Skip to main content

Part of the book series: NATO ASI Series ((NSSE,volume 241))

Abstract

Rapid quenching of brittle materials gives rise to hierarchically ordered crack patterns. A scenario of thermal shock crack propagation can be derived: unstable propagation of several out of a great number of preexisting surface flaws leads to a transient state of cracks of nearly equal lengths and spacing. In the further process of stable multiple propagation, the progressive unloading among the cracks results in the formation of hierarchical patterns.

For equidistant parallel cracks, bifurcation and post-critical behaviour are analyzed by means of the boundary element method (BEM) applied to the exact fracture mechanical problem. Other details are investigated numerically by a simplified potential model.

The mutual inhibition of growing structural elements can be regarded as a structure forming principle which works for Laplacian structures, too.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Bahr, H.-A., Fischer, G. and Weiss, H.-J. (1986) ‘Thermal shock crack patterns explained by single and multiple crack growth’, J. Mat. Sci. 21, 2716–2720.

    Google Scholar 

  • Bahr, H.-A., Balke. H., Kuna M. and Liesk, H. (1987) ‘Fracture analysis of a single edge cracked strip under thermal load’, Theoret. Appl. Fracture Mech. 8, 33–39.

    Google Scholar 

  • Bahr, H.-A., Weiss, H.-J., Maschke, H.-G. and Meissner, F. (1988) ‘Multiple crack propagation in a strip caused by thermal shock’, Theoret. Appl. Fracture Mech. 10, 219–226.

    Google Scholar 

  • Bahr, H.-A., Bahr, U. and Petzold, A. (1992)L-d deterministic crack pattern formation as a growth process with restrictions’, Europhys. Lett. 19, 485–490.

    Google Scholar 

  • Bertsch, B. E., Larson, D. R. and Hasselman, D. P. M. (1974) ‘Effect of crack density on stress loss of polycrystalline AI,O, subjected to severe thermal shock’, J. Amer. Ceram. Soc. 57, 235.

    Google Scholar 

  • Bueckner, H. F. (1971) ‘Weight functions for the notched bar’, Z. Angew. Math. Mech. 51, 97–109.

    Google Scholar 

  • Blauel, J. G. (1970) ‘Thermisch induzierte elastische Spannungen und ihr Einfluß auf Auslösung und Ausbreitung von Brüchen’, Dissertation, Uni Karlsruhe.

    Google Scholar 

  • Fischer, G. and Bahr, H.-A. (1988) ‘Induzierung von Thermoschock-Rißmustern an einseitig erwärmten Glasproben’, Proceedings VIII. Symposium Verformung und Bruch, Teil II, Magdeburg, 51.

    Google Scholar 

  • Hasselman, D. P. H. (1969) ‘Unified theory of thermal shock fracture initiation and crack propagation of brittle ceramics’, J. Amer. Ceram. Soc. 52, 600–604

    Google Scholar 

  • Herrmann, H.J. (1993) ‘Crack patterns generalized Laplacian structures’, these Proceedings

    Google Scholar 

  • Maschke, H. (1988) ‘A boundary integral equation method for the problem of multiple, interacting cracks in anisotropic materials’, in E. Czoboly (ed.), Failure Analysis-Theory and Practice, Proc. 7th European Conf. on Fracture, Budapest, Hungary, EMAS U.K., pp. 161–167.

    Google Scholar 

  • Pompe, W., Bahr, H.-A., Gille, G., Kreher, W., Schultrich, B. and Weiss, H.-J. (1985), ‘Mechanical properties of brittle materials–Modern theories and experimental evidence’, in E. Kaldis (ed.), Current topics in material science, North-Holland Publ., Amsterdam, pp. 316–360.

    Google Scholar 

  • Pompe, W., Bahr, H.-A. and Weiss, H. J. (1991) ‘Thermal shock behaviour and crack pattern formation in brittle solids’, in J. G. M. van Mier, J. G. Rots and A. Bakker (eds.), Fracture Process in Concrete, Rock and Ceramics, RILEM 13, E. F. N. Spon, London, pp. 349–364.

    Google Scholar 

  • Nemat-Nasser, S., Sumi, Y. and Keer, L. M. (1980) ‘Unstable growth of tension crack in brittle solids: stable and unstable bifurcations, snap-through, and imperfection sensitivity’, Int. J. Solids Structures 16, 1017–1035.

    Google Scholar 

  • Santalo, L. A. (1976), in: Integral Geometry and Geometric Probability, Addison-Wesley, Reading, MA, p. 25.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Bahr, HA., Bahr, U., Balke, H., Maschke, H., Petzold, A., Weiß, HJ. (1993). Multiple Crack Propagation under Thermal Load. In: Schneider, G.A., Petzow, G. (eds) Thermal Shock and Thermal Fatigue Behavior of Advanced Ceramics. NATO ASI Series, vol 241. Springer, Dordrecht. https://doi.org/10.1007/978-94-015-8200-1_11

Download citation

  • DOI: https://doi.org/10.1007/978-94-015-8200-1_11

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-4291-0

  • Online ISBN: 978-94-015-8200-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics