Skip to main content

Salt Tolerance Engineering—Which are the essential mechanisms?

  • Chapter
Concepts in Photobiology

Summary

High soil salinity poses a problem to many agriculturally useable areas in the world and it can be expected that this problem becomes more severe due, mainly, to the need of keeping even marginal land under cultivation and as a consequence of irrigation in arid areas. These facts make it timely that the mechanisms are studied through which salt-tolerant plants can be productive under conditions under which glycophytic crop plants cannot grow. In our work over several years, we have attempted to find and describe mechanisms that have been suggested by physiological studies in the past. Once genes are identified which seem to control such mechanisms, we transfer them into salt-sensitive plants and study whether stress protection, even marginal, can be documented. From such work, and from the work of several other groups, we can deduce that a large number of genes are involved in plant stress tolerance and these fall into five groups that may define five mechanisms. These are (1) the synthesis of osmolytes, likely for osmotic adjustment, (2) the synthesis of enzymes and compounds which enhance the capacity of cells for scavenging of radical oxygen species, (3) the control over potassium uptake in the presence of high amounts of external sodium, (4) control over water uptake (rather, the avoidance of water loss in the presence of sodium), and (5) the acceleration of developmental processes that lead to flowering and seed formation. We will discuss what is known about these mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adams, P., Vernon, D.M., Thomas, J.C., Bohnert, H.J. and Jensen, R.G. 1992. Distinct cellular and organismic responses to salt stress. Plant Cell Physiol. 33: 1215–1223.

    CAS  Google Scholar 

  • Allen, R.D. 1995. Dissection of oxidative stress tolerance using transgenic plants. Plant Physiol. 107: 1049–1054.

    PubMed  CAS  Google Scholar 

  • Anderson, J.A., Huprikar, S.S., Kochian, L.V., Lucas, W.J. and Gaber, R.F. 1992. Functional expression of a probable Arabidopsis thaliana potassium channel in Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA 89: 3736–3740.

    Article  PubMed  CAS  Google Scholar 

  • Barkla, B.J. and Blumwald, E. 1991. Identification of a 170-kDA protein associated with the vacuolar Na+/H+ antiport of Beta vulgaris. Proc. Natl. Acad. Sci. USA 88: 11177–11181.

    Article  PubMed  CAS  Google Scholar 

  • Bartels, D. and Nelson, D. 1994. Approaches to improve stress tolerance using molecular genetics. Plant Cell Envioron. 17: 659–667.

    Article  CAS  Google Scholar 

  • Bohnert, H.J., Nelson, D.E. and Jensen, R.G. 1995. Adaptations to abiotic stresses. Plant Cell 7: 1099–1111.

    PubMed  CAS  Google Scholar 

  • Bostock, R.M. and Quatrano, R.S. 1992. Regulation of Em gene expression in rice. Plant Physiol. 98: 1356–1363.

    Article  PubMed  CAS  Google Scholar 

  • Bowler, C., Slooten, L., Vandenbranden, S., Rycke, R.D., Botterman, J., Sybesma, C., Van Montagu, M. and Inze, D. 1991. Manganese Superoxide dismutase can reduce cellular damage mediated by oxygen radicals in transgenic plants. EMBO J. 10: 1723–1732.

    PubMed  CAS  Google Scholar 

  • Bowler, C., Van Montagu, M. and Inze, D. 1992. Superoxide dismutase and stress tolerance. Annu. Rev. Plant Physiol. Plant Mol. Biol. 43: 83–116.

    Article  CAS  Google Scholar 

  • Bray, E.A. 1993. Molecular responses to water deficit. Plant Physiol. 103: 1035–1040.

    PubMed  CAS  Google Scholar 

  • Cheeseman, J.M. 1988. Mechanisms of salinity tolerance in plants. Plant Physiol. 87: 547–550.

    Article  PubMed  CAS  Google Scholar 

  • Chrispeels, M.J. and Agre, P. 1994. Aquaporins: water channel proteins of plant and animal cells. Trends Biol. Sci. 19: 421–425.

    Article  CAS  Google Scholar 

  • Cossins, E.A. 1980. One-carbon metabolism. In: The Biochemistry of Plants, Vol. 2 D. Davies, (ed.) Academic Press, Inc. pp. 365-412.

    Google Scholar 

  • Cushman, J.C. and Bohnert, HJ. 1995. Transcriptional activation of CAM genes during development and environmental stress. In: Crassulacean Acid Metabolism. K. Winter and J.A.C. Smith, (Eds.) in press, Springer, Heidelberg, Germany.

    Google Scholar 

  • Czapski, G. 1984. Reactions of OH. Meth. Enzymol. 105: 209–215.

    Article  PubMed  CAS  Google Scholar 

  • Delauney, A.J. and D.P.S. Verma. 1993. Proline biosynthesis and osmoregulation in plants. Plant J. 4: 215–223.

    Article  CAS  Google Scholar 

  • Demmig-Adams, B. and Adams, W.W. 1992. Photoprotection and other responses of plants to high light stress. Annu. Rev. Plant Physiol. Plant Mol. Biol. 43: 599–626.

    Article  CAS  Google Scholar 

  • Deshnium, P., Los, D.A., Hayashi, H. and Murata N. 1995. Glycine betaine enhances tolerance to salt stress in transgenic cyanobacterium. In: P. Mathis, (ed.) Photosynthesis—from light to Biosphere, Vol. IV pp. 636–640, Kluwer Academic Publishers, Dordrecht.

    Google Scholar 

  • Dubcovsky, J., Galvez, A.F. and Dvorak, J. 1992. Application of molecular tools for study of the phylogeny of the early salt-stress-response gene system in salt-tolerant Lophopyrum elongatum and slat-sensitive wheat. Theor. Appl. Genet. 87: 957–964.

    Article  Google Scholar 

  • Edwards, G. and Walker, D.A. 1983. C3, C4: mechanisms and cellular and environmental regulation of photosynthesis. University of California Press, Berkeley.

    Google Scholar 

  • Elstner, E.F. and Osswald, W. 1994. Mechanisms of oxygen activation during plant stress. Proc. Roy. Soc. Edinburgh 102B: 131–154.

    Google Scholar 

  • Espartero, J., Pintor-Toro, J.A. and Grisebch, H. 1994. Differential accumulation of S-adenosylmefhionine synthetase transcripts in response to salt stress. Plant Mol. Biol. 25: 217–227.

    Article  PubMed  CAS  Google Scholar 

  • Ford, C.W. 1984. Accumulation of low molecular weight solutes in water-stressed tropical legumes. Phytochem. 23: 1007–1015.

    Article  CAS  Google Scholar 

  • Greenway, H. and Munns, R. 1980. Mechanisms of salt tolerance in nonhalophytes. Annu. Rev. Plant Physiol. 31: 149–190.

    Article  CAS  Google Scholar 

  • Gupta, A.S., Heinen, J.L., Holaday, A.S., Burke, J.J. and Allen, R.D. 1993. Increased resistance to oxidative stress in transgenic plants that overexpress chloroplastic Cu/ Zn Superoxide dismutase. Proc. Natl. Acad. Sci. USA 90: 1629–1633.

    Article  PubMed  CAS  Google Scholar 

  • Hanson, A.D., Rathinasabapathi, B., Rivoal, I., Burnet, M., Dillon, M.O. and Gage, D.A. 1994. Osmoprotective compounds in the Plumbaginaceae: A natural experiment in metabolic engineering. Proc. Natl. Acad. Sci. USA 91: 306–310.

    Article  PubMed  CAS  Google Scholar 

  • Ishitani, M. unpublished data.

    Google Scholar 

  • Ishitani, M., Lahiri Majumder, A., Bornhouser, A., Michalowski, C.B., Jensen, R.G. and Bohnert, H.J. 1996. Coordinate transcriptional induction of myo-inositol metabolism during environmental stress. Plant J. 9: 537–548.

    Article  PubMed  CAS  Google Scholar 

  • Kagan, R.M. and Clarke, S. 1994. Widespread occurrence of three sequence motifs in diverse S-adenosylmethionine-dependent methyltransferases suggests a common structure for these enzymes. Arch. Biochem. Biophys. 310: 417–427.

    Article  PubMed  CAS  Google Scholar 

  • Kamasani, U.R., et al. 1996. Manuscript in preparation.

    Google Scholar 

  • Kaur, H. and Halliwell, B. 1994. Aromatic hydroxylation of phenylalanine as an assay for hydroxyl radicals. Analyt. Biochem. 220: 11–15.

    Article  PubMed  CAS  Google Scholar 

  • Keiller, D.R., Slocombe, S.P., and Cockburn, W. 1994. Analysis of chlorophyll a fluorescence in C3 and CAM forms of Mesembryanthemum crystallinum. J. Exp. Bot. 45(272): 325–334.

    Article  CAS  Google Scholar 

  • Kishor, P.B.K., Hong, Z., Miao, G.-H., Hu, C.-A. A., and Verma, D.P.S. 1995. Overexpression of Δ1-pyrroline-5-carboxylate synthetase increases proline production and confers osmotolerance in transgenic plants. Plant Physiol. 108: 1387–1394.

    PubMed  CAS  Google Scholar 

  • Klink, R., and Luttge, U. 1992. Quantification of visible structural changes of the V0V1− ATPase in the Leaf-tonoplast of Mesembryanthemum crystallinum by freeze-fracture replicas prepared during the C3-photosynthesis to CAM transition. Bot. Acta 105: 415–420.

    Google Scholar 

  • Krause, G.H. and Weis, E. 1991. Chlorophyll fluorescence and photosynthesis: the basics. Annu. Rev. Plant Physiol. Plant Mol. Biol. 42: 313–349.

    Article  CAS  Google Scholar 

  • LeRedulier, D. and Bouillard, L. 1983. Glycine betaine, an osmotic effector in Klebsiella pneumoniae and other members of the Enterobacteriaceae. Appl. Environ. Microbil. 46: 152–159.

    Google Scholar 

  • Loewus, F.A. and Loewus, M.W. 1983. Myo-inositol: its biosynthesis and metabolism. Annu. Rev. Plant Physiol. 34: 137–161.

    Article  CAS  Google Scholar 

  • Low, R., Rocke, B., Kirsch, M., Zhigang, Ratajczak, R., Luttge, U., and Rausch, T. 1994. Expression of V-type H+-ATPase genes in response to salt stress: Comparison of transcript levels for the subunits A, B and C in a glycophyte and a halophyte. Plant Physiol. 150: 39.

    Google Scholar 

  • Maurel, C., Kado, R.T., Guern, J. and Chrispeels, M.J. 1995. Phosphorylation regulates the water channel activity of the seed-specific aquaporin γ-TIP. EMBO J. 14: 3028–3038.

    PubMed  CAS  Google Scholar 

  • McCue, K.F. and A.D. Hanson. 1990. Drought and salt tolerance: Towards unerstanding and application. Trends Biotechnol. 8: 358–362.

    Article  CAS  Google Scholar 

  • Morgan, J.M. 1984. Osmoregulation and water stress in higher plants. Annu. Rev. Plant Physiol. 35: 299–319.

    Article  Google Scholar 

  • Murata, N. 1995. Communication at the Xth International Photosynthesis Congress, Montpellier, France.

    Google Scholar 

  • Orthen, B., Popp, M. and Smirnoff, N. 1994. Hydroxyl radical scavenging properties of cyclitols. Proc. Roy. Acad. Edinburgh 102B: 269–272.

    Google Scholar 

  • Papageorgiou, G.C. and Murata, N. 1995. The unusually strong stabilizing effect of glycine betaine on the structure and function of the oxygen-evolving PSII complex. Photosyn. Res. 44: 243–252.

    Article  CAS  Google Scholar 

  • Parry, R.V., Turner, J.C., and Rea, P.A. 1989. High purity preparations of higher plant vacuolar H+-ATPase reveal additional subunits. J. Biol. Chem. 264: 20025–20032.

    PubMed  CAS  Google Scholar 

  • Passioura, J.B. 1988. Water transport in and to roots. Annu. Rev. Plant Physiol. Plant Mol. Biol. 39: 245–265.

    Article  Google Scholar 

  • Paul, M.J. and Cockburn, W. 1989. Pinitol, a compatible solute in Mesembryanthemum crystallinum L.? J. Exp. Bot. 40: 1093–1098.

    Article  CAS  Google Scholar 

  • Pilon-Smits, E.A.H., Ebskamp, M.J.M., Jeuken, M.J.W., Weisbeek, P.J. and Smeekens, S.C.M. 1995. Improved performance of transgenic fructan-accumulating tobacco under drought stress. Plant Phyiol. 107: 125–130.

    CAS  Google Scholar 

  • Rammesmayer, G., Pichorner, H., Adams, P., Jensen, R.G. and Bohnert, H.J. 1995. Characterization of IMTI, myo-inositol O-methyltransferase, from Mesembryanthemum crystallinum. Arch. Biochem. Biophys. 322: 183–188.

    Article  PubMed  CAS  Google Scholar 

  • Rhodes, D. and Hanson, A.D. 1993. Quaternary ammonium and tertiary sulfonium compounds in higher plants. Annu. Rev. Plant Physiol. Plant Mol. Biol. 44: 357–384.

    Article  CAS  Google Scholar 

  • Schachtman, D.P. and Schroeder, J.I. 1994. Structure and transport mechanism of a high affinity potassium uptake transporter form higher plants. Nature 370: 655–658.

    Article  PubMed  CAS  Google Scholar 

  • Schroeder, J.I. Ward, J.M., and Gassmann, W. 1994. Perspectives on the physiology and structure of inward-rectifying K+ channels in higher plants: Biophysical implications for K+ uptake. Annu. Rev. Biophys. Biomol. Struc. 23: 441–471.

    Article  CAS  Google Scholar 

  • Schulze, E.D. 1986. Carbon dioxide and water vapor exchange in response to drought in the atmosphere and in the soil. Annu. Rev. Plant Physiol. 37: 247–274.

    Article  Google Scholar 

  • Sentenac, H., Bonneaud, N., Minet, M., Lacroute, F., Salmon, J.M., Gaymard, F. and Grignon, C. 1992. Cloning and expression in yeast of a plant potassium ion transport system. Science 256: 663–665.

    Article  PubMed  CAS  Google Scholar 

  • Serrano, R. and Gaxiola, R. 1994. Microbial models and salt stress tolerance in plants. CRC Rev. Plant Sci. 13: 121–138.

    CAS  Google Scholar 

  • Shen, B., Jensen, R.G., Bohnert, H.J. 1997. Increased resistance to oxidative stress in transgenic plants by targeting mannitol biosynthesis to chloroplasts. Plant Physiol. 113: 1177–1183.

    Article  PubMed  CAS  Google Scholar 

  • Sheveleva, E., Chmara, W., Bohnert, H.J., Jensen, R.G. 1997. Increased salt and drought tolerance by D-ononitol production in transgenic Nicotiana tabacum L. Plant Physiol. 115: 1211–1219.

    PubMed  CAS  Google Scholar 

  • Smirnoff, N. and Cumbes, Q.J. 1989. Hydroxyl-radical scavenging activity of compatible solutes. Phytochem. 28: 1057–1060.

    Article  CAS  Google Scholar 

  • Sturve, I., Weber, A., Luttge, U., Ball, E., and Smith, J. A.C. 1995. Increased vacuolar ATPase activity correlated with CAM induction in Mesembryanthemum crystallinum Kalanchoe blossfeldiana cv. Tom Thumb. J. Plant Physiol. 117: 451–468.

    Article  Google Scholar 

  • Sussman, M.R 1994. Molecular analysis of proteins in the plant plasma membrane. Annu. Rev. Plant Physiol. Plant Mol. Biol. 45: 21–234.

    Article  Google Scholar 

  • Sze, H. 1985. H+-translocating ATPase. Advances using membrane vesicles. Annu. Rev. Plant Physiol. 36: 175–208.

    Article  CAS  Google Scholar 

  • Taliban, R., Jebbar, M., Gouesbet, G., Himdi-Kabbab, S., Wroblewski, H., Blanco, C. and Bernard, T. 1994. Osmoadaptation in rhizobia: ectoine-induced salt tolerance. J. Bact. 176: 5310–5217.

    Google Scholar 

  • Tarczynski, M.C. Jensen, R.G. and Bohnert, H.J. 1993. Stress protection of transgenic tobacco by production of the osmolyte mannitol. Science 259: 508–510.

    Article  PubMed  CAS  Google Scholar 

  • Telfer, A., Dhami, S., Bishop, S.M., Phillips, D. and Barber, J. 1994. Beta-carotene quenches singlet oxygen formed by isolated photosystem II reaction centers. Biochem. 335: 14469–14474.

    Google Scholar 

  • Thomas, J.C. Sepahi, M., Arendall, B. and Bohnert, H.J. 1995. Enhanced seed germination in high salinity by engineering mannitol expression in Arabidopsis thaliana. Plant Cell Environ. 18: 801–806.

    Article  CAS  Google Scholar 

  • Thomas, J.C. and Bohnert, H.J. 1993. Salt stress perception and plant growth regulators in the halophyte Mesembryanthemum crystallinum. Plant Physiol. 103: 1299–1304.

    CAS  Google Scholar 

  • Verkman, A.S. 1993. Water channels. R.G. Landes Co., Austin, TX.

    Google Scholar 

  • Vernon, D.M. and Bohnert, H.J. 1992. A novel methyl transferase induced by osmotic stress in the facultative halophyte Mesembryanthemum crystallinum. EMBO J. 11: 2077–2085.

    CAS  Google Scholar 

  • Vernon, D.M., Osterm, J.A. and Bohnert, H.J. 1993. Stress perception and response in a facultative halophyte—The regulation of salinity-induced genes in Mesembryanthemum crystallinum. Plant Cell Environ. 16: 437–444.

    Article  CAS  Google Scholar 

  • Watad, A.A., Reuveni, M., Bressan, R.A., and Hasegawa, P.M. 1991. Enhanced net K+ uptake capacity of NaCL-adapted cells. Plant Physiol. 95: 1265–1269.

    Article  PubMed  CAS  Google Scholar 

  • Williams, W.P. and Gounaris, K. 1992. Stabilization of PSII-mediated electron transport in oxygen-evolving PSII core preparations by the addition of compatible co-solutes. Biochim. Biophys. Acta 1100: 92–97.

    Article  PubMed  CAS  Google Scholar 

  • Yamada, S., Katsuhara, M., Kelly, W.B., Michalowski, C.B. and Bohnert, H.J. 1995. A family of transcripts encoding water channel proteins: Tissue-specific expression in the common ice plant. Plant Cell 7: 1129–1142.

    PubMed  CAS  Google Scholar 

  • Yamaguchi-Shinozaki, K., Koizumi, M., Urao, S. and Shinozaki, K. 1992. Molecular cloning and characterization of 9 cDNAs for genes that are responsive to desiccation in Arabidopsis thaliana. Plant Cell Physiol. 33: 217–224.

    CAS  Google Scholar 

  • Watad, A.A., Reuveni, M., Bressan, R.A. and Hasegawa, P.M. 1991. Enhanced net K+ uptake capacity of NaCl-adapted cells. Plant Physiol. 95: 1265–1269.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Bohnert, H.J. et al. (1999). Salt Tolerance Engineering—Which are the essential mechanisms?. In: Singhal, G.S., Renger, G., Sopory, S.K., Irrgang, KD., Govindjee (eds) Concepts in Photobiology. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-4832-0_21

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-4832-0_21

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6026-4

  • Online ISBN: 978-94-011-4832-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics