Skip to main content

Free-Meniscus Coating Processes

  • Chapter
Liquid Film Coating

Abstract

When faced with depositing a liquid film on a surface, laboratory scientists usually rely on free coating by withdrawal or drainage, or so-called free-meniscus coating. Simplistic and inexpensive, these techniques abound in the research and development of materials that can be deposited in the liquid state. What has come to be known as dip coating (Deryagin and Levi 1964; Ruschak 1976; Scriven 1988), viscous lifting (Van Rossum 1958), or drag-out (Landau and Levich 1942) begins with immersing a substrate in a vessel filled with liquid. Withdrawal of the substrate from the liquid, if managed properly, can result in a thin coherent liquid film, as shown in Fig. 13.1b. Alternatively, the liquid in the vessel can be drained around the substrate. This technique is often referred to as coating-by-drainage (Jeffreys 1930; Van Rossum 1958; Groenveld 1971) and is diagrammed in Fig. 13.1c. Recourse is sometimes taken from dip coating to coating-by-drainage when limited vertical space prevents substrate withdrawal (cf. Ashley and Reed 1984) or when coating small, short substrates to avoid the local thickening obtained when the trailing edge is withdrawn (Schroeder 1969). Although most often dip coating is operated as a batch process, it can be made continuous (Fig. 13.1d) when the substrate is a long, flexible sheet or filament (Deryagin and Levi 1964; Scriven 1988); however, sustaining a continuous coating process requires the addition of make-up liquid to the vessel. In any case, the physics of batch dip coating, continuous dip coating, and coating-by-drainage are essentially the same, differing only in the frame of reference in which the flat part of the meniscus is stationary.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adamson, A. W. 1982. Physical Chemistry of Surfaces. 4th edn. New York: Wiley.

    Google Scholar 

  • Agarwal, V. K. 1988. Langmuir—Blodgett films Physics Today. 40: 40–46.

    Article  Google Scholar 

  • Ahlers, M. et al. 1989. specific recognition and formation of two-dimensional streptaridin domains in monolayers: application to molecular devices. Thin Solid Films. 180: 93–99.

    Article  CAS  Google Scholar 

  • Ashley, C. S. and Reed, S. T. 1984. Sol-Gel-Derived AR Coatings for Solar Receivers. Sandia National Laboratories Internal Report SAND84–0662.

    Google Scholar 

  • Azzam, R. M. A. and Bashara, N. M. 1977. Ellipsometry and Polarized Light. Amsterdam: Elsevier. Ch. 4.

    Google Scholar 

  • Bablik, H. 1950. Hot-Dip Galvanizing. London: Spon.

    Google Scholar 

  • Bankoff, S. G. 1983. Problems in interfacial instability. Proceedings of the 4th International Conference on Physicochemical Hydrodynamics, ed. R. Pfeffer. 404: 405–419.

    Google Scholar 

  • Bein, T. et al. 1989. Molecular sieve sensors for selective detection at the nanogram level. J. Am. Chem. Soc. 111: 7640–7641.

    Article  CAS  Google Scholar 

  • Benjamin, B. T. 1957. Wave formation in laminar flow down an inclined plane. J. Fluid Mech. 2: 554–574.

    Article  Google Scholar 

  • Blodgett, K. B. 1935. Films built by depositing successive mono-molecular layers on a solid surface. J. Amer. Chem. Soc. 57: 1007.

    Article  CAS  Google Scholar 

  • Bornside, D. E. 1989. Spin coating. PhD thesis, University of Minnesota. Available from University Microfilms International, Ann Arbor, MI.

    Google Scholar 

  • Bornside, D. E., Macosko, C. W. and Scriven, L. E. 1989. Spin coating: one-dimensional model. J. Appl. Phys. 66: 5185–5193.

    Article  CAS  Google Scholar 

  • Brinker, C. J., Frye, G. C., Hurd, A. J. and Ashley, C. S. 1991a. Fundamentals of sol-gel dip coating. Thin Solid Films. 201: 97–108.

    Article  CAS  Google Scholar 

  • Brinker, C. J., Hurd, A. J., Frye, G. C., Schunk, P. R. and Ashley, C. S. 1991b. Sol-gel thin film formation. Centennial Memorial Issue of the Journal of the Ceramics Society of Japan. 99: 862–877.

    Article  CAS  Google Scholar 

  • Brinker, C. J. and Scherer, G. W. 1990. Sol-Gel Science. San Diego: Academic Press.

    Google Scholar 

  • Brinker, C. J., Sehgal, R., Raman, N., Schunk, P. R. and Headley, T. J. 1994. Polymer approach to supported silica membranes. J. Sol-Gel Science and Technology. 2: 469.

    Article  CAS  Google Scholar 

  • Britten, J. A. and Thomas, I. M. 1992. Large-area Sol-gel Multilayer Laser Reflectors Applied By Meniscus Coating. Technical Report, Lawrence Livermore National Laboratory, UCRL-JC-109389.

    Google Scholar 

  • Butler, T. L. 1993. Mechanisms of Langmuir-Blodgett film deposition and the development of polymeric film materials. PhD thesis, University of Minnesota.

    Google Scholar 

  • Cairncross, R. A., Chen, K. S., Schunk, P. R., Brinker, C. J. and Hurd, A. J. 1995. Recent advances in theoretical modeling of deposition, drying, and shrinkage in sol-gel coating processes. Proceedings of the American Ceramic Society National Meeting, Cincinnati, ОH, 30 April-3 May.

    Google Scholar 

  • Cairncross, R. A., Francis, L. F. and Scriven, L. E. 1992. Competing drying and reaction mechanisms in the formation of sol-to-gel films, fibers, and spheres. 10th Anniversary issue of Drying Technology J. 10(4).

    Google Scholar 

  • Christodoulou, K. N. and Scriven, L. E. 1992. Discretization of free surface flows and other moving boundary problems. J. Corp. Phys. 99: 39–55.

    Article  Google Scholar 

  • Cooper, A. R. 1977. Quantitative Theory of Cracking and Warping During the Drying of Clay Bodies, ed. L. Hench. pp. 261–276.

    Google Scholar 

  • Cussler, E. L. 1984. Diffusion: Mass Transfer in Fluid Systems. New York: Cambridge University Press.

    Google Scholar 

  • Daniel, M. F. and Hart, J. T. T. 1985. Effect of surface flow on the morphology of Langmuir-Blodgett films. J. Mol. Electron. 1: 97–104.

    Google Scholar 

  • Denbigh, K. 1981. The Principles of Chemical Equilibrium. Cambridge University Press.

    Google Scholar 

  • Deryagin, B. V. and Levi, S. M. 1964. Film Coating Theory. London: Focal Press.

    Google Scholar 

  • Dillon, P. W. 1977. Application of critical relative humidity, an evaporation analog of azeotropy, to the dryng of water-borne coatings. J. of Coatings Technology. 49: 38–49.

    CAS  Google Scholar 

  • Dislich, H. 1988. Thin films from the sol-gel process. In Sol-Gel Technology for Thin Films, Fibers, Preforms, Electronics, and Special Shapes, ed. L. C. Klein. pp. 50–79. Park Ridge, NJ: Noyes.

    Google Scholar 

  • Emery, A. F. and Egolf, J. R. 1989. Finite element analysis of the stresses and consolidation of boehmite gel during the constant rate drying period. Proceedings of the 1989 National Heat Transfer Conference. HTD-113: 95–104.

    Google Scholar 

  • Esmail, M. N. and Hummel, R. L. 1975. A note on linear solutions to free coating onto a vertical surface. Chem. Eng. Sci. 30: 1195–1196.

    Article  Google Scholar 

  • Frye, G. C., Ricco, A. J., Martin, S. J. and Brinker, C. J. 1988. Characterization of surface area and pore size of sol-gel films using SAW devices. In Better Ceramics Through Chemistry III, eds C. J. Brinker, D. E. Clark and D. R. Ulrich. Materials Research Society, Pittsburgh. pp. 349–354.

    Google Scholar 

  • Gaines, G. L. 1966. Insoluble Monolayers at Liquid-Gas Interfaces. New York: Interscience.

    Google Scholar 

  • Groenveld, P. 1971. Drainage and withdrawal of liquid films. AIChE J. 17: 489–490.

    Article  Google Scholar 

  • Gutfinger, C. and Tallmadge, J. A. 1965. Films of non-Newtonian fluids adhering to flat plates. AIChE J. 11: 403.

    Article  CAS  Google Scholar 

  • Horsy, G. M. and Geyling, F. T. 1977. A note on instabilities in rapid coating of cylinders. AIChE J. 23: 587–590.

    Article  Google Scholar 

  • Horton, R. A. 1990. Investment casting. In Metals Handbook 15. Prepared by ASM International. p. 257.

    Google Scholar 

  • Hurd, A. J. 1992. Evaporation and surface tension effects in dip coating. Adv. Chem. Series, No. 234. Colloid Chemistry of Silica, ed. H. Bergna (Amer. Chem. Soc., Washington DC).

    Google Scholar 

  • Hurd, A. J. and Brinker, C. J. 1988. Optical sol-gel coatings: ellipsometry of film formation. J. de Physique. 49: 1017–1025.

    Article  CAS  Google Scholar 

  • Hurd, A. J. and Brinker, C. J. 1990. Sol-gel film formation by dip coating. In Better Ceramics Through Chemistry IV, eds B. J. J. Zelinski, C. J. Brinker, D. E. Clark and D. R. Ulrich, Materials Research Society, Pittsburgh. pp. 575–581.

    Google Scholar 

  • Jackson, J. D. 1975. Classical Electrodynamics. New York: Wiley.

    Google Scholar 

  • Jacobsen, S. C., Wells, D. L., Davis, C. C. and Wood, J. E. 1991. Fabrication of micro-structures using non-planar lithography (NPL). Proceedings of the IEEE Workshop on Micro Electro Mechanical Systems, Nara, Japan, 31 Jan-2 Feb.

    Google Scholar 

  • Jeffreys, H. 1930. Draining of a vertical plate. Proc. Camb. Phil. Soc. 26: 204–205.

    Article  Google Scholar 

  • Kaufman, V. R. and Avnir, D. 1986. Structural changes along the sol-gel-xerogel transition in silica as probed by pyrene excited-state emission. Langmuir. 2: 717–722.

    Article  CAS  Google Scholar 

  • Kheshgi, H. S., Kistler, S. F. and Scriven, L. E. 1992. Rising and falling film flows: viewed from a first-order approximation. Chem. Eng. Sci. 47: 683–694.

    Article  CAS  Google Scholar 

  • Kistler, S. F. and Scriven, L. E. 1983. Coating flows. In Computational Analysis of Polymer Processing, eds J. R. A. Pearson and S. M. Richardson. Essex: Applied Science Publishers. pp. 244–299.

    Google Scholar 

  • Landau, L. D. and Levich, V. G. 1942. Dragging of a liquid by a moving plate. Acta Phys. Chim. URSS. 17: 42–54.

    Google Scholar 

  • Langmuir, I. 1938. Overturning and anchoring of monolayers. Science. 87: 493–500.

    Article  CAS  Google Scholar 

  • Lee, C. Y. and Tallmadge, J. A. 1974. Dynamic meniscus profiles in free coating III: predictions based on two-dimensional flow fields. AIChE J. 20: 1079–1086.

    Article  CAS  Google Scholar 

  • Leenaars, A. F. M., Huethorst, J. A. M. and van Oekel, J. J. 1990. Marangoni drying: A new extremely clean drying process. Langmuir. 6: 1701–1703.

    Article  CAS  Google Scholar 

  • Lewis, R. W., Morgan, K. and Thomas, H. R. 1983. The nonlinear modeling of drying induced stresses in porous bodies. In Advances in Drying, ed. A. S. Mujumdar. Washington: Hemisphere.

    Google Scholar 

  • Malcolm, B. R. 1985. The flow and deformation of synthetic polypeptide monolayers during compression. J. Coll. lnterf. Sci. 104: 520–528.

    Article  CAS  Google Scholar 

  • Marques, D.,Constanza, V. and Cerro, R. L. 1978. Dip coating at large capillary number: an initial value problem. Chem. Eng. Sci. 33: 87.

    Article  CAS  Google Scholar 

  • Morey, F. C. 1940. Thickness of a liquid film adhering to a surface slowly withdrawn from the liquid. J. Res. Natl. Bur. Stand. 25: 385–393.

    Article  Google Scholar 

  • Nigam, K. D. P. and Esmail, M. N. 1980. Liquid flow over a rotating dip coater. Canadian J. Chem. Engng. 58: 564–568.

    Article  CAS  Google Scholar 

  • Nishida, F., McKiernan, J. M.,Dunn, B.,Zink, J. I., Brinker, C. J. and Hurd, A. J. 1994. In situ fluorescence imaging of sol-gel thin film deposition. J. Sol-Gel Sci. and Tech. 2: 477–482.

    Article  CAS  Google Scholar 

  • O’Brien, S. B. G. and Van Den Brule, B. H. A. A. 1991. A mathematical model for the cleansing of silicon substrates by fluid immersion. J. Coll. Interf. Sci. 144: 210–221.

    Article  Google Scholar 

  • Park, C. 1991. Effects of insoluble surfactants on dip coating. J. Coll. Interf. Sci. 146: 382–394.

    Article  CAS  Google Scholar 

  • Parks, C. J. and Wayner, P. C. 1987. Surface shear near the contact line of a binary evaporating curved thin film. AIChE J. 33: 1–10.

    Article  CAS  Google Scholar 

  • Pesach, D. and Marmur, A. 1987. Marangoni effects in the spreading of liquid mixtures on a solid. Langmuir. 3: 519–524.

    Article  CAS  Google Scholar 

  • Petrov, J. G., Kuhn, H. and Mobius, D. 1979. Three-phase contact line motion in the deposition of spread monolayers. J. Coll. Interf. Sci. 73: 66–74.

    Article  Google Scholar 

  • Petty, M. C. 1987. Molecular engineering using the Langmuir-Blodgett technique. In Polymer Surfaces and Interfaces, eds W. J. Feast and H. S. Munro. pp. 163–185. John Wiley.

    Google Scholar 

  • Poehlein, G. W., Vanderhoff, J. W. and Wit-Meyer, R. J. 1975. Drying of latex films. Polym. Prepr., Am. Chem. Soc., Div. Polym. Chem., 16: 268.

    CAS  Google Scholar 

  • Pouxviel, J. C., Dunn, B. and Zink, J I 1989. Fluorescence study of a aluminosilicate sols and gels doped with hydroxy trisulfonated pyrene. J. Phys. Chem. 93: 2134–2139.

    Article  CAS  Google Scholar 

  • Prescher, M. 1991. Paint technology and the environment. EuroCoat. 1: 50–53.

    Google Scholar 

  • Rehg, T. J. and Higgins, B. G. 1992. Spin coating of colloidal suspensions. AIChE J. 38: 489–501.

    Article  CAS  Google Scholar 

  • Roberts, G. 1990. Langmuir-Blodgett Films. New York: Plenum Press.

    Google Scholar 

  • Rosenberg, L. D. and Reiter, R. L. 1989. Impact of New Technology and Changing Practices in the Automotive Coatings Business. AIChE Symposium Series on New Polymer Technology for Auto Body Exteriors. pp. 33–36.

    Google Scholar 

  • Ruschak, K. J. 1974. The fluid mechanics of coating flows. PhD thesis, University of Minnesota.

    Google Scholar 

  • Ruschak, K. J. 1976. Limiting flow in a pre-metered coating device. Chem. Eng. Sci. 31: 1057–1066.

    Article  CAS  Google Scholar 

  • Ruschak, K. J. 1978. Flow of a falling film into a pool. AIChE J. 24: 705–709.

    Article  Google Scholar 

  • Ruschak, K. J. 1982. Boundary conditions at a liquid/air interface in lubrication flows. J. Fluid Mech. 119: 107–120.

    Article  Google Scholar 

  • Ruschak, K. J. 1985. Coating flows. Ann. Rev. Fluid Mech. 17: 65–89.

    Article  Google Scholar 

  • Sakiadis, B. C. 1961. Boundary-layer behavior on continuous solid surfaces. AIChE J. 7: 26–35.

    Article  CAS  Google Scholar 

  • Sartor, L. 1990. Slot coating: fluid mechanics and die design. PhD thesis, University of Minnesota.

    Google Scholar 

  • Sartor, L. and Scriven, L. E. 1990. The progression from dip coating to slot coating: What controls film thickness? Presented at the Fall Annual Meeting of the AIChE, Chicago, IL.

    Google Scholar 

  • Scherer, G. W. 1988. Aging and drying of gels. J. Non-Crystalline Solids. 100: 77–92.

    Article  CAS  Google Scholar 

  • Schroeder, H. 1969. Oxide layers deposited from organic solutions. In Physics of Thin Films 5, ed. G. Haas. pp. 87–141. New York: Academic Press.

    Google Scholar 

  • Schunk, P. R. 1989. Surfactant and polymer additives in coating and related flows. PhD thesis, University of Minnesota.

    Google Scholar 

  • Schunk, P. R., Hurd, A. J. and Brinker, C. J. 1992. Surface tension gradient effects in sol-gel dip coating. Presented at the 1992 Spring National Meeting of the AIChE, 29 March-2 April, New Orleans, LA.

    Google Scholar 

  • Schunk, P. R. and Rao, R. R. 1994. Finite element modeling of evaporation and condensation processes in film and fiber formation. Int. J. Numer. Meth. Fluids. 18: 821–842.

    Article  CAS  Google Scholar 

  • Scriven, L. E. 1988. Physics and applications of dip coating and spin coating. In Better Ceramics Through Chemistry III, eds C. J. Brinker, D. E. Clark and D. R. Ulrich. pp. 717–729. Materials Research Society, Pittsburgh.

    Google Scholar 

  • Slatterly, J. and Givens, H. 1933. The shape of the profile of a liquid film draining on a vertical, clean, wetted glass plate and the combined effects of gravity, viscosity, surface tension and evaporation on the same. Trans. Roy. Soc. Canada. 27: 145.

    Google Scholar 

  • Soroka, A. J. and Tallmadge, J. A. 1971. A test of the inertial theory for plate withdrawal. AIChE J. 17: 505–509.

    Article  Google Scholar 

  • Spiers, R. P., Subbaraman, C. V. and Wilkinson, W. L. 1974. Free coating of a Newtonian liquid onto a vertical surface. Chem. Eng. Sci. 29: 389–396.

    Article  CAS  Google Scholar 

  • Sternling, C. V. and Scriven, L. E. 1959. Interfacial turbulence: hydrodynamic stability and the Marangoni effect. AIChE J. 18: 231–240.

    Google Scholar 

  • Sugi, M. 1985. Langmuir-Blodgett films - a course towards molecular electronics: a review. J. Molec. Elec. 1: 3–17.

    CAS  Google Scholar 

  • Swalen, J. D. 1992. Molecular films. Ann. Rev. Mater. Sci. 21: 373–408.

    Article  Google Scholar 

  • Tallmadge, J. A. 1971. A theory of entrainment for angular withdrawal of flat supports. AIChE J. 17: 243–246.

    Article  Google Scholar 

  • Tallmadge, J. A. and Gutfinger, C. 1967. Entrainment of liquid films. Ind. Eng. Chem. 59: 18–34.

    Article  CAS  Google Scholar 

  • Tam, S., Stolarski, H. K. and Scriven, L. E. 1992. Defect-related stresses in drying films. AIChE Spring National Meeting, New Orleans, LA, 1992.

    Google Scholar 

  • Tanguy, P., Fortin, M. and Choplin, L. 1984. Finite element simulation of dip coating, II: non-Newtonian fluids. Int. J. for Num. Meth. Fluids. 4: 441--457.

    Article  Google Scholar 

  • Tekic, M. N. and Jovanovic, S. 1982. Liquid coating onto a rotating roll. Chem. Eng. Sci. 37: 1815–1817.

    Article  CAS  Google Scholar 

  • Tharmalingam, S. and Wilkinson, W. L. 1978. The coating of Newtonian liquids onto a rotating roll. Chem. Eng. Sci. 33: 1481–1487.

    Article  CAS  Google Scholar 

  • Tredgold, R. H. 1987. The physics of Langmuir- Blodgett films. Rep. Prog. Phys. 50: 1609–1656.

    Article  CAS  Google Scholar 

  • Tschoegl, N. W. 1962. Mathematical relations of torsion pendulum in study of surface films. Kolloid Z. 181: 19–29.

    Article  Google Scholar 

  • Tu, Y. and Drake, R. L. 1990. Heat and mass transfer during evaporation in coating formation. J. Coll. Interf Sci. 135: 562–572.

    Article  CAS  Google Scholar 

  • Tuck, E. O. 1983. Continuous coating with gravity and jet stripping. Phys Fluids. 26: 2352.

    Article  CAS  Google Scholar 

  • Van Rossum, J. 1958. Viscous lifting and drainage of liquid. Appl. Sci. Res. A. 7: 121–144.

    Google Scholar 

  • Walker, J. 1983. The amateur scientist: What causes the ‘tears’ that form on the inside of a glass of wine? Scientific American. May: 161–169.

    Google Scholar 

  • Wayner, P. C. 1982. The interfacial profile in the contact line region and the Young-Dupre equation. J. Coll. Interf Sci. 88: 294–295.

    Article  CAS  Google Scholar 

  • Wayner, P. C. 1991. The effect of interfacial mass transport on flow in thin liquid films. Coll. Surf. 52: 71–84.

    Article  CAS  Google Scholar 

  • Wayner, P. C., Kao, Y. K. and LaCroix, L. V. 1976. The interline heat-transfer coefficient of an evaporating wetting film. Int. J. Heat Mass Transfer. 19: 487–492.

    Article  Google Scholar 

  • Weast, R. C. 1974. Handbook of Chemistry and Physics. 55th edn. CRC Press.

    Google Scholar 

  • White, D. A. and Tallmadge, J. A. 1965. Theory of drag out of liquids on flat plates. Chem. Eng. Sci. 20: 33–37.

    Article  CAS  Google Scholar 

  • Wilson, S. D. R. 1982. The drag-out problem in film coating theory. J. Eng. Math. 16: 209.

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Schunk, P.R., Hurd, A.J., Brinker, C.J. (1997). Free-Meniscus Coating Processes. In: Kistler, S.F., Schweizer, P.M. (eds) Liquid Film Coating. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-5342-3_19

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-5342-3_19

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6246-6

  • Online ISBN: 978-94-011-5342-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics