Skip to main content

Risk of population extinction from fixation of deleterious and reverse mutations

  • Chapter
Mutation and Evolution

Part of the book series: Contemporary Issues in Genetics and Evolution ((CIGE,volume 7))

Abstract

A model is developed for alternate fixations of mildly deleterious and wild-type alleles arising by forward and reverse mutation in a finite population. For almost all parameter values, this gives an equilibrium load that agrees closely with the general expression derived from diffusion theory. Nearly neutral mutations with selection coefficient a few times larger than 1/(2N e ) do the most damage by increasing the equilibrium load. The model of alternate fixations facilitates dynamical analysis of the expected load and the mean time to extinction in a population that has been suddenly reduced from a very large size to a small size. Reverse mutation can substantially improve population viability, increasing the mean time to extinction by an order of magnitude or more, but because many mutations are irreversible the effects may not be large. Populations with initially high mean fitness and small effective size, N e below a few hundred individuals, may be at serious risk of extinction from fixation of deleterious mutations within 103 to 104 generations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Abramowitz, M. & I.A. Stegun, eds., 1972. Handbook of Mathe matical Functions. Dover, New York.

    Google Scholar 

  • Crow, J.F., 1993. Mutation, mean fitness, and genetic load. Oxford Surv. Evol. Biol. 9: 3–42.

    Google Scholar 

  • Crow, J.F., 1970. An Introduction to Population Genetics Theory. Harper & Row, New York.

    Google Scholar 

  • Crow, J.F. & M.J. Simmons, 1983. The mutation load in Drosophila, pp. 1–35 in The genetics and biology of Drosophila, edited by M. Ashburner, H.L. Carson & J.N. Thompson, Jr. Vol. 3c. Academic Press,New Yo

    Google Scholar 

  • Dobzhansky, Th., 1970. Genetics of the Evolutionary Process. Columbia University Press, New York.

    Google Scholar 

  • Franklin, I.R., 1980. Evolutionary change in small populations, pp. 135–150. in Conservation biology, an evolutionary-ecological perspective, edited by M.E. Soulé & B.A. Wilcox. Sinauer, Sunderland, Mass.

    Google Scholar 

  • Gregory, W.C., 1965. Mutation frequency, magnitude of change and the probability of improvement in adaptation. Radiation Botany 5(Suppl.): 429–441.

    Google Scholar 

  • Haidane, J.B.S., 1937. The effect of variation on fitness. Am. Nat. 71: 337–349.

    Article  Google Scholar 

  • Houle, D., D.K. Hoffmaster, S. Assimacopoulous & B. Charlesworth, 1992. The genomic mutation rate for fitness. Nature 359: 58–60.

    Article  PubMed  CAS  Google Scholar 

  • Houle, D., K.A. Hughes, D.A. Hoffmaster, J. Ihara, S. Assimacopoulos, D. Canada & B. Charlesworth, 1994. The effects of sponta neous mutation on quantitative traits. I. Variances and covariances of life history traits. Genetics 138: 773–785.

    PubMed  CAS  Google Scholar 

  • Johnston, M.O. & D.J. Schoen, 1995. Mutation rates and dominance levels of genes affecting total fitness in two angiosperm species. Science 267: 226–229.

    Article  PubMed  CAS  Google Scholar 

  • Keightley, P.D., 1994. The distribution of mutation effects on viability in Drosophila melanogaster. Genetics 138: 1315–1322.

    PubMed  CAS  Google Scholar 

  • Kimura, M., 1979. Model of effectively neutral mutations in which selective constraint is incorporated. Proc. Natl. Acad. Sci. USA 75: 1934–1937.

    Article  Google Scholar 

  • Kimura, M., T. Maruyama & J.F. Crow, 1963. The mutation load in small populations. Genetics 48: 1303–1312.

    PubMed  CAS  Google Scholar 

  • Kimura, M. & T. Ohta, 1969. The average number of generations until fixation of a mutant gene in a finite population. Genetics 61: 763–771.

    PubMed  CAS  Google Scholar 

  • Lande, R., 1988. Genetics and demography in biological conserva tion. Science 241: 1455–1460

    Article  PubMed  CAS  Google Scholar 

  • Lande, R., 1994. Risk of population extinction from fixation of new deleterious mutations. Evolution 48: 1460–1469.

    Article  Google Scholar 

  • Lande, R., 1995. Mutation and conservation. Conserv. Biol. 9: 782–791.

    Article  Google Scholar 

  • Lynch, M., J. Conery & R. Bürger, 1995a. Mutation accumulation and the extinction of small populations. Am. Nat. 146: 489–518.

    Article  Google Scholar 

  • Lynch, M., J. Conery & R. Bürger, 1995b. Mutational meltdown in sexual populations. Evolution 49: 1067–1080.

    Article  Google Scholar 

  • Mackay, T.F.C., R.F. Lyman & M.S. Jackson, 1992. Effects of P ele ment insertions on quantitative traits in Drosophila melanogaster. Genetics 130: 315–332.

    PubMed  CAS  Google Scholar 

  • Mukai, T., S.I. Chigusa, L.E. Mettler & J.F. Crow, 1972. Mutation rate and dominance of genes affecting viability in Drosophila melanogaster. Genetics 72: 335–355.

    PubMed  CAS  Google Scholar 

  • Mukai, T., 1979. Polygenic mutation, pp. 177–196 in Quantitative genetic variation, edited by J.N. Thompson, Jr. & J.M. Thoday. Academic Press, New York.

    Chapter  Google Scholar 

  • Muller, H.J., 1950. Our load of mutations. Am. J. Hum. Genet. 2: 111–176.

    PubMed  CAS  Google Scholar 

  • Muller, H.J. & I.I. Oster, 1956. Principles of back mutation as observed in Drosophila and other organisms, pp. 407–413 in Proc. Intl. Conf. Radiobiol., Stockholm.

    Google Scholar 

  • Ohnishi, O., 1977a. Spontaneous and ethyl methanesulfo-nate-induced mutations controlling viability in Drosophila melanogaster.II.Homozygous effect of polygenic mutations. Genetics 87: 529–545.

    PubMed  CAS  Google Scholar 

  • Ohnishi, O., 1977b. Spontaneous and ethyl mefhanesulfo-nate-induced mutations controlling viability in Drosophila melanogaster.II.Heterozygous effect of polygenic mutations. Genetics 87: 547–556.

    PubMed  CAS  Google Scholar 

  • Santiago, E., J. Albornoz, A. Dominguez, M.A. Toro & C. Lopez-Fanjul, 1992. The distribution of effects of spontaneous mutations on quantitative traits and fitness. Genetics 132: 771–781.

    PubMed  CAS  Google Scholar 

  • Schlager, G. & M.M. Dickie, 1971. Natural mutation rates in the house mouse. Estimates for five specific loci and dominant mutations. Mutat. Res. 11: 89–96.

    Article  PubMed  CAS  Google Scholar 

  • Schultz, S.T. & M. Lynch, 1997. Mutation and extinction: the role of variable mutational effects, synergistic epistasis, beneficial mutations, and degree of outcrossing. Evolution 51: 1363–1371.

    Article  Google Scholar 

  • Shrimpton, A.E. & A. Robertson, 1988. The isolation of polygenic factors controlling bristle score in Drosophila melanogaster. Genetics 118: 445–459.

    PubMed  CAS  Google Scholar 

  • Simmons, M.J. & J.F. Crow, 1977. Mutations affecting fitness in Drosophila populations. Annu. Rev. Genet. 11: 49–78.

    Article  PubMed  CAS  Google Scholar 

  • Soulé, M.E., 1980. Thresholds for survival: maintaining fitness and evolutionary potential, pp. 151–170 in Conservation biology, an evolutionary-ecological perspective, edited by M.E. Soulé & B.A. Wilcox. Sinauer, Sunderland, Mass.

    Google Scholar 

  • Yanovsky, C., H. Berger & W.J. Brammer, 1969. In vivo studies on the genetic code. Proc. XII. Intl. Congr. Genet. 3: 155–165.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Lande, R. (1998). Risk of population extinction from fixation of deleterious and reverse mutations. In: Woodruff, R.C., Thompson, J.N. (eds) Mutation and Evolution. Contemporary Issues in Genetics and Evolution, vol 7. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-5210-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-5210-5_2

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6193-3

  • Online ISBN: 978-94-011-5210-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics