Skip to main content

Polygenic mutation in Drosophila melanogaster: genotype × environment interaction for spontaneous mutations affecting bristle number

  • Chapter
Mutation and Evolution

Part of the book series: Contemporary Issues in Genetics and Evolution ((CIGE,volume 7))

  • 621 Accesses

Abstract

A highly inbred line of Drosophila melanogaster was subdivided into replicate sublines that were subsequently maintained independently with 10 pairs of parents per generation. The parents were randomly sampled for 19 ‘unselected’ sublines, and artificially selected for high or low abdominal or sternopleural bristle number for 12‘ selected’ sublines (with 3 replicate selection lines/trait/direction of selection). Divergence in mean bristle number among the unselected sublines, and response of the selected sublines to selection, are attributable to the accumulation of new mutations affecting bristle number. The input of mutational variance per generation, V M , can be estimated from the magnitude of response or divergence, assuming neutrality of mutations affecting the bristle traits. We reared unselected lines at generations 222 and 224, and selected lines at generations 182–184 of mutation accumulation at each of three temperatures (18 °C, 25 °C, 28 °C), and estimated the mutational variance common to all environments and the mutational variance from genotype × environment interaction. For sternopleural bristle number, the mutational interaction variance was 26% of the mutational variance common to all temperatures, and the interaction variance was due to temperature × line interaction. For abdominal bristle number, the mutational interaction variance was 142% of the mutational variance common to all temperatures, and the interaction variance was due to interactions of temperature × line, sex × line, and temperature × sex × line. It is possible that segregating variation for bristle number is maintained partly by genotype × environment interaction, but information on the fitness profiles of mutations affecting bristle number in each environment will be necessary to evaluate this hypothesis quantitatively.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Barton, N.H., 1990. Pleiotropic models of quantitative variation. Genetics 124: 773–782.

    PubMed  CAS  Google Scholar 

  • Caballero, A. & P.D. Keightley, 1994. A pleiotropic nonadditive model of variation in quantitative traits. Genetics 138: 883–900.

    PubMed  CAS  Google Scholar 

  • Clayton, G.A., J.A. Morris & A. Robertson, 1957. An experimental check on quantitative genetical theory. I. Short-term responses to selection. J. Genet. 55: 131–151.

    Google Scholar 

  • Clayton, G.A. & A. Robertson, 1955. Mutation and quantitative variation. Am. Nat. 89: 151–158.

    Article  Google Scholar 

  • Cockerham, C.C., 1963. Estimation of genetic variances, pp. 53–94 in Statistical Genetics and Plant Breeding, edited by W.D. Hanson & H.F. Robertson. Washington, D.C.: National Academy of Sciences-National Research Council.

    Google Scholar 

  • Crow, J.F. & M.J. Simmons, 1983. The mutation load in Drosophila, pp. 1–35 in The Genetics and Biology of Drosophila, edited by H.L. Carson, M. Ashburner & J.N. Thompson. London: Academic Press.

    Google Scholar 

  • Durrant, A. & K. Mather, 1954. Heritable variation in a long inbred line of Drosophila. Genetica 27: 97–119.

    Article  PubMed  CAS  Google Scholar 

  • Endler, J.A., 1986. Natural Selection in the Wild. Princeton, New Jersey: Princeton University Press.

    Google Scholar 

  • Falconer, D.S., 1960. Selection of mice for growth on high and low planes of nutrition. Genet. Res. 1: 91–113.

    Article  Google Scholar 

  • Falconer, D.S., 1990. Selection in different environments: effects on environmental sensitivity (reaction norm) and on mean performance. Genet. Res. 56: 57–70.

    Article  Google Scholar 

  • Falconer, D.S. & T.F.C. Mackay, 1996. Introduction to Quantitative Genetics, 4/e. Harlow, Essex: Addison Wesley Longman.

    Google Scholar 

  • Fernandez, J. & C. López-Fanjul, 1996. Spontaneous mutational variances and covariances for fitness-related traits in Drosophila melanogaster. Genetics 143: 829–837.

    PubMed  CAS  Google Scholar 

  • Fry, J.D., K.A. De Ronde & T.F.C. Mackay, 1995. Polygenic muta tion in Drosophila melanogaster: Genetic analysis of selection lines. Genetics 139: 1293–1307.

    PubMed  CAS  Google Scholar 

  • Fry, J.D., S.L. Heinsohn & T.F.C. Mackay, 1996. The contribution of new mutations to genotype-environment interaction for fitness in Drosophila melanogaster. Evolution 50: 2316–2327.

    Article  Google Scholar 

  • Garcia-Dorado, A. & J.A. Gonzalez, 1996. Stabilizing selection detected for bristle number in Drosophila melanogaster. evolution 50: 1573–1578.

    Article  Google Scholar 

  • Gillespie, J.H. & M. Turelli, 1989. Genotype-environment interac tion and the maintenance of polygenic variation. Genetics 121: 129–138.

    PubMed  CAS  Google Scholar 

  • Houle, D., B. Morikawa & M. Lynch, 1996. Comparing mutational evolvabilities. Genetics 143: 1467–1483.

    PubMed  CAS  Google Scholar 

  • Hill, W.G., 1982. Predictions of response to artificial selection from new mutations. Genet. Res. 40: 255–278.

    Article  PubMed  Google Scholar 

  • Kearsey, M.J. & B.W. Barnes, 1970. Variation for metrical characters in Drosophila populations. II. Natural selection. Heredity 25: 11–21.

    CAS  Google Scholar 

  • Keightley, P.D., 1996. Nature of deleterious mutation load in Drosophila. Genetics 144: 1993–1999.

    PubMed  CAS  Google Scholar 

  • Keightley, P.D. & A. Caballero, 1997. Genomic mutation rates for lifetime reproductive output and lifespan of C elegans. Proc. Natl. Acad. Sci. USA 94: 3823–3827.

    Article  PubMed  CAS  Google Scholar 

  • Keightley, P.D. & W.G. Hill, 1990. Variation maintained in quantitative traits with mutation-selection balance: pleiotropic sideeffects on fitness traits. Proc. Roy. Soc. Lond. B. 242: 95–100.

    Article  Google Scholar 

  • Keightley, P.D., T.F.C. Mackay & A. Caballero, 1993. Accounting for bias in estimates of the rate of polygenic variation. Proc. Roy. Soc. Lond. B. 253: 291–296.

    Article  CAS  Google Scholar 

  • Kidwell, M.G., 1979. Hybrid dysgenesis in Drosophila melanogaster: the relationship between the P-M and I-R interac tion systems. Genet. Res. 33: 105–117.

    Article  Google Scholar 

  • Kondrashov, A.S. & M. Turelli, 1992. Deleterious mutations, appar ent stabilizing selection and the maintenance of quantitative vari ation. Genetics 132: 603–618.

    PubMed  CAS  Google Scholar 

  • Lande, R., 1975. The maintenance of genetic variability by mutation in a polygenic character with linked loci. Genet. Res. 26: 221–235.

    Article  PubMed  CAS  Google Scholar 

  • Latter, B.D.H. & A. Robertson, 1962. The effects of inbreeding and artificial selection on reproductive fitness. Genet. Res. 3: 110–138.

    Article  Google Scholar 

  • Lai, C., R.F. Lyman, A.D. Long, C.H. Langley & T.F.C. Mackay, 1994. Naturally occurring variation in bristle number and DNA polymorphisms at the scabrous locus in Drosophila melanogaster. Science 266: 1697–1702.

    Article  PubMed  CAS  Google Scholar 

  • Linney, R., B.W. Barnes & M.J. Kearsey, 1971. Variation for metrical characters in Drosophila populations. III. The nature of selection. Heredity 27: 163–174.

    CAS  Google Scholar 

  • Long, A. D., S.L. Mullaney, T.F.C. Mackay & C.H. Langley, 1996. Genetic interactions between naturally occurring alleles at quan titative trait loci and mutant alleles at candidate loci affecting bristle number in Drosophila melanogaster. Genetics 144: 1497–1518.

    PubMed  CAS  Google Scholar 

  • Long, A. D., S.L. Mullaney, L.A. Reid, J.D. Fry, C.H. Langley & T.F.C. Mackay, 1995. High resolution mapping of genetic factors affecting abdominal bristle number in Drosophila melanogaster. Genetics 139: 1273–1291.

    PubMed  CAS  Google Scholar 

  • López, M.A. & C. López-Fanjul, 1993. Spontaneous mutation for a quantitative trait in Drosophila melanogaster. II. Distribution of mutant effects on the trait and fitness. Genet. Res. 61: 117–126.

    Article  PubMed  Google Scholar 

  • Lyman, R.F., F. Lawrence, S.V. Nuzhdin & T.F.C. Mackay, 1996. Effects of single P element insertions on bristle number and via bility in Drosophila melanogaster. Genetics 143: 277–292.

    PubMed  CAS  Google Scholar 

  • Lynch, M. & W.G. Hill, 1986. Phenotypic evolution by neutral mutation. Evolution 40: 915–935.

    Article  Google Scholar 

  • Mackay, T.F.C., 1995. The genetic basis of quantitative variation: numbers of sensory bristles of Drosophila melanogaster as a model system. Trends Genet. 11: 464–470.

    Article  PubMed  CAS  Google Scholar 

  • Mackay, T.F.C. & J.D. Fry, 1996. Polygenic mutation in Drosophila melanogaster: Genetic interactions between selection lines and candidate quantitative trait loci. Genetics 144: 671–688.

    PubMed  CAS  Google Scholar 

  • Mackay, T.F.C., J.D. Fry, R.F. Lyman & S.V. Nuzhdin, 1994. Polygenic mutation in Drosophila melanogaster: Estimates from response to selection of inbred strains. Genetics 136: 937–951.

    PubMed  CAS  Google Scholar 

  • Mackay, T.F. C. & C.H. Langley, 1990. Molecular and phenotypic variation in the achaete-scute region of Drosophila melanogaster. Nature 348: 64–66.

    Article  PubMed  CAS  Google Scholar 

  • Mackay, T.F.C., R.F. Lyman & W.G. Hill, 1995. Polygenic muta tion in Drosophila melanogster: Non-linear divergence among unselected strains. Genetics 139: 849–859.

    PubMed  CAS  Google Scholar 

  • Mackay, T.F.C., R.F. Lyman & M.S. Jackson, 1992a. Effects of P ele ment insertions on quantitative traits in Drosophila melanogaster. Genetics 130: 315–332.

    PubMed  CAS  Google Scholar 

  • Mackay, T.F.C., R.F. Lyman, M.S. Jackson, C. Terzian & W.G. Hill, 1992b. Polygenic mutation in Drosophila melanogaster: Estimates from divergence among inbred strains. Evolution 46: 300–316.

    Article  Google Scholar 

  • Mukai, T., 1964. The genetic structure of natural populations of Drosophila melanogaster. I. Spontaneous mutation rate of polygenes controlling viability. Genetics 50: 1–19.

    CAS  Google Scholar 

  • Mukai, T., S.I. Chigusa, L.E. Mettler & J.F. Crow, 1972. Mutation rate and dominance of genes affecting viability in Drosophila melanogaster. Genetics 72: 333–355.

    Google Scholar 

  • Nuzhdin, S.V., J.D. Fry & T.F.C. Mackay, 1995. Polygenic mutation in Drosophila melanogaster: The causal relationship of bristle number to fitness. Genetics 139: 861–872.

    PubMed  CAS  Google Scholar 

  • Nuzhdin, S.V. & T.F.C. Mackay, 1994. Direct determination of retrotransposon transposition rates in Drosophila melanogaster. Genet. Res. 63: 139–144.

    Article  PubMed  CAS  Google Scholar 

  • Nuzhdin, S.V. & T.F.C. Mackay, 1995. The genomic rate of transposable element movement in Drosophila melanogaster. Mol. Biol. Evol. 12: 180–181.

    Article  PubMed  CAS  Google Scholar 

  • Ohnishi, O., 1977. Spontaneous and ethyl methanesulfonate-induced mutations controlling viability in Drosophila melanogaster: Homozygous effect of polygenic mutations. Genetics 87: 529–545.

    PubMed  CAS  Google Scholar 

  • Robertson, A., 1959. The sampling variance of the genetic correla tion coefficient. Biometrics 15: 469–485.

    Article  Google Scholar 

  • SAS Institute, Inc., 1988. SAS/STAT User’s Guide, Release 6.03 Edition. Cary, North Carolina: SAS Institute Inc.

    Google Scholar 

  • Slatkin, M., 1987. Heritable variation and heterozygosity under a balance between mutations and stabilizing selection. Genet. Res. 50: 53–62.

    Article  PubMed  CAS  Google Scholar 

  • Turelli, M., 1984. Heritable genetic variation via mutation-selection balance: Lerch’s zeta meets the abdominal bristle. Theor. Popul. Biol. 25: 138–193.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Mackay, T.F.C., Lyman, R.F. (1998). Polygenic mutation in Drosophila melanogaster: genotype × environment interaction for spontaneous mutations affecting bristle number. In: Woodruff, R.C., Thompson, J.N. (eds) Mutation and Evolution. Contemporary Issues in Genetics and Evolution, vol 7. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-5210-5_17

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-5210-5_17

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6193-3

  • Online ISBN: 978-94-011-5210-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics