Skip to main content

Mutation and conflicts between artificial and natural selection for quantitative traits

  • Chapter
Mutation and Evolution

Part of the book series: Contemporary Issues in Genetics and Evolution ((CIGE,volume 7))

  • 625 Accesses

Abstract

There is substantial new variation for quantitative traits generated by mutation that can be utilised by artificial selection. With long-term selection, however, response is often attenuated and a selection limit sometimes reached, even though genetic variation is frequently still present in these lines. In this paper, the theoretical bases of long-term response and variability of populations that come from mutational variance are reviewed, and the relation between them is related to the strength and mode of the natural selection, whether due to pleiotropic effects of mutant genes or stabilising selection. Simple formulae to predict the consequence of relaxed or reversed selection are derived. Results from long-term selection experiments in mice in this laboratory are described and related to the theoretical analyses with the aim of reconciling the evidence for substantial standing variation with the low rate of response.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Barton, N., 1990. Pleiotropic models of quantitative variation. Genetics 124: 773–782.

    PubMed  CAS  Google Scholar 

  • Beniwal, B.K., I.M. Hastings, R. Thompson & W.G. Hill, 1992a. Estimation of changes in genetic parameters in selected lines of mice. 1.Lean mass. Heredity 69: 352–360.

    Article  PubMed  Google Scholar 

  • Beniwal, B.K., I.M. Hastings, R. Thompson & W.G. Hill, 1992b. Estimation of changes in genetic parameters in selected lines of mice. 2.Body weight, body composition and litter size. Heredity 69: 361–371.

    Article  PubMed  Google Scholar 

  • Bulmer, M.G., 1971. The effect of selection on genetic variability. Amer. Nat. 105: 201–211.

    Article  Google Scholar 

  • Bünger, L. & G. Herrendörfer, 1994. Analysis of a long-term selection experiment with an exponential model. J.Anim.Breed. Genet. 111: 1–13.

    Article  PubMed  Google Scholar 

  • Caballero, A., P.D. Keightley & W.G. Hill, 1995. Accumulation of mutations affecting body weight in inbred mouse lines. Genet. Res. 65: 145–149.

    Article  PubMed  CAS  Google Scholar 

  • Caballero. A., M.A. Toro & C. López-Fanjul, 1991. The response to artificial selection from new mutations in Drosophila melanogaster. Genetics 127: 89–102.

    Google Scholar 

  • Clayton, G.A. & A. Robertson, 1955. Mutation and quantitative variation. Amer. Nat. 89: 151–158.

    Article  Google Scholar 

  • Dickerson, G.E., 1955. Genetic slippage in response to selection for multiple objectives. Cold Spring Harbor Symp. Quant. Biol. 20: 213–224.

    Article  PubMed  CAS  Google Scholar 

  • Dudley, J.W. & J.R. Lambert, 1992. Ninety generations of selection for oil and protein content in maize. Maydica 37: 1–7.

    Google Scholar 

  • Eisen, E.J., 1980. Conclusions from long-term selection experiments with mice. Z. Tierzüchtg. Züchtungsbiol. 97: 305–319.

    Article  Google Scholar 

  • Falconer, D.S., 1960. Introduction to Quantitative Genetics. Oliver and Boyd, Edinburgh.

    Google Scholar 

  • Falconer, D.S. & T.F.C. Mackay, 1996. Introduction to Quantitative Genetics. 4th ed. Longman, Harlow, UK.

    Google Scholar 

  • Fisher, R.A. 1930. The Genetical Theory of Natural Selection. Oxford University Press, Oxford.

    Google Scholar 

  • Frankham, R., 1980. Origin of genetic variation in selection lines, pp. 56–68 in Selection experiments in laboratory and domestic animals, edited by A. Robertson. Commonwealth Agricultural Bureaux, Slough, UK.

    Google Scholar 

  • Franklin, I.R., 1980. Evolutionary change in small populations. pp. 135–149 in Conservation biology: An evolutionary perspective, edited by M.E. Soulé and B.A. Wilcox, Sinauer, Sunderland, MA.

    Google Scholar 

  • Hastings, I.M. & R. F. Veerkamp, 1993. The genetic basis of response in mouse lines divergently selected for body weight or fat content. I. The relative contributions of autosomal and sex-linked genes. Genet. Res. 62: 169–175.

    CAS  Google Scholar 

  • Hill, W.G., 1982. Predictions of response to artificial selection from new mutations. Genet. Res. 40: 255–278.

    Article  PubMed  Google Scholar 

  • Hill, W.G. & P.D. Keightley, 1988. Interrelations of mutation, population size, artificial and natural selection pp. 57–70 in Proc.2nd Int. Conf. Quant. Genet., edited by B.S. Weir, E.J. Eisen, M.M. Goodman & G. Namkoong. Sinauer, Sunderland, MA.

    Google Scholar 

  • Hill, W.G. & A. Robertson, 1966. The effect of linkage on limits to artificial selection. Genet. Res. 8: 269–294.

    Article  PubMed  CAS  Google Scholar 

  • James, J.W., 1962. Conflict between directional and centripetal selection. Heredity 17: 487–499.

    Article  PubMed  CAS  Google Scholar 

  • Keightley, P.D. & W.G. Hill, 1988. Quantitative genetic variabili ty maintained by mutation-stabilizing selection balance in finite populations. Genet. Res. 52: 33–43.

    Article  PubMed  CAS  Google Scholar 

  • Keightley, P.D. & W.G. Hill, 1990. Variation maintained in quan titative traits with mutation-selection balance: pleiotropic sideeffects on fitness traits. Proc. Roy. Soc. Lond. B242: 95–100.

    Article  Google Scholar 

  • Keightley, P.D. & W.G. Hill, 1992. Quantitative genetic variation in body size of mice from new mutations. Genetics 131: 693–700.

    PubMed  CAS  Google Scholar 

  • Keightley, P.D., T.F.C. Mackay & A. Caballero, 1993. Account ing for bias in estimates of the rate of polygenic mutation. Proc.Roy.Soc.Lond B253: 291–296.

    Article  Google Scholar 

  • Kimura, M., 1969. The number of heterozygous nucleotide sites maintained in a finite population due to steady flux of mutations. Genetics 61: 893–903.

    PubMed  CAS  Google Scholar 

  • Lande, R., 1975. The maintenance of genetic variability by mutation in a polygenic character with linked loci. Genet. Res. 26: 221–235.

    Article  PubMed  CAS  Google Scholar 

  • López, M.A. & López-Fanjul, C., 1993. Spontaneous mutation for a quantitative trait in Drosophila melanogaster. II. Distribution of mutant effects on the trait and fitness. Genet. Res. 61: 117–126.

    Google Scholar 

  • Lynch, M. & W.G. Hill, 1986. Phenotypic evolution by neutral mutation. Evolution 40: 915–935.

    Article  Google Scholar 

  • Mackay, T.F.C., 1984. Jumping genes meet abdominal bristles: Hybrid dysgenesis-induced quantitative variation in Drosophila melanogaster. Genet. Res. 44: 231–237.

    Article  Google Scholar 

  • Mackay, T.F.C., J.D. Fry, R.F. Lyman & S.V. Nuzhdin, 1994. Polygenic mutation in Drosophila melanogaster: estimates from response to selection of inbred strains. Genetics 136: 937–951.

    PubMed  CAS  Google Scholar 

  • Mather, K. & L.G. Wigan, 1942. The selection of invisible mutations. Proc. Roy. Soc. Lond. B131: 50–64.

    Article  Google Scholar 

  • Mbaga, S.H., 1996. Analysis and inferences from long-term quanti tative genetic selection experiments. Ph D Thesis, University of Edinburgh.

    Google Scholar 

  • Merchante, M., A. Caballero & C. López-Fanjul, 1995. Response to selection from new mutation and effective size of partially inbred populations.II.Experiments with Drosophila melanogaster. Genet. Res. 66: 227–240.

    Article  PubMed  CAS  Google Scholar 

  • Nicholas, F.W. & A. Robertson, 1980. The conflict between natural and artificial selection in finite populations. Theor. Appl. Genet. 56: 57–64.

    Article  Google Scholar 

  • Rance, K.A., W.G. Hill & P.D. Keightley, 1997. Mapping quantita tive trait loci for body weight on the X-chromosome in mice. I. Analysis of a reciprocal F2 population. Genet. Res. 0: 117–124.

    Article  CAS  Google Scholar 

  • Robertson, A., 1960. A theory of limits in artificial selection. Proc. Roy. Soc. Lond. B153: 234–249.

    Article  Google Scholar 

  • Robertson, A., 1966. A mathematical model of the culling process in dairy cattle. Anim. Prod. 8: 95–108.

    Article  Google Scholar 

  • Robertson, A., 1967. The nature of quantitative genetic variation. pp. 265–280 in Heritage from Mendel, edited by R.A. Brink & R.A. Styles. Univ. Wisconsin Press, Madison, WI.

    Google Scholar 

  • Robertson, F.W., 1955. Selection response and the properties of genetic variation. Cold Spring Harbor Symp. Quant. Biol. 20: 166–177.

    Article  PubMed  CAS  Google Scholar 

  • Sharp, G.L., W.G. Hill & A. Robertson, 1984. Effects of selection on growth, body composition and food intake in mice. I. Responses in selected traits. Genet. Res., 43: 75–92.

    Article  PubMed  CAS  Google Scholar 

  • Sorensen, D.A. & B.W. Kennedy, 1984. Estimation of genetic vari ance from selected and unselected populations. J. Anim. Sci. 59: 1213–1223.

    Google Scholar 

  • Turelli, M., 1984. Heritable genetic variation via mutation-selection balance: Lerch’s zeta meets the abdominal bristle. Theor. Pop. Biol. 25: 138–193.

    Article  CAS  Google Scholar 

  • Turelli, M. 1985. Effects of pleiotropy on predictions concerning mutation-selection balance for polygenic traits. Genetics 111: 165–195.

    PubMed  CAS  Google Scholar 

  • Weber, K.E., 1996. Large genetic change at small fitness cost in large populations of Drosophila melanogaster selected for wind tunnel flight: rethinking fitness surfaces. Genetics 144: 205–213.

    PubMed  CAS  Google Scholar 

  • Wei, M., A. Caballero & W.G. Hill, 1996. Selection response in finite populations. Genetics 144: 1961–1974.

    PubMed  CAS  Google Scholar 

  • Wray, N.R., 1990. Accounting for mutation effects in the additive genetic variance-covariance matrix and its inverse. Biometrics 46: 177–186.

    Article  Google Scholar 

  • Wright, S., 1935. The analysis of variance and the correlations between relatives with respect to deviations from an optimum. J. Genet. 30: 257–266.

    Article  Google Scholar 

  • Zeng, Z.-B. & C. C. Cockerham, 1993. Mutation models and quan titative variation. Genetics 133: 729–736.

    PubMed  CAS  Google Scholar 

  • Zeng, Z.-B. & W G. Hill, 1986. The selection limit due to the con flict between truncation and stabilising selection with mutation. Genetics 114: 1313–1328.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Hill, W.G., Mbaga, S.H. (1998). Mutation and conflicts between artificial and natural selection for quantitative traits. In: Woodruff, R.C., Thompson, J.N. (eds) Mutation and Evolution. Contemporary Issues in Genetics and Evolution, vol 7. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-5210-5_15

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-5210-5_15

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6193-3

  • Online ISBN: 978-94-011-5210-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics