Skip to main content

Abstract

The formulation of quantum mechanics began in 1926 with the seminal work of Schrödinger and Heisenberg. In the years following their papers, the new calculational techniques were applied to a great variety of physical problems with an extraordinary degree of success. By any measure, quantum mechanics is an extremely successful theory: its predictions agree with experimental results to a very high degree of numerical accuracy. Yet despite the undeniable calculational precision of quantum mechanics, the debate still rages about what quantum theory tells us about the nature of matter at the microscopic scale. Physics students run into this problem every year when they first encounter quantum mechanics. Those who wish to do well in their exams tend to forget about the issue and concentrate on learning how to solve the equations, while experienced tutors tend to side-step awkward questions like “what does it all mean?”.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bell, J.S., Speakable and Unspeakable in Quantum Mechanics, p. 89, Cambridge University Press, Cambridge, 1987.

    Google Scholar 

  2. Einstein, A., Podolsky, B. and Rosen, N., “Can Quantum-Mechanical Description of Physical Reality Be Considered Complete?”, Physical Review 47, p. 777, 1935.

    Article  Google Scholar 

  3. Bohm, D., Quantum Theory, Prentice-Hall, Englewood Cliffs, NJ, 1951.

    Google Scholar 

  4. Bell, J.S., see ref. [1], chapter 2; originally published in Physics 1, p. 195, 1964.

    Google Scholar 

  5. Bohm, D., “A Suggested Interpretation of Quantum Theory in Terms of ‘Hidden’ Variables. Parts I and II”, Physical Review 85, pp. 166 and 180, 1952. A simplified explanation of this theory has recently been given by D.Z. Albert, “Bohm’s alternative to quantum mechanics”, Scientific American 270(5) (May), p. 32, 1994.

    Article  Google Scholar 

  6. Suarez, A., “Nonlocal Phenomena: Physical Explanation and Philosophical Implications”, this volume, pp. 143–172.

    Google Scholar 

  7. Mermin, N.D., “Is the Moon There When Nobody Looks? Reality and the Quantum Theory”, Physics Today 38(4) (April), p. 38, 1985.

    Article  Google Scholar 

  8. Aspect, A., Grangier, P. and Roger, G., “Experimental Tests of Realistic Local Theories via Bell’s Theorem”, Physical Review Letters 47, p. 460, 1981.

    Article  Google Scholar 

  9. Aspect, A., Grangier, P. and Roger, G., “Experimental Realization of Einstein-Podolsky-Rosen-Bohm Gedankenexperiment: A New Violation of Bell’s Inequalities”, Physical Review Letters 49, p. 91, 1982.

    Article  Google Scholar 

  10. Aspect, A., Dalibard, J. and Roger, G., “Experimental Test of Bell’s Inequalities Using Time-Varying Analyzers”, Physical Review Letters 49, p. 1804, 1982.

    Article  Google Scholar 

  11. The arguments followed here are a simplified discussion of those presented by A.I.M. Rae, Quantum Physics: Illusion or Reality?, Cambridge University Press, Cambridge, 1986.

    Google Scholar 

  12. Hodgson, P.E., “Implications of Quantum Physics-1”, The Month 17, p. 216, 1984.

    Google Scholar 

  13. See T.A. Brody, in L. de la Pena and P.E. Hodgson (eds.), The Philosophy Behind Physics, Springer-Verlag, Berlin, 1993, chapters 13 and 14.

    Chapter  Google Scholar 

  14. Rae, A.I.M., see ref. [11], p. 28.

    Google Scholar 

  15. Einstein, A., Letter to M. Born, 3 March 1947, published in M. Bom (ed.), The Born-Einstein Letters, p. 158, Macmillan, London, 1971.

    Google Scholar 

  16. A derivation for the case of photons with perpendicular polarizations is given in A.I.M. Rae, ref. [11], chapter 3. J.S. Bell gives a similar proof for Stern-Gerlach experiments in [1], chapter 16.

    Google Scholar 

  17. Jack, C., “Sherlock Holmes Investigates the EPR Paradox”, Physics World 8(4) (April), p. 39, 1995.

    Google Scholar 

  18. Pliska, P., “Nonlocality and the Principle of Free Experimentation”, this volume, pp. 101–119.

    Google Scholar 

  19. Clauser, J.F., Horne, M.A., Shimony, A. and Holt, R.A., “Proposed Experiment to Test Local Hidden-Variable Theories”, Physical Review Letters 23, p. 880, 1969.

    Article  Google Scholar 

  20. d’Espagnat, B., “The Quantum Theory and Reality”, Scientific American 241(5) (November), p. 128, 1979.

    Article  Google Scholar 

  21. Rae, A.I.M., see ref. [11], pp. 52, 47.

    Google Scholar 

  22. Aspect, A., Doctor of Physical Sciences Thesis, pp. 75–77, University of Paris-sud, Centre d’Orsay, 1983.

    Google Scholar 

  23. Rarity, J.G. and Tapster, P.R., “Experimental Violation of Bell’s Inequality Based on Phase and Momentum”, Physical Review Letters 64, p. 2495, 1990.

    Article  Google Scholar 

  24. Kiess, T.E., Shih, Y.H., Sergienko, A.V. and Alley, CO., “Einstein-Podolsky-Rosen-Bohm Experiment Using Pairs of Light Quanta Produced by Type-II Parametric Down-Conversion”, Physical Review Letters 71, p. 3893, 1993.

    Article  Google Scholar 

  25. Tapster, P.R., Rarity, J.G. and Owens, P.C.M., “Violation of Bell’s Inequality over 4 km of Optical Fiber”, Physical Review Letters 73, p. 1923, 1994.

    Article  Google Scholar 

  26. Ou, Z.Y., Pereira, S.F., Kimble, H.J. and Peng, K.C., “Realization of the Einstein-Podolsky-Rosen Paradox for Continuous Variables”, Physical Review Letters 68, p. 3663, 1992.

    Article  Google Scholar 

  27. Santos, E., “Critical Analysis of the Empirical Tests of Local Hidden Variable Theories”, Physical Review A 46, p. 3646, 1992.

    Article  Google Scholar 

  28. Ferrero, M., Marshall, T.W. and Santos, E., “Bell’s Theorem: Local Realism versus Quantum Mechanics”, American Journal of Physics 58, p. 683, 1990.

    Article  Google Scholar 

  29. Santos, E., “Does Quantum Mechanics Violate the Bell Inequalities”, Physical Review Letters 66, pp. 1388 and 2702, 1991.

    Article  Google Scholar 

  30. Kwiat, P.G., Eberhard, P.H., Steinberg, A.M. and Chiao, R.Y., “Proposal for a Loophole-Free Bell Inequality Experiment”, Physical Review A 49, p. 3208, 1994.

    Google Scholar 

  31. Barut, A.O., “How to Avoid’ Quantum Paradoxes’”, Foundations of Physics 22, p. 137, 1992.

    Article  Google Scholar 

  32. Bell, J.S., “Against’ Measurement’”, Physics World 3(8) (August), p. 33, 1990.

    Google Scholar 

  33. Bell, J.S., see ref. [11, p. 154.

    Google Scholar 

  34. Greenberger, D.M., Horne, M.A. and Zeilinger, A., “Multiparticle Interferometry and the Superposition Principle”, Physics Today 46(8) (August), p. 22, 1993. The experiment is also discussed in [18].

    Article  Google Scholar 

  35. Hardy, L., “Quantum Mechanics, Local Realistic Theories, and Lorentz-Invariant Realistic Theories”, Physical Review Letters 68, p. 2981, 1992; “Nonlocality for Two Particles without Inequalities for Almost All Entangled States”, Physical Review Letters 71, p. 1665, 1993.

    Article  Google Scholar 

  36. Torgerson, J.R., Branning, D., Monken, C.H. and Mandel, L., “Experimental Demonstration of the Violation of Local Realism without Bell Inequalities”, Physics Letters A 204, p. 323, 1995; Boschi, D., De Martini, F. and Di Giuseppe, G. (unpublished).

    Article  Google Scholar 

  37. Mermin, N.D., “Quantum Mysteries Refined”, Americal Journal of Physics 62, p. 880, 1994.

    Article  Google Scholar 

  38. Brody, T.A., see ref. [13], chapters 16-18.

    Google Scholar 

  39. Rae, A.I.M., see ref. [11], p. 48.

    Google Scholar 

  40. Bell, J.S., see ref. [1], p. 142. The statements were made in the context of discussing Stern-Gerlach experiments, which measure the deflection of spin-1 /2 particles in a nonuniform magnetic field. It is found that the particles are deflected either up or down. This is equivalent to the optical case, where the photons are either transmitted or reflected.

    Google Scholar 

  41. Jaki, S.L., Essay “Determinism and Reality”, in Great Ideas Today 1990, p. 277, Encyclopaedia Britannica, Chicago, 1990.

    Google Scholar 

  42. Dewdney, C., Holland, P.R., Kyprianidis, A. and Vigier, J.P., “Spin and Non-Locality in Quantum Mechanics”, Nature 336, p. 536, 1988.

    Article  Google Scholar 

  43. Ekert, A.K., Rarity, J.G., Tapster, P.R. and Massimo Palma, G., “Practical Quantum Cryptography Based on Two-Photon Interferometry”, Physical Review Letters 69, p. 1293, 1992.

    Article  Google Scholar 

  44. Bennett, C.H., “Quantum Information and Computation”, Physics Today 48(10) (October), p. 24, 1995.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Fox, A.M. (1997). Optical Tests of Bell’s Theorem. In: Driessen, A., Suarez, A. (eds) Mathematical Undecidability, Quantum Nonlocality and the Question of the Existence of God. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-5428-4_9

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-5428-4_9

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6283-1

  • Online ISBN: 978-94-011-5428-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics