  • Online ISBN: 978-94-015-8328-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics