Skip to main content

Part of the book series: NATO ASI Series ((ASII,volume 13))

Abstract

Recent atmospheric measurements indicate that concentrations of greenhouse gases are increasing. Atmospheric methane concentration has increased at about 1% annually to 1.7 ppmV during the last decades (Khalil and Rasmussen, 1987). The resulting effect on global temperature is highly significant because the warming efficiency of methane is up to 30 times that of carbon dioxide (Dickinson and Cicerone, 1986). Data from polar ice cores indicate that tropospheric methane concentrations have increased by a factor of 2–3 over the past 200–300 years (Khalil and Rasmussen, 1989). The increase of methane concentrations in the troposphere correlate closely with global population growth and increased rice production (Figure 1), suggesting a strong link to anthropogenic activities. The total annual global emission of methane is estimated to be 420–620 Tg/yr (Khalil and Rasmussen, 1990), 70–80% of which is of biogenic origin (Bouwman, 1990). Methane emissions from wetland rice agriculture have been estimated up to 170 Tg/yr, which account for approximately 26% of the global anthropogenic methane budget. Flooded ricefields are probably the largest agricultural source of methane, followed by ruminant enteric digestion, biomass burning, and animal wastes (summarized by Bouwman, 1990).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abram, J.W., D.B. Nedwell. 1978. Inhibition of methanogenesis by sulfate reducing bacteria competing for transferred hydrogen. Arch. Microbiol., 117: 89–92.

    PubMed  CAS  Google Scholar 

  2. Acharya, C.N. 1935. Studies on the anaerobic decomposition of plant materials. II. Some factors influencing the anaerobic decomposition. Biochem. J., 29: 953–960.

    PubMed  CAS  Google Scholar 

  3. Alperin, M.J., W.S. Reeburgh. 1984. Geochemical observations supporting anaerobic methane oxidation. In: Microbial Growth on C-1 Compounds ( R.L. Crawford and R.S. Hanson, eds.), American Society of Microbiology, Washington D.C. p. 282–289.

    Google Scholar 

  4. Anthony, C. 1982. The Biochemistry of Methylotrophs. Academic Press, San Diego California.

    Google Scholar 

  5. Aselmann, I., Crutzen, P.J. 1990. Global inventory of wetland distribution and seasonality net primary production and estimated methane emission. In: Soils and the Greenhouse Effect ( A.F. Bouwman, ed.), John Wiley & Sons, Chichester, England, p 441–450.

    Google Scholar 

  6. Bachelet, D., H.U. Neue. 1993. Methane emissions from wetland rice areas of Asia. Chemosphere, 26 (1–4): 219–246.

    CAS  Google Scholar 

  7. Balderston, W.L., W.J. Payne. 1976. Inhibition of methanogenesis in salt marsh sediments and whole-cell suspensions of methanogenic bacteria by nitrogen oxides. Appl. Environ. Microbiol., 32: 264–269.

    PubMed  CAS  Google Scholar 

  8. Bartlett, K.B., D.S. Bartlett, R.C. Harriss, D.I. Sebacher. 1987. Methane emissions along a salt marsh salinity gradient. Biogeochemistry, 4: 183–202.

    CAS  Google Scholar 

  9. Belay, N.R., R. Sparling, L. Daniels. 1984. Dinitrogen fixation by a thermophilic methanogenic bacterium. Nature, 312: 286–288.

    PubMed  CAS  Google Scholar 

  10. Biavati, B., M. Vasta, J.G. Ferry. 1988. Isolation and characterization of Methanosphaera cuniculi sp.nov. Appl. Environ. Microbiol., 54: 786–771.

    Google Scholar 

  11. Blotevogel, K.H., U. Fischer, M. Mocha, S. Jannsen. 1985. Methanobacterium thermoalcapiphilum sp. nov. a new moderately alkaliphilic and thermophilic autotrophic methanogen. Arch. Microbiol., 142: 211–217.

    CAS  Google Scholar 

  12. Bolle, H.J., W. Seiler, B. Bolin. 1986. Other greenhouse gases and aerosols, assessing their role for atmospheric radiative transfer. In: The Greenhouse Effect, Climatic Change, and Ecosystems ( B. Bolin, B.R. Döös, J. Jäger, and R.A. Warrick, eds.), Chichester, New York, Brisbane, Toronto, Singapore, Wiley and Sons; p 157–203.

    Google Scholar 

  13. Bonneau, M. 1982. Soil temperature. In: Constituents and Properties of Soils ( M. Bonneau and B. Souchier, eds.), Academic Press, London, England, p 366–371.

    Google Scholar 

  14. Bont, J.A.M. de, K.K. Lee, D.F. Bouldin. 1978. Bacterial oxidation of methane in rice paddy. Ecol. Bull., 26: 91–96.

    Google Scholar 

  15. Borrell, A.K., S. Fukai, A.L. Garside. 1991. Irrigation methods for rice in tropical Australia. Int. Rice Res. Newsl., 16 (3): 28.

    Google Scholar 

  16. Bouwman, A.F. 1990. Soils and the Greenhouse Effect. (A.F. Bouwman, ed.), John Wiley.

    Google Scholar 

  17. Bronson, K.F., A.R. Mosier. 1991. Effect of encapsulated calcium carbide on dinitrogen, nitrous oxide, methane and carbon dioxide emissions in flooded rice. Biology and Fertility of Soils, 3: 116–120.

    Google Scholar 

  18. Buresh, R.J., S.K. De Datta. 1991. Nitrogen dynamics and management in rice-legume cropping systems. Adv. Agron., 45: 1–59.

    CAS  Google Scholar 

  19. Capistrano, R.F. 1988. Decomposition of 14C-labelled rice straw in 3 submerged soils under controlled laboratory conditions. M.S. thesis, University of the Philippines at Los Banos Laguna, Philippines.

    Google Scholar 

  20. Cappenberg, T.E. 1974. Interrelations between sulfate-reducing and methane-producing bacteria in bottom deposits of a fresh-water lake. I. Field observation. Anton. Leeuwenhoek J. Microbiol. Serol., 40: 285–295.

    CAS  Google Scholar 

  21. Cappenberg, T.E., R.A. Prins. 1974. Interrelations between sulfate-reducing and methane-producing bacteria in bottom deposits of a fresh-water lake. III. Experiments with 14C-labelled substrates. Anton. Leeuwenhoek J. Microbiol. Serol., 40: 457–469.

    CAS  Google Scholar 

  22. Cho, D.Y., F.N. Ponnamperuma. 1971. Influence of soil temperature on the chemical kinetics of flooded soils and the growth of rice. Soil Sci., 112: 184–194.

    CAS  Google Scholar 

  23. Cicerone, R.J., R.S. Oremland. 1988. Biogeochemical aspects of atmospheric methane. Global Biogeochem. Cycles, 2: 299–327.

    CAS  Google Scholar 

  24. Conrad, R. 1989. Control of methane production in terrestrial ecosystems. In: Exchange of Trace Gases Between Terrestrial Ecosystems and the Atmosphere ( M.O. Andreae and D.S. Schimel, eds.), S. Bernhard Dahlem Konferenzen. Wiley, New York, p 39–58.

    Google Scholar 

  25. Conrad, R., R. Bonjour, M. Aragno. 1985. Aerobic and anaerobic microbial consumption of hydrogen in geothermal spring water. FEMS Microbiol. Lett., 29: 201–206.

    CAS  Google Scholar 

  26. Conrad, R., H.P. Mayer, M. Wüst. 1989. Temporal change of gas metabolism by hydrogen-syntrophic methanogenic bacterial association in anoxic paddy soil. FEMS Microbiol. Ecol., 62: 265–274.

    CAS  Google Scholar 

  27. Crawford, R.L., R.S. Hanson (eds.) 1984. Microbial growth on Cl compounds. Proceedings of the 4th International Symposium American Society for Microbiology, Washington D.C.

    Google Scholar 

  28. De Datta, S.K. 1981. Principles and Practices of Rice Production. John Wiley and Sons New York USA.

    Google Scholar 

  29. De Datta, S.K. 1987. Advances in soil fertility research and nitrogen fertilizer management for lowland rice. In: Efficiency of Nitrogen Fertilizer for Rice. International Rice Research Institute, P.O. Box 933, Manila, Philippines, p 27–41.

    Google Scholar 

  30. De Datta, S.K., W.H. Patrick (eds.). 1986. Nitrogen economy of flooded rice soils. Development in Plant and Soil Sciences. Martin Nijhoff Publication, Dodrecht, The Netherlands.

    Google Scholar 

  31. De Laune, R.D., E.J. Smith, W.H. Patrick. 1983. Methane release from Gulf Coast wetlands. Tellus, 35B:8–15.

    Google Scholar 

  32. Dent, D. 1986. Acid sulfate soils: a baseline for research and development. ILRI Publication 39. Wageningen, The Netherlands.

    Google Scholar 

  33. Dickinson, R.E., R.J. Cicerone. 1986. Future global warming from atmospheric trace gases. Nature, 319:109–115.

    CAS  Google Scholar 

  34. Dolfing, J. 1988. Acetogenesis. In: Biology of Anaerobic Microorganisms (A.J.B. Zehnder, ed.) Wiley, New York, p 417–468.

    Google Scholar 

  35. FAO — Food and Agriculture Organization. 1988. Quarterly Bulletin of Statistics. Vol. 1 No. 4. FAO, Rome, Italy.

    Google Scholar 

  36. Fillery, I.R.P., P.L.G. Vlek. 1986. Reappraisal of the significance of ammonia volatilization as a N loss mechanism in flooded ricefields. In: Development in Plant and Soil Sciences ( S.K. De Datta and W.H. Patrick, eds.), Martin Nijhoff Publ., Dodrecht, The Netherlands, p. 79–98.

    Google Scholar 

  37. Franklin, N.J., W.J. Wiebe, W.B. Whitman. 1988. Populations of methanogenic bacteria in Georgia salt marsh. Appl. Environ. Microbiol., 54: 1, 151–1, 157.

    CAS  Google Scholar 

  38. Garcia, J.L. 1990. Taxonomy and ecology of methanogens. FEMS Microbiol. Rev., 87: 297–308.

    Google Scholar 

  39. Garcia, J.L., M. Raimbault, V. Jacq, G. Rinaudo, P. Roger. 1974. Activities microbiennes dans les sols de rizieres du senegal: relations avec les proprietes physicochimiques et influence de la rhizosphere. Rev. Ecol. Biol., 11 (2): 169–185.

    CAS  Google Scholar 

  40. Greenland, D.J. 1985. Physical aspects of soil management for rice-based cropping systems. In: Soil Physics and Rice. International Rice Research Institute, P.O. Box 933, Manila, Philippines, p. 1–16.

    Google Scholar 

  41. Gupta, G.P. 1974. The influence of temperature on the chemical kinetics of submerged soils. Ph.D. thesis, Indian Agricultural Research Institute, New Delhi, India.

    Google Scholar 

  42. Hackman, Ch.W. 1979. Rice field ecology in Northeastern Thailand. The effect of wet and dry season on a cultivated aquatic ecosystem. In: Monogr. Biol., 34 (J. Illies, ed.), W. Junk Publisher, 22 p.

    Google Scholar 

  43. Harrison, W.H., P.A.S. Aiyer. 1913. The gases of swamp rice soil. I. Their composition and relationship to the crop. Memoires, Department of Agriculture, India. Chem. Ser., 5 (3): 65–104.

    Google Scholar 

  44. Higgins, I.J., D.J. Best, R.C. Hammond, D.C. Scott. 1981. Methane-oxidizing microorganisms. Microbiol. Rev., 45: 556–590.

    PubMed  CAS  Google Scholar 

  45. Holzapfel-Pschorn, A., W. Seiler. 1986. Methane emission during a cultivation period from an Italian rice paddy. J. Geophys. Res., 91: 11, 803–11, 814.

    Google Scholar 

  46. Holzapfel-Pschorn, A., R. Conrad, W.W. Seiler. 1985. Production oxidation and emission of methane in rice paddies. FEMS Microbiol. Ecol., 31: 343–351.

    CAS  Google Scholar 

  47. Holzapfel-Pschorn, A., R. Conrad R, W. Seiler. 1986. Effects of vegetation on the emission of methane from submerged paddy soil. Plant Soil, 92: 223–233.

    CAS  Google Scholar 

  48. Honya, K. 1966. Fundamental conditions for high yields of rice. [in Japanese]. Nobunkyo Publishing, Tokyo.

    Google Scholar 

  49. IRRI - International Rice Research Institute. 1964. Annual report for 1963. P.O. Box 933, Manila, Philippines, 201 p.

    Google Scholar 

  50. IRRI - International Rice Research Institute. 1981. Annual report for 1980. P.O. Box 933, Manila, Philippines, 306 p.

    Google Scholar 

  51. IRRI - International Rice Research Institute. 1989. IRRI toward 2000 and beyond. P. O. Box 933, Manila, Philippines.

    Google Scholar 

  52. IRRI - International Rice Research Institute. 1991. World rice statistics 1990. P. O. Box 933, Manila, Philippines.

    Google Scholar 

  53. Iversen, N., R.S. Oremland, M.J. Klug. 1987. Big Soda Lake (Nevada) 3 pelagic methanogenesis and anaerobic methane oxidation. Limnol. Oceanogr., 32: 804–814.

    CAS  Google Scholar 

  54. Iwata, S., S. Hasegawa, K. Adachi. 1986. Water flow balance and control in rice cultivation. In: Wetlands and Rice in Subsaharan Africa (A.S.R. Juo and J.A. Lowe, eds. ), IITA Ibadan Nigeria, p. 69–86.

    Google Scholar 

  55. Kanazawa, N. 1984. Trends and economic factors affecting organic manures in Japan. In: Organic Matter and Rice. International Rice Research Institute, P.O. Box 933, Manila Philippines, p 557–568.

    Google Scholar 

  56. Katyal, J.C. 1977. Influence of organic matter on chemical and electrochemical properties of some flooded soils. Soil Biol., 9: 259–266.

    CAS  Google Scholar 

  57. Kawaguchi, K., K. Kyuma. 1977. Paddy Soils in Tropical Asia: Their Material Nature and Fertility. The University Press of Hawaii, Honolulu, Hawaii, USA.

    Google Scholar 

  58. Khalil, M.A.K., R.A. Rasmussen. 1987. Atmospheric methane: trends over the last 10000 years. Atmos. Environ., 21 (11):2, 445–2, 452.

    CAS  Google Scholar 

  59. Khalil, M.A.K., R.A. Rasmussen. 1989. Climate induced feedback for the global cycles of methane and nitrous oxide. Tellus, 41B: 554–559.

    Google Scholar 

  60. Khalil, M.A.K., R.A. Rasmussen. 1990. Constraints on the global sources of methane and an analyses of recent budgets. Tellus, 428: 229–236.

    Google Scholar 

  61. Kiene, R.P., P.T. Visscher. 1987. Production and fate of methylated sulfur compounds from methionine and dimethylsulfoniopropionate in anoxic marine sediments. Appl. Environ. Microbiol., 53: 2, 426–2, 434.

    CAS  Google Scholar 

  62. King, G.M. 1984. Metabolism of trimethylamine choline and glycine betaine by sulfate-reducing and methanogenic bacteria in marine sediments. Appl. Environ. Microbiol., 48: 719–725.

    PubMed  CAS  Google Scholar 

  63. King, G.M. 1988. Methanogenesis from methylated amines in a hypersaline algal mat. Appl. Environ. Microbiol., 54: 130–136.

    PubMed  CAS  Google Scholar 

  64. Kondo, Y. 1952. Physiological studies on cool-weather resistance of rice varieties. Nogyo Gijutsi Kenkyusho Hokodu Di seiri Inde. Sakrimotsu Ippan (National Institute of Agriculture Science Bulletin Japan Series) D 3: 113–228.

    Google Scholar 

  65. Koyama, T., M. Hishida, T. Tomino. 1970. Influence of sea salts on the soil metabolism. II. On the gaseous metabolism. Soil Sci. Plant Nutr., 16: 81–86.

    CAS  Google Scholar 

  66. Krumböck, M., R. Conrad. 1991. Metabolism of position-labelled glucose in anoxic methanogenic paddy soil and lake sediment. FEMS Microbiol. Ecol., 85: 247–256.

    Google Scholar 

  67. Kundu, D.K. 1987. Chemical kinetics of aerobic soils and rice growth. Ph.D. thesis, Indian Agricultural Research Institute, New Delhi, India.

    Google Scholar 

  68. Kuwatsuka, S., K. Tsutsuki, K. Kumada. 1978. Chemical studies on humic acids. I. Elementary composition of humic acid. Soil Sci. Plant Nutr., 23: 337–347.

    Google Scholar 

  69. Li Shi-jun, Li Xue-yuan. 1981. Stagnancy of water in paddy soils under the triple cropping system and its improvement. In: Proceedings of Symposium on Paddy Soil. Institute of Soil Science. Academica Sinica, ed. Science Press, Beijing, and Springer-Verlag, Berlin, p. 509–516.

    Google Scholar 

  70. Lovley, D.R., M.J. Klug. 1983. Methanogenesis from methanol and from hydrogen and carbon dioxide in the sediments of a eutrophic lake. Appl. Environ. Microbiol., 45: 1, 310–1, 315.

    CAS  Google Scholar 

  71. Maesschalck, G.H., M. Verplancke, M. De Boodt. 1985. Water use and wateruse efficiency under different management systems for upland crops. In: Soil Physics and Rice. International Rice Research Institute, P.O. Box 933, Manila, Philippines, p. 397–408.

    Google Scholar 

  72. Martin, U., H.U. Neue, H.W. Scharpenseel, P.M. Becker. 1983. Anaerobe Zersetzung von Reisstroh in einem gefluteten Reisboden auf den Philippinen. Mitt. Dtsch. Bodenkd1 Gesellsch., 38: 245–250.

    Google Scholar 

  73. Mathrani, I.M., D.R. Boone, R.A. Mah, G.E. Fox, P.P. Lau. 1988. Methanohalophilus zhilinae sp.nov., an alkaliphilic halophilic methylotrophic methanogen. Int. J. Sys. Bacteriol., 38: 139–142.

    CAS  Google Scholar 

  74. Matsushima, S., T. Tanaka, T. Hoshino. 1964a. Analysis of yield-determining process and its application to yield prediction and culture improvement of lowland rice. LXX combined effect of air temperature and water temperature at different stages of growth on the grain yield and its components of rice plants. Proc. Crop Sci. Soc. Jpn., 33: 53–58.

    Google Scholar 

  75. Matsushima, S., T. Tanaka, T. Hoshino. 1964b. Analysis of yield-determining process and its application to yield prediction and culture improvement of lowland rice. LXX combined effect of air temperature and water temperature at different stages of growth on the growth and morphological characteristics of rice plants. Proc. Crop Sci. Soc. Jpn., 33: 135–140.

    Google Scholar 

  76. McBride, B.C., R.S. Wolfe. 1971. Inhibition of methanogenesis by DDT. Nature, 234: 551.

    PubMed  CAS  Google Scholar 

  77. Miller, T.L., M.J. Wolin. 1985. Methanosphaera stadtmaniae gen.nov.sp.nov.: a species that forms methane by reducing methanol with hydrogen. Arch. Microbiol., 141: 116–122.

    PubMed  CAS  Google Scholar 

  78. Mitsch, W.J., J.G. Gosselink. 1986. Wetlands. Van Nostrand Reinhold Company New York, USA.

    Google Scholar 

  79. Moormann, F.R., N. Van Breemen. 1978. Rice: Soil Water Land. International Rice Research Institute, P.O. Box 933, Manila, Philippines.

    Google Scholar 

  80. Murray, P.A., S.H. Zinder. 1984. Nitrogen fixation by a methanogenic bacterium. Nature, 312: 284–286.

    CAS  Google Scholar 

  81. Murrell, J.C., H. Dalton. 1983. Nitrogen fixation in obligate methanotrophs. J. Gen. Microbiol., 129: 3, 481–3, 486.

    CAS  Google Scholar 

  82. Nagarajah, S., H.U. Neue, M.C.R. Alberto. 1989. Effect of Sesbania Azolla and rice straw incorporation on the kinetics of NH4, K, Fe, Mn, Zn, and P in some flooded rice soils. Plant Soil, 116: 37–48.

    CAS  Google Scholar 

  83. Neue, H.U. 1985. Organic matter dynamics in wetland soils. In: Wetland Soils: Characterization, Classification and Utilization. International Rice Research Institute, P.O. Box 933, Manila, Philippines, p. 109–122.

    Google Scholar 

  84. Neue, H.U. 1988. Holistic view of chemistry of flooded soil. In: Proceedings of the First International Symposium on Paddy Soil Fertility, 6–13 December 1988. International Board for Soil Research and Management, Bangkok, p. 21–56.

    Google Scholar 

  85. Neue, H.U. 1989. Rice growing soils: Constraints utilization and research needs. Pages 1–14 in Classification and management of rice growing soils. FFFTC Book Series No. 39. Food and Fertilizer Technology Center for the ASPAC Region, Taiwan, R.O.C.

    Google Scholar 

  86. Neue, H.U. 1992. Agronomic practices affecting methane fluxes from rice cultivation. In: Trace Gas Exchange in a Global Perspective, Ecol. Bull. (Copenhagen), 42:174–182 (D.S. Ojima and B.H. Svensson, eds.).

    Google Scholar 

  87. Neue, H.U., H.W. Scharpenseel. 1984. Gaseous products of the decomposition of organic matter in submerged soils. In: Organic Matter and Rice. International Rice Research Institute, P.O. Box 933, Manila, Philippines, p. 311–328.

    Google Scholar 

  88. Neue, H.U., H.W. Scharpenseel. 1987. Decomposition pattern of 14C-labelled rice straw in aerobic and submerged rice soils of the Philippines. Science Total Environ., 62: 431–434.

    CAS  Google Scholar 

  89. Neue, H.U., P.R. Bloom. 1989. Nutrient kinetics and availability in flooded soils. In: Progress in Irrigated Rice Research. International Rice Research Institute, P.O. Box 933, Manila, Philippines, p 173–190.

    Google Scholar 

  90. Neue, H.U., P. Becker-Heidmann, H.W. Scharpenseel. 1990. Organic matter dynamics soil properties and cultural practices in ricelands and their relationship to methane production. In: Soils and the Greenhouse Effect ( A.F. Bouwman, ed.), John Wiley & Sons, Chichester, England, p. 457–466.

    Google Scholar 

  91. Oremland, R.S., S. Polcin. 1982. Methanogenesis and sulfatereduction:competitive and noncompetitive substrate in estuarine sediments. Appl. Environ. Microbiol., 44: 1, 270–1, 276.

    CAS  Google Scholar 

  92. Oremland, R.S., D.G. Capone. 1988. Use of “specific” inhibitors in biogeochemistry and microbial ecology. Adv. Microbiol. Ecol., 10: 285–383.

    CAS  Google Scholar 

  93. Oremland, R.S., L.M. Marsh, S. Polcin. 1982. Methane production and simultaneous sulfate reduction in anoxic salt marsh sediments. Nature (London), 296: 143–145.

    CAS  Google Scholar 

  94. Panganiban, A.T., T.E. Patt, W. Hart, R.S. Hanson. 1979. Oxidation of methane in the absence of oxygen in lake water samples. Appl. Environ. Microbiol., 37: 303–309.

    PubMed  CAS  Google Scholar 

  95. Parashar, D., C.J. Rai, P.K. Gupta, N. Singh. 1990. Parameters affecting methane emission from paddy fields. Indian J. Radio Space Physics, 20: 12–17.

    Google Scholar 

  96. Patel, G.B., L.A. Roth. 1977. Effect of sodium chloride on growth and methane production of methanogens. Can. J. Microbiol., 6: 893.

    Google Scholar 

  97. Patra, P.K. 1987. Influence of water regime on the chemical kinetics of soils and rice growth. Ph.D. thesis, Indian Agricultural Research Institute, New Delhi, India.

    Google Scholar 

  98. Patrick, W.H., Jr., C.N. Reddy. 1978. Chemical changes in rice soils. In: Soils and Rice. International Rice Research Institute, P.O. Box 933, Manila, Philippines, p 361–380.

    Google Scholar 

  99. Patrick, W.H., Jr., D.S. Mikkelsen, B.R. Wells. 1985. Plant nutrient behavior in flooded soil. In: Fertilizer Technology and Use, 3d Ed. Soil Science Society of America Madison Wisconsin.

    Google Scholar 

  100. Patt, T.E., G.C. Cole, J. Bland, R.S. Hanson. 1974. Isolation and characterisation of bacteria that grow on methane and organic compounds as sole source of carbon and energy. J. Bacteriol., 120: 955–964.

    PubMed  CAS  Google Scholar 

  101. Ponnamperuma, F.N. 1972. The chemistry of submerged soils. Adv. Agron., 24: 29–96.

    CAS  Google Scholar 

  102. Ponnamperuma, F.N. 1981. Some aspects of the physical chemistry of paddy soils. In: Proceedings of the Symposium of Paddy Soils. Science Press, Beijing People’s Republic of China, p 59–94.

    Google Scholar 

  103. Ponnamperuma, F.N. 1984a. Effects of flooding on soils. In: Flooding and Plant Growth (T.T. Kozlowski, ed.), Academic Press, New York, USA, p 9–45.

    Google Scholar 

  104. Ponnamperuma, F.N. 1984b. Straw as a source of nutrients for wetland rice. In: Organic Matter and Rice. International Rice Research Institute, P.O. Box 933, Manila, Philippines, p 117–136.

    Google Scholar 

  105. Ponnamperuma, F.N. 1985. Chemical kinetics of wetland rice soils relative to soil fertility. In: Wetland Soils: Characterization Classification and Utilization. International Rice Research Institute, P.O. Box 933, Manila, Philippines, p 71–89.

    Google Scholar 

  106. Raimbault, M. 1975. Etude de linfluence inhibitrice de l’acétylene sur la formation biologique du méthane dans un sol de riziére. Ann. MicrobioL (Inst. Pasteur), 126a: 217–258.

    Google Scholar 

  107. Raimbault, M. 1981. Inhibition de la formation de methane par l’acétylene chez Methananosarcina bakerii. Cah. ORSTOM, Ser. Biol., 43: 45–51.

    Google Scholar 

  108. Raimbault, M., G. Rinaudo, J.L. Garcia, M. Boureau. 1977. A device to study metabolic gases in the rice rhizosphere. BioL Biochem., 9: 193–196.

    CAS  Google Scholar 

  109. Rajagopal, B.S., N. Belay, L. Daniels. 1988. Isolation and characterization of methanogenic bacteria from rice paddies. FEMS Microbiol. Ecol., 53: 153–158.

    CAS  Google Scholar 

  110. Roger, P.A., I. Watanabe. 1984. Algae and aquatic weeds as source of organic matter and plant nutrients for wetland rice. In: Organic Matter and Rice. International Rice Research Institute, P.O. Box 933, Manila, Philippines, p. 147–168.

    Google Scholar 

  111. Roger, P.A., I.F. Grant, P.N. Reddy, I. Watanabe. 1987. The photosynthetic aquatic biomass in wetland ricefields and its effect on nitrogen dynamics. In: Efficiency of N Fertilizers for Rice. International Rice Research Institute, P.O. Box 933, Manila, Philippines, p 43–68.

    Google Scholar 

  112. Salvas, P.L., B.F. Taylor. 1980. Blockage of methanogenesis in marine sediments by the nitrification inhibitor 2-chloro-6-(trichloromethyl) pyridine (Nitrapin or N-serve) Curr. Microbiol., 4: 305.

    CAS  Google Scholar 

  113. Sass, R.L., F.M. Fischer, P.A. Harcombe, F.T. Turner. 1991. Methane production and emission in a Texas rice field. Global Biogeochem. Cycles, 4: 47–68.

    Google Scholar 

  114. Schink, B., J.G. Zeikus. 1980. Microbial methanol formation: a major end product of protein metabolism. Curr. Microbiol., 4: 387–389.

    CAS  Google Scholar 

  115. Schönheit, P., H. Keweloh, R.K. Thauer. 1981. Factor F420 degradation in Methanobacterium thermoautotrophicum during exposure to oxygen. FEMS Microbiol. Lett., 12: 347–349.

    Google Scholar 

  116. Schütz, H., A. Holzapfel-Pschorn, R. Conrad, H. Rennenberg, W. Seiler. 1989. A three-year continuous record on the influence of daytime season and fertilizer treatment on methane emission rates from an Italian rice paddy field. J. Geophys. Res., 94: 16, 405–16, 416.

    Google Scholar 

  117. Seiler, W. 1984. Contribution of biological processes to the global budget of CH4 in the atmosphere. In: Current Perspectives in Microbial Ecology ( M.J. Kleig and C.A. Reddy, eds.), American Society of Microbiology, Washington D.C., p 468–477.

    Google Scholar 

  118. Seiler, W., R. Conrad. 1987. Contribution of tropical ecosystems to the global budget of trace gases especially CH4 H2 CO and N2O. In: The Geography of Amazonia: Vegetation and Climate Interactions ( R.E. Dickinson, ed.), Wiley, N.Y., p 133–162.

    Google Scholar 

  119. Sequi, P., M. De Nobili, L. Leita L, G. Cerciguani. 1986. A new index of humification. Agrochemical, 30: 175–179.

    CAS  Google Scholar 

  120. Sharma, P.K., S.K. De Datta. 1985. Effects of puddling on soil physical properties and processes. In: Soil Physics and Rice. International Rice Research Institute, P.O. Box 933, Manila, Philippines, p 217–234.

    Google Scholar 

  121. Smith, J., H.U. Neue, G. Umali. 1987. Soil nitrogen and fertilizer recommendations for irrigated rice in the Philippines. Agric. Sys., 24: 165–181.

    Google Scholar 

  122. Smith, P.H., R.E. Hungate. 1958. Isolation and characterization of Methanobacterium ruminantium n.sp. J. BacterioL, 75: 713–718.

    PubMed  CAS  Google Scholar 

  123. Snitwongse, P., S. Pongpan, H.U. Neue. 1988. Decomposition of 14C-labelled rice straw in a submerged and aerated rice soil in Northeastern Thailand. In: Proceedings of the First International Symposium on Paddy Soil Fertility, 6–13 December 1988. International Board for Soil Research and Management, Bangkok, p 461–480.

    Google Scholar 

  124. Sposito, G. 1981. The Thermodynamics of Soil Solutions. Clarendon Press, Oxford.

    Google Scholar 

  125. Stone, B. 1990. Evolution and diffusion of agricultural technology in China. In: Sharing Innovation Global Perspectives on Food Agriculture and Rural Development (N.G. Kotler, (ed.), International Rice Research Institute, P.O. Box 933, Manila, Philippines, p 35–93.

    Google Scholar 

  126. Strayer, R.F., J.M. Tiedje. 1978. Kinetic parameters of the conversion of methane precursors to methane in hypereutrophic lake sediment. Appl. Environ. Microbiol., 36: 330–340.

    PubMed  CAS  Google Scholar 

  127. Svensson, B.H. 1984. Different temperature optima for methane formation when enrichments from acid peat are supplemented with acetate or hydrogen. Appl. Environ. Microbiol., 48: 389–394.

    PubMed  CAS  Google Scholar 

  128. Takai, Y. 1961. Reduction and microbial metabolism in paddy soils (3) [in Japanese English summary]. Nogyo Gijitsu (Agro. Technol.), 19: 122–126.

    Google Scholar 

  129. Takai, Y. 1970. The mechanism of methane fermentation in flooded soils. Soil Sci. Plant Nutr., 16: 238.

    CAS  Google Scholar 

  130. Takai, Y., T. Koyama, T. Kamura. 1956. Microbial metabolism in reduction process of paddy soil. Part I. Soil Plant Food, 2: 63–66.

    CAS  Google Scholar 

  131. Toukdarian, A.E., M.E. Lidstrom. 1984. Nitrogen metabolism in a new obligate methanotroph Methylosinus strain 6. J. Gen. Microbiol., 130: 1, 827–1, 837.

    Google Scholar 

  132. Tsuchiya, K., H. Wada, Y. Takai. 1986. Leaching of substances from paddy soils. 4. Water solubilization of inorganic components in submerged soils. Jpn. J. Soil Sci. Plant Nutr., 57 (6): 593–597.

    CAS  Google Scholar 

  133. Tsutsuki, K., S. Kuwatsuka. 1978. Chemical studies on soil humic acids. II. Composition of oxygen-containing functional groups of humic acids. Soil Sci. Plant Nutr., 24: 547–560.

    CAS  Google Scholar 

  134. Tsutsuki, K., K. Kumada. 1980. Chemistry of humic acids [in Japanese; English summary]. Fert. Sci., 3: 93–171.

    CAS  Google Scholar 

  135. Tsutsuki, K., F.N. Ponnamperuma. 1987. Behavior of anaerobic decomposition products in submerged soils. Effects of organic material amendment soil properties and temperature. Soil Sci. Plant Nutr., 33 (1): 13–33.

    CAS  Google Scholar 

  136. USDA - United States Department of Agriculture, Soil Conservation Service Soil Survey Staff (1975) Soil taxonomy: a basic system of soil classification for making and interpreting soil surveys. USDA Agric. Handb. 436. U.S. Government Printing Office, Washington, D.C.

    Google Scholar 

  137. Vogels, G.D., J.T. Keltjens, C. Van der Drift. 1988. Biochemistry of methane production. In: Biology of Anaerobic Microorganisms (A.J.B. Zehnder, ed. ), Wiley New York, p 707–770.

    Google Scholar 

  138. Wang, Zhaoqian. 1986. Rice-based systems in subtropical China. In: Wetlands and Rice in Subsaharan Africa (A.S.R. Juo and J.A. Lowe, eds.), IITA Ibadan Nigeria, p 195–206.

    Google Scholar 

  139. Ward, D.M., M.R. Winfrey. 1985. Interactions between methanogenic and sulfate-reducing bacteria in sediments. Adv. Aquatic Microbiol., 3: 141–179.

    Google Scholar 

  140. Watanabe, I. 1984. Use of green manures in Northeast Asia. In: Organic Matter and Rice. International Rice Research Institute, P.O. Box 933, Manila, Philippines, p 229–233.

    Google Scholar 

  141. Watanabe, I., P.A. Roger. 1985. Ecology of flooded ricefields. In: Wetland Soils: Characterization Classification and Utilization. International Rice Research Institute, P.O. Box 933, Manila, Philippines, p 229–246.

    Google Scholar 

  142. Whittenbury, R., K.A. Phillips, J.K. Wilkinson. 1970a. Enrichment isolation and some properties of methane-utilizing bacteria. J. Gen. Microbiol., 61: 205–218.

    PubMed  CAS  Google Scholar 

  143. Whittenbury, R., S.L. Davies, J.F. Davey. 1970b. Exospores and cysts formed by methane-utilizing bacteria. J. Gen. Microbiol., 61: 219–226.

    PubMed  CAS  Google Scholar 

  144. Whitton, B.A., J.A. Rother. 1988. Environmental features of deepwater ricefields in Bangladesh during the flood season. In: 1987 International Deepwater Rice Workshop. International Rice Research Institute, P.O. Box 933, Manila, Philippines, p 47–54.

    Google Scholar 

  145. Williams, R.T, R.L. Crawford. 1984. Methane production in Minnesota peatlands. Appl. Environ. Microbiol., 47: 1, 266–1, 271.

    CAS  Google Scholar 

  146. Williams, R.T., R.L. Crawford. 1985. Methanogenic bacteria including an acid tolerant strain from peatlands. Appl. Environ. Microbiol., 50: 1, 542–1, 544.

    CAS  Google Scholar 

  147. Winfrey, M.R, J.G. Zeikus. 1977. Effect of sulfate on carbon and electron flow during microbial methanogenesis in freshwater sediments. Appl. Environ. Microbiol., 33: 275–281.

    PubMed  CAS  Google Scholar 

  148. Worakit, S., D.R. Boone, R.A. Mah, M.E. Abdel-Samie, M.M. El-Halwagi. 1986. Methanobacterium alcaliphilum sp. nov. an H2-utilizing methanogen that grows at high pH values. Int. J. Syst. Bacteriol., 36: 380–382.

    Google Scholar 

  149. Yagi, K., K. Minami. 1990. Effects of organic matter application on methane emission from Japanese paddy fields. In: Soil and the Greenhouse Effects (A.F. Bouwman, ed. ), John Wiley, p 467–473.

    Google Scholar 

  150. Yamane, I., S. Sato. 1961. Effect of temperature on the formation of gases and ammonium nitrogen in the waterlogged soils. Rep. Inst. Agric. Res. Tokoku Univ., 12: 1–10.

    Google Scholar 

  151. Yoshida, S. 1981. Fundamentals of Rice Crop Science. International Rice Research Institute, P.O. Box 933, Manila, Philippines. 269 p.

    Google Scholar 

  152. Yu, T. 1985. Physical Chemistry of Paddy Soils. Springer-Verlag, Berlin. Zeikus, J.G., D.L. Henning. 1975. Methanobacterium arboriphilus sp.nov. an obligate anaerobe isolated from wetwood of living trees. Antonie van Leeuwenhoek. J. Microbiol. Serol., 41: 543–552.

    Google Scholar 

  153. Zhao, Y., D.R. Boone, R.A. Mah, J.E. Boone, L. Xun. 1989. Isolation and characterization of Methanocorpusculum labreanum sp.nov. from the LaBrea Tar Pits. Int. J. Syst. Bacteriol., 39: 10–13.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Neue, HU., Roger, P.A. (1993). Rice Agriculture: Factors Controlling Emissions. In: Khalil, M.A.K. (eds) Atmospheric Methane: Sources, Sinks, and Role in Global Change. NATO ASI Series, vol 13. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-84605-2_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-84605-2_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-84607-6

  • Online ISBN: 978-3-642-84605-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics