Skip to main content

Computer-aided methods in rheometry

  • Chapter
Rheological Measurement

Abstract

During the many years of operating a rheometry laboratory for a wide range of chemists, physicists, and engineers (graduate students and postdocs) at the University of Massachusetts, we have developed a comprehensive set of computer-aided Theological characterization methods for polymeric liquids and solids. In addition to performing the best possible rheometry experiments, the aim was to tailor data analysis methods to rheometry and thus obtain the optimum amount of information from the data without reading artefacts into the data (overfitting). This avoidance of overfitting is a major concern which should be addressed more widely (Winter, 1997) in order to utilize computer-aided methods to their fullest extent.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adachi K. (1986) A note on the calculation of strain histories in orthogonal streamline coordinate systems. Rheol Acta 25, 555–563.

    Article  CAS  Google Scholar 

  • Baumgärtel M., Winter H.H. (1989) Determination of discrete relaxation and retardation time spectra from dynamic mechanical data. Rheol Acta 28, 511–519.

    Article  Google Scholar 

  • Baumgärtel M., Winter H.H. (1992) Interrelation between continuous and discrete relaxation time sepctra. J Non-Newtonian Fluid Mech 44, 15–36.

    Article  Google Scholar 

  • Baumgärtel M., Schausberger A., Winter H.H. (1990) The relaxation of polymers with linear flexible chains of uniform length. Rheol Acta 29, 400–408.

    Article  Google Scholar 

  • Bernstein B., Kearsley E.A., Zapas L.J. (1963) A study of stress relaxation with finite strain. Trans Soc Rheol7, 391–410.

    Article  Google Scholar 

  • Bird R.B., Armstrong R.C., Hassager O. (1987) Dynamics of Polymeric Liquids, Vol 1. Wiley, New York.

    Google Scholar 

  • Bogue D.C., Doughty J.G. (1967) Comparison of constitutive equations for viscoelastic fluids. Ind Eng C Fund5, 243–252.

    Article  Google Scholar 

  • Bogue D.C., Doughty J.G. (1967) Ind Eng Chem Fund6, 388–393.

    Article  Google Scholar 

  • Booji H.C., Thoone G.P.J.M. (1982) Generalization of Kramers-Kronig transforms and some approximations of relations between viscoelastic quantities. Rheol Acta 21, 15–24.

    Article  Google Scholar 

  • Carreau P.J. (1972) Rheological equations from molecular netwrok theories. Trans Soc Rheol 16, 99–127.

    Article  CAS  Google Scholar 

  • Chambon F., Winter H.H. (1985) Stopping of crosslinking reaction in a PDMS polymer at the gel point. Polym Bull 13, 499–503.

    Article  CAS  Google Scholar 

  • Chambon F., Winter H.H. (1987) Linear viscoelasticity at the gel point of a crosslinking PDMS with imbalanced stoichiometry. J Rheol 31, 683.

    Article  CAS  Google Scholar 

  • Chang H., Lodge A.S. (1972) Comparison of rubberlike-liquid theory with stress-growth data for elongation of a low-density branched polyethylene melt. Rheol Acta 11, 127–129.

    Article  CAS  Google Scholar 

  • Cox W.P., Merz E.H. (1958) Correlation of dynamic and steady flow viscosities. J Polym Sci 28, 619–622.

    Article  CAS  Google Scholar 

  • Crochet M.J., Davies A.R., Walters K. (1984) Numerical Simulation of Non-Newtonian Flow. Elsevier, Amsterdam.

    Google Scholar 

  • Curtiss C.F., Bird R.B. (1981) J Chem Phys 74, 2016.

    Article  CAS  Google Scholar 

  • DeRosa M.E., Winter H.H. (1994) The effect of entanglements on the rheological behaviour of polybutadiene gels. Rheol Acta 33, 220–237.

    Article  CAS  Google Scholar 

  • Doi M., Edwards S.F. (1978) Dynamics of concentrated polymer systems. Parts 1+2+3. J Chem Soc Faraday Trans II 74, 1789–1832.

    Article  CAS  Google Scholar 

  • Doi M., Edwards S.F. (1979) J Chem Soc Faraday Trans II 75, 88.

    Article  Google Scholar 

  • Doraiswamy D., Mujumdar A.M., Tsao I., Beris A.N., Danforth S.C., Metzner A.B. (1991) The Cox-Mertz rule extended; a rheological model for concentrated suspensions and other materials with a yield stress. J Rheol 35, 647–685.

    Article  CAS  Google Scholar 

  • Dupont S., Marchai J.M., Crochet M.J. (1985) J Non-Newtonian Fluid Mech 17, 157.

    Article  Google Scholar 

  • Einaga Y., Osaki K., Kurata M., Kimura S., Tamura M. (1971) Polym J2, 550.

    Article  CAS  Google Scholar 

  • Ferry J.D. (1980) Viscoelastic Properties of Polymers, 3rd ed. Wiley, New York.

    Google Scholar 

  • Friedech C., Hoffmann B. (1983) Nichtkorrekte Aufgaben in der Rheometetrie. Rheol Acta 22, 425–134.

    Article  Google Scholar 

  • Fukuda M., Osaki K., Kurata M. (1975) J Polym Sci Polym Phys Ed 13, 1563.

    Article  CAS  Google Scholar 

  • Giesekus H. (1966) Die Elastizität von Flüssigkeiten. Rheol Acta5, 29–35.

    Article  Google Scholar 

  • Giesekus H. (1982) A simple constitutive equation for polymer fluids. J Non-Newtonian Fluid Mech 11, 69–109.

    Article  CAS  Google Scholar 

  • Gleißle W. (1978) Doctoral Thesis. University of Karlsruhe.

    Google Scholar 

  • Gross B. (1953) Mathematical Structure of the Theories of Viscoelasticity. Hermann, Paris.

    Google Scholar 

  • Guskey S.M., Winter H.H. (1991) Transient shear behavior of a thermotropic liquid crystalline polymer in the nematic state. J Rheolology 35(6):1191–1207.

    Article  CAS  Google Scholar 

  • Honerkamp J., Weese J. (1989) Determination of the relaxation spectrum by a regularization method. Macromoelcules 22, 4372–4377.

    Article  CAS  Google Scholar 

  • Honerkamp J., Weese J. (1990) Tikhonov’s regularization method for ill-posed problems: a comparison of different methods for the determination of the regularization parameter. Continuum Mech Thermodyn2, 17–30.

    Article  Google Scholar 

  • Hopkins I.L. (1958) J Polym Sci 28, 631.

    Article  CAS  Google Scholar 

  • Jackson J.K., Garcia-Franco C., Winter H.H. (1992) Modeling linear viscoelastic behavior with a truncated relaxation time spectrum ANTEC 2438–2442.

    Google Scholar 

  • Kamath V.M., Mackley M.R. (1989) The determination of polymer relaxation moduli and memory functions using integral transforms. J Non-Newtonian Fluid Mech 32, 119–144.

    Article  CAS  Google Scholar 

  • Kaye A. (1962) Non-Newtonian flow in incompressible fluids. Part I. A general rheological equation of state. Part II. Some problems in steady flow. CoA 134, 1–22.

    Google Scholar 

  • Larson R.G. (1988) Constitutive Equations for Polymer Melts and Solutions. Butterworth, Boston.

    Google Scholar 

  • Laun H.M. (1978) Description of the non-linear shear behavior of a low density polyethylene melt by means of an experimentally determined strain dependent memory function. Rheol Acta 17, 1–15.

    Article  CAS  Google Scholar 

  • Leonov A.I. (1976) Nonequilibrium thermodynamics and rheology of viscoelastic polymer media. Rheol Acta 15, 85–98.

    Article  Google Scholar 

  • Lighthill M.J. (1964) Fourier Analysis and Generalised Functions. Cambridge University Press, Cambridge.

    Google Scholar 

  • Lin Y.G., P.W. Jin Chien J.C.W., Winter H.H. (1989a) Effect of shear on viscoelastic properties of a phase separated multi-block thermoplastic elastomer. Polymer 30, 831–834

    Article  CAS  Google Scholar 

  • Lin Y.G., Zhou R., Chien J.C.W., Winter H.H. (1989b) Structure and rheology of twin liquid crystalline polymers. Polymer 30, 2204–2208.

    Article  CAS  Google Scholar 

  • Lin Y.G., Lee H.W., Winter H.H., Dashevsky S., Kim K.S. (1993) Miscibility and viscoelastic properties of blends of a liquid-crystalline polymer and poly(ethylene terephthalate). Polymer 34, 4703–4709.

    Article  CAS  Google Scholar 

  • Lodge A.S. (1964) Elastic Liquids. Academic Press, New York

    Google Scholar 

  • Macosko C.W. (1994) Rheology: Principles, Measurements, and Applications. VCH, New York.

    Google Scholar 

  • Marin G. (1998) Oscillatory Rheometry, Chapter 1, A.A. Collyer and D.W. Clegg (Editors), Rheological Measurement, 2nd Edition, Springer Science+Business Media Dordrecht, London.

    Google Scholar 

  • Marin G., Graessley W.W. (1977) Viscoelastic properties of high molecular weight polymers in the molten state I. Study of narrow molecular weight distribution samples. Rheol. Acta 16, 527.

    Article  CAS  Google Scholar 

  • Mead D.W. (1994) Numerical interconversion of linear viscoelastic material functions. J Rheol 38, 1769–1795.

    Article  CAS  Google Scholar 

  • Middleman S. (1977) Fundamentals of Polymer Processing. McGraw-Hill, New York.

    Google Scholar 

  • Morland L.W., Lee E.H. (1960) Trans Soc Rheol4, 233–263.

    Article  Google Scholar 

  • Morozov V.A. (1984) Methods for Solving Incorrectly Posed Problems. Springer, Berlin.

    Book  Google Scholar 

  • Mours M., Winter H.H. (1994) Time-resolved rheometry. Rheol Acta 33, 385–397.

    Article  CAS  Google Scholar 

  • Ninomiya K. (1959) Effects of blending on the stress-relaxation behavior of polyvinyl acetate in the rubbery region. J Colloid Sci 14, 49.

    Article  CAS  Google Scholar 

  • Nyquist H. (1928) Certain topics in telegraph transmission theory. Trans Amer Inst Electr Eng 47, 617–644.

    Article  Google Scholar 

  • Oldroyd J.G. (1950) Proc Roy Soc 426, pages.

    Google Scholar 

  • Orbey N., Dealy J.M. (1991) Determination of the relaxation spectrum from oscillatory shear data. J Rheol 35, 1035–1049.

    Article  CAS  Google Scholar 

  • Osaki K. (1976) Nonlinear viscoelasticity of polymer solutions. Proc 7th Congr on Rheology, Gothenburg, 104–109.

    Google Scholar 

  • Rauwendaal C.J. (1986) Polymer Extrusion. Hanser, Munich.

    Google Scholar 

  • Reiner M. (1964) The Deborah number. Physics Today 17, 62.

    Article  Google Scholar 

  • Richtering H.W., Gagnon K.D., Lenz R.W., Fuller R.C., Winter H.H. (1992) Physical gelation of a bacterial thermoplastic elastomer. Macromolecules 25, 2429–2433.

    Article  CAS  Google Scholar 

  • Soskey P., Winter H.H. (1985) Equibiaxial extension of two polymer melts: polystyrene and low density polyethylene. J Rheol 29, 493–517.

    Article  CAS  Google Scholar 

  • Tanner R.I., Williams G. (1970) Iterative numerical methods for some integral equations arising in rheology. Trans Soc Rheol 14, 19–38.

    Article  Google Scholar 

  • te Nijenhuis K., Dijikstra H. (1975) Investigation of the aging process of a polyvinyl chloride gel by the measurement of its dynamic moduli. Rheol Acta 14, 71–84.

    Article  Google Scholar 

  • Tschoegl N.W., Emri I. (1993) Generating line spectra from experimental responses. Part II. Storage and loss functions. Rheol Acta 32, 322–327.

    Article  CAS  Google Scholar 

  • Venkataraman S. (1988) PhD Thesis. University of Massachusetts.

    Google Scholar 

  • Wagner M.H. (1976) Analysis of time-dependent non-linear stress-growth data for shear and elongational flow of a low-density branched polyethylene melt. Rheol Acta 15, 136–142.

    Article  CAS  Google Scholar 

  • Wagner M.H. (1978) A constructive analysis of uniaxial elongational flow data of a low-density polyethylene melt. J Non-Newtonian Fluid Mech4, 39–55.

    Article  CAS  Google Scholar 

  • Wei K.H., Nordberg M.E., Winter H.H. (1987) Simulation of planner welding flow: part 2 strain history, stress calculation and experimental comparison. Polym Eng Sci 27, 1390–1398.

    Article  CAS  Google Scholar 

  • Winter H.H. (1980) Temperature induced pressure gradient in the clearance between screw flight and barrel of a single screw extruder. Polym Eng Sci 20, 406–412.

    Article  CAS  Google Scholar 

  • Winter H.H. (1982) Modelling of strain histories for memory integral fluids in steady axisymmetric flows. J Non-Newtonian Fluid Mechanics 10, 157–167.

    Article  CAS  Google Scholar 

  • Winter H.H. (1997) Analysis of dynamic mechanical data: inversion into a relaxation time spectrum and consistency check. J Non-Newtonian Fluid Mech 68, 225–239.

    Article  CAS  Google Scholar 

  • Winter H.H., Chambon F. (1986) Analysis of linear viscoelasticity of crosslinking polymer at the gel point. J Rheol 30, 367–382.

    Article  CAS  Google Scholar 

  • Winter H.H., Morganelli P., Chambon F. (1988) Stoichiometry effects on rheology of model polyurethanes at the gel point. Macromolecules 21, 532–535.

    Article  CAS  Google Scholar 

  • Winter H.H., Mours M. (1997) Rheology of polymers near their liquid-solid transitions. Advances in Polymer Science. Springer Verlag 134: 165–234.

    Article  CAS  Google Scholar 

  • Yasuda K., Armstrong R.C., Cohen R.E. (1981) Rheol Acta 20, 163–178.

    Article  CAS  Google Scholar 

  • Yen H-C., Mclntire L.V. (1974) The shearing flows of the BKZ fluid. Trans Soc Rheol 18, 494–513.

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Winter, H.H., Mours, M., Baumgärtel, M., Soskey, P.R. (1998). Computer-aided methods in rheometry. In: Collyer, A.A., Clegg, D.W. (eds) Rheological Measurement. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-4934-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-4934-1_2

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6070-7

  • Online ISBN: 978-94-011-4934-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics