Skip to main content

Simulation Experiments with Cometary Analogous Material

  • Chapter
Laboratory Astrophysics and Space Research

Part of the book series: Astrophysics and Space Science Library ((ASSL,volume 236))

Abstract

Comet simulation experiments are discussed, in the context of physical models and the results in cometary physics, gathered especially from the GIOTTO space mission to comet P’Halley. The “status of the today knowledge” about comets, the experiments could start from, is briefly reviewed. The setup of the KOSI (German = Kometen Simulation) — experiments and the techniques to produce cometary analogous material, on the basis of that knowledge are described in general, as for the different KOSI experiments. The limitations of the simulation of physical processes at the surface of real comets in an earth-bound laboratory are discussed, and the possibilities to receive common insights in cometary physics are shown. Methods and procedures are described, and the major results reviewed. As with attempting to reproduce any natural phenomenon in the laboratory, there are short-comings to these experiments, but there are possibly major new insights to be gained. Physical laws only have the same consequences under same experimental or environmental conditions. A number of small-scale comet simulation experiments have been performed, since the early 60ties in many laboratories, but the largest and most ambitious series of comet simulation experiments to date were performed between 1987 and 1993 using the German space agency’s (DLR) space hardware testing facilities in Cologne. These experiments were triggered by the scientific community after the comet P’Halley’s recurrence in 1986 and the many data gathered by the space missions in this year. Simulation experiments have proved valuable in developing methods for making cometary analogues, and for exploring specific properties of such materials in detail. These experiments provided new insights into the morphology and physical behavior of aggregates formed out of silicate- /water-ice -grains likely to exist in comets. The formation of a dust mantle on the surface, and a system of ice layers below the mantle from the different admixed materials, have been detected after the insolation of the artificial comet. The mechanisms for heat transfer between the comet’s surface and its interior, compositional, structural, and isotopic changes that occur near the comet’s surface, were described by modeling in accordance with the experimental results. The mechanisms of the ejection of dust and ice grains from the surface, and the importance of gas-drag in propelling grains were investigated by close-up video cameras.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Atzei, A., Coradini M., and Schwehm G. (1992), Rosetta comet-nucleus sample return mission. Ann. Geophysicae 10, 121–122.

    ADS  Google Scholar 

  • Bailey, M. E., Clube S. V. M., and Napier W. M. (1986) The origin of comets. Vistas Astron. 29, 53–112.

    Article  ADS  Google Scholar 

  • Bar-Nun, A. (1991) Comet simulation experiments as a prelude to the Craf and Rosetta missions. Geophys. Res. Lett. 18, 289–291.

    Article  ADS  Google Scholar 

  • Bar-Nun A., Herman G., Laufer D., and Rappaport M. L. (1985) Trapping and release of gases and water ice and implications for icy bodies. Icarus 63, 317–332.

    Article  ADS  Google Scholar 

  • Battrick B., Rolfe E. J. and Reinhard R., eds. (1986) 20th ESLAB Symposium on the Exploration of Halley’s Comet. European Space Agency, Special Report 250. Noordwijk, The Netherlands.

    Google Scholar 

  • Benkhoff J. and Spohn T. (1991) Thermal histories of the KOSI samples. Geophys. Res. Lett. 18, 261–264.

    Article  ADS  Google Scholar 

  • Brin G. D. and Mendis D. A. (1979) Dust release and mantle development in comets. Astrophys. J. 229, 402–408.

    Article  ADS  Google Scholar 

  • Brownlee D. E. (1985) Cosmic dust: Collection and research. Ann. Rev. Earth Planet. Sci. 13, 147–173.

    Article  ADS  Google Scholar 

  • Campins H. and Swindle T. D. (1998) Expected characteristics of cometary meteorites. Meteoritic. Planet. Sci. (submitted).

    Google Scholar 

  • Clausing P., Über die Strömung sehr verdünnter Gase durch Röhren von beliebiger Länge. Ann. Phys. Ser. 5, 12, 961-989, 1932.

    Google Scholar 

  • Colangeli L., Bussoletti E., and Schwehm G. (1989) Physical models of cometary nuclei: A review. In Physics and Mechanics of Cometary Materials, (Hunt J. and Guyenne T. D., eds.), pp. 17-22. European Space Agency, Spec. Pub. 302.

    Google Scholar 

  • Colangeli L., Bussoletti E., and Mennella V. (1992a) Models of cometary nuclei and future space missions. Ann. Geophysicae 10, 178–183.

    ADS  Google Scholar 

  • Colangeli L., Baratta G. A., Bianco A., Bussoletti E., Fonti S., Mennella V., Orofino V., and Strazzulla G. (1992b) The composition of cometary materials: laboratory results. Ann. Geophysicae 10, 184–189.

    ADS  Google Scholar 

  • Degewij and Tedesco (1979) Do comets evolve into asteroids? Evidence from physical studied. In Comets. (L. L. Wilkening, ed.), pp. 665–695. University of Arizona, Tucson.

    Google Scholar 

  • Delsemme A. H. (1977) Comets, Asteroids, Meteorites. University of Toledo, Ohio.

    Google Scholar 

  • Dobrovolsky O. V. and Kajmakow E. (1977) Surface phenomena in simulated cometary nuclei. In Comets, Asteroids, Meteorites. (A. H. Delsemme, ed.), pp. 37–46. University of Toledo, Ohio.

    Google Scholar 

  • Dobrovolsky O. V., Ibadinov K. I., Aliev S., and Gerasimenko S. I. (1986) Thermal regime and surface structure of periodic comet nuclei. In 20th ESLAB Symposium on the Exploration of Halley’s Comet. (Battrick B., Rolfe E. J. and Reinhard R., eds.), pp. 389-394. European Space Agency, Spec. Pub. 250.

    Google Scholar 

  • Donn B. (1991) The accumulation and structure of comets. (Newburn R. L., Neugebauer M., and Rahe J., eds.), pp. 335–359. Kluwer, Dordrecht.

    Google Scholar 

  • Donn B. and Hughes D. W. (1986) A fractal model of a cometary nucleus formed by random accretion. In 20th ESLAB Symposium on the exploration of Halley’s comet, volume III. (Battrick B., Rolfe E. J. and Reinhard R., eds.), pp. 523-524. European Space Agency, Spec. Pub. 250.

    Google Scholar 

  • ESA SP-249 (1986) The Comet Nucleus Sample Return Mission. European Space Agency, Spec. Pub. 249.

    Google Scholar 

  • Eiden M. J. and Coste P. A. (1992) The challenge of sample acquisition in cometary environment. Ann. Geophysicae 10, 131–140.

    ADS  Google Scholar 

  • Espinasse S., Klinger J., Ritz C. and Schmitt B. (1991) Modeling of the thermal behavior and of the chemical differentiation of cometary nuclei. Icarus 92, 350–365.

    Article  ADS  Google Scholar 

  • Fanale F. P. and Savail J. R. (1984) An idealized short-period comet model: Surface insolation, H2O flux, and mantle evolution. Icarus 60, 476–511.

    Article  ADS  Google Scholar 

  • Fanale F. P. and Savail J. R. (1986) A model of cometary and gas dust production and non-gravitational force with application to P/Halley. Icarus 66, 154–164.

    Article  ADS  Google Scholar 

  • Ferri, F., Rotundi, A., Farrelly, F.A., and Fulchignoni, M., A planetary atmosphere simulator: application to Titan, Planet. Space Sci., Vol. 45, No. 2, 189–200, 1997.

    Article  ADS  Google Scholar 

  • Gombosi T. I. and Houpis H. L. F. (1986) An icy-glue model of cometary nuclei. Nature 324, 43–44.

    Article  ADS  Google Scholar 

  • Greenberg J. M. (1977) From interstellar dust to comets to dust. In Comets, Asteroids, Meteorites. (A. H. Delsemme, ed.), pp. 491–497. University of Toledo, Ohio.

    Google Scholar 

  • Greenberg J. M. (1982) What are comets made of? A model based on interstellar dust. In Comets. (L. L. Wilkening, ed.), pp. 131–163. University of Arizona, Tucson.

    Google Scholar 

  • Greenberg J. M. (1986) Fluffy comets. In Asteroids, comets, meteoroids II. (Lagerkvist C.-I., Lindblad B. A., Lundstedt H., and Rickman H., eds.), pp. 221-223.

    Google Scholar 

  • Grewing M., Praderie F., and Reinhard R. (1988) Exploration of Halley’s Comet. 984 pp. Springer, Heidelberg.

    Book  Google Scholar 

  • Grün E. and Jessberger E. K. (1990) Dust. In Physics and Chemistry of Comets. (Huebner W. F., ed.), pp. 113–176. Springer, Berlin.

    Chapter  Google Scholar 

  • Grün E., Kochan H., Roessler K., and Stöffler D. (1987) Simulation of cometary nuclei. In Diversity and similarity of comets, 501-508. European Space Agency, Spec. Pub. 278.

    Google Scholar 

  • Grün E., Kochan H., and Seidensticker K. J. (1991a) Laboratory simulation: A tool for comet research. Geophys. Res. Lett. 18, 245–248.

    Article  ADS  Google Scholar 

  • Grün E., Benkhoff J., Heidrich R., Hesselbarth R., Kohl H., and Kührt E. (1991a) Energy balance of the KOSI 4 experiment. Geophys. Res. Lett. 18, 253–256.

    Article  ADS  Google Scholar 

  • Grün E., Bar-Nun A., Benkhoff J., Bischoff A., Düren H., Hellmann H., Hesselbarth R., Hsiung P., Keller H. U., Klinger J., Knölker J., Kochan H., Kohi H., Kölzer G., Krankowsky D., Lämmerzahl P., Mauersberger K., Neukum G., Oehler A., Ratke L., Roessler K., Spohn T., Stöffler D. and Thiel K. (1991c) Laboratory simulation of cometary processes: Results from the first KOSI experiments. In Comets in the Post-Halley Era (Newburn R. L., Neugebauer M., and Rahe J., eds.), pp. 277–297. Kluwer, Dordrecht.

    Chapter  Google Scholar 

  • Grün E., Benkhoff I, and Gebhard J. (1992) Past, present and future KOSI comet simulation experiments. Ann. Geophysicae 10, 190–197.

    ADS  Google Scholar 

  • Grün E., Gebhard J., Bar-Nun A., Benkhoff J., Duren H., Eich G., Hische R., Huebner W. F., Keller H. U., Klees G., Kochan H., Kölzer G., Kroker H., Kührt E., Lämmerzahl P., Lorenz E., Markiewicz W. J., Möhlmann D., Oehler A., Scholz J., Seidensticker K. J., Rössler K., Schwehm G., Steiner G., Thiel K., and Thomas H. (1993) Development of a dust mantle on the surface of an insolated ice-dust mixture: Results from the KOSI-9 experiment. J. Geophys. Res. 98, 15091–15104.

    Article  ADS  Google Scholar 

  • Hesselbarth P., Krankowsky D., Lämmerzahl P., Mauersberger K., Winkler A., Hsiung P., and Roessler K. (1991) Gas release from ice/dust mixtures. Geophys. Res. Lett. 18, 269–272.

    Article  ADS  Google Scholar 

  • Hirao K. and Itoh T. (1986) The planet-A encounters. Nature 321, 294–297.

    Article  ADS  Google Scholar 

  • Hoskins M., ed. (1997) The Cambridge Illustrated History of Astronomy. Cambridge University Press, Cambridge.

    Google Scholar 

  • Horanyi M., Gombosi T. I., Cravens T. E., Körösmezey A., Kecskemety, Nagy K., and Szegö K. (1984) The friable sponge model of cometary nuclei. Astrophys. Jour. 278, 449–455.

    Article  ADS  Google Scholar 

  • Hsiung P. and Roessler K. (1989) CO2 depth profiles in cometary model substances of KOSI. In Proceedings of an International Workshop of Physics and Mechanics of Cometary Materials, (Hunt J. and Guyenne T. D., eds.), pp. 191-196. European Space Agency, Spec. Pub. 302.

    Google Scholar 

  • Huebner W. F. (1987) First polymer in space identified in Comet Halley. Science 237, 628–630.

    Article  ADS  Google Scholar 

  • Huebner W. F., ed. (1990) Physics and Chemistry of Comets. Springer, Berlin. 376 pp.

    Google Scholar 

  • Huebner W. F. (1991) The KOSI experiments. Geophys. Res. Lett. 18, 243.

    Article  ADS  Google Scholar 

  • Huebner W. F. and Boice D. C. (1992) On the 3D time-dependent modeling of comet nucleus surface layers. Ann. Geophysicae 10, 169–177.

    ADS  Google Scholar 

  • Huebner W. F., Delamere W. A., Reitsema H., Keller H. U., Wilhelm K., Whipple F. L., Schmidt H. U. (1986) Dust-gas interaction deduced from Halley Multicolor Camera observations. In 20th ESLAB Symposium on the Exploration of Halley’s Comet (Battrick B., Rolfe E. J. and Reinhard R., eds.), pp. 363-364. European Space Agency, Special Report 250. Noordwijk, The Netherlands.

    Google Scholar 

  • Hughes D. W. (1981) The size, mass, mass loss, and age of Halley’s comet. Mon. Not. Roy. Astron. Soc. 213, 103–109.

    ADS  Google Scholar 

  • Hunt J. and Guyenne T. D., eds. (1989) Proceedings of an International Workshop of Physics and Mechanics of Cometary Materials. European Space Agency, Spec. Pub. 302.

    Google Scholar 

  • Ibadinov K.I. and Kajmakov E.A. (1970), Formation and destruction of dust matrices during sublimation of dusty ice. Komety i Meteory, 19, 20–24.

    ADS  Google Scholar 

  • Ibadinov K. I. and Aliev S. (1987) Sublimation characteristics of H2O comet nucleus with CO2 impurities. In Diversity and similarity of comets, 717–719. European Space Agency, Spec. Pub. 278.

    Google Scholar 

  • Ibadinov Kh. I., Rahmonon A. A. and A. Sh. Bjasso (1991) Laboratory simulation of cometary structures. In Comets in the Post-Halley Era (Newburn R. L., Neugebauer M., and Rahe J., eds.), pp. 299–311. Kluwer, Dordrecht.

    Chapter  Google Scholar 

  • Jackson W. M. (1991) Recent laboratory photochemical studies and their relationship to the photochemical formation of cometary radicals. In Comets in the Post-Halley Era (Newburn R. L., Neugebauer M., and Rahe J., eds.), pp. 313–332. Kluwer, Dordrecht.

    Chapter  Google Scholar 

  • Jessberger H. L. and Kotthaus M. (1989) Compressive strength of synthetic comet nucleus samples. In Physics and Mechanics of Cometary Materials, (Hunt J. and Guyenne T. D., eds.), pp. 141-146. European Space Agency, Spec. Pub. 302.

    Google Scholar 

  • Jessberger E. K., Christoridis A. and Kissel J. (1988) Aspects of the major element composition of Halley’s dust. Nature 332, 691–695.

    Article  ADS  Google Scholar 

  • Jewitt D. and Luu J. (1993) Discovery of candidate Kuiper Belt object 1992 QB1. Nature 362, 730–732.

    Article  ADS  Google Scholar 

  • Jewitt D. C. and Luu J. X. (1995) The solar system beyond Neptune. Astron. Jour. 109, 1867–1873.

    Article  ADS  Google Scholar 

  • Kajmakov, E.A. and V.I. Sharkov (1967a), Behaviour of water ice in vacuum at low temperatures, Komety i Meteory (Dushanbe) 15.16-20.

    Google Scholar 

  • Kajmakov, E.A. and V.I. Sharkov (1967b), Sublimation of water ice in vacuum at low temperatures, Komety i Meteory (Dushanbe) 15.21-24.

    Google Scholar 

  • Keller H. U. (1990) The Nucleus. In Physics and Chemistry of Comets (Huebner W. F., ed.), 13–68. Springer, Berlin.

    Chapter  Google Scholar 

  • Keller, H. U. (1989), Comets — Dirty Snowballs or Icy Dirtballs? Proc. of an International Workshop on Physics and Mechanics of Cometary Materials, Münster, ESA SP-302, 39-45.

    Google Scholar 

  • Keller H. U. and Markiewicz W. J. (1991) KOSI? Geophys. Res. Lett. 18, 249–252.

    Article  ADS  Google Scholar 

  • Keller H. U., Kramm R. and Thomas N. (1988) Surface features on the nucleus of Comet Halley. Nature 331, 227–231.

    Article  ADS  Google Scholar 

  • Klinger J., Benest D., Dollfus A. and Smoluchowski R. (1985) Ices in the Solar System. Reidel, Dordrecht.

    Book  Google Scholar 

  • Klinger J., Benkhoff J., Espinasse S., Grün E., Ip W., Joo F., Keller H. U., Kochan H., Kohl H., Roessler K., Seboldt W., Spohn T. and Thiel K. (1989) How far do results of recent simulation experiments fit current models of cometary nuclei? Proc, Lunar Planet. Sci. Conf. 19th, 493-497.

    Google Scholar 

  • Kochan H. and Junglus Ch. (1993) From the space environment to the planetary surface, from hardware tests to physical experiments — a changing utilization of space simulators. In Proceedings of the 2nd International Symposium on Environmental Testing for Space Programmes, 483-489. European Space Agency, Spec. Pub. 278.

    Google Scholar 

  • Kochan H. and Koerver W. (1991) Dust emission phenomena of cometary analogues. Adv. Space Res. 11, (12)161-(12)174.

    Google Scholar 

  • Kochan H., Feuerbacher B., Joo F., Klinger J., Seboldt W., Bischoff A., Düren A., Stöffler D., Spohn T., Fechtig H., Grün E., Kohl H., Krankowsky D., Rössler K., Thiel K., Schwehm G., and Weishuapt U. (1989a) Comet simulation experiments in the DFVLR space simulators. Adv. Space Res. 9, (3)113-(3)122.

    Google Scholar 

  • Kochan H., Benkhoff J., Bischoff A., Fechtig H., Feuerbacher B., Grün E., Joo F., Klinger I, Kohl H., Krankowsky D., Rössler K., Seboldt W., Thiel K., Schwehm G., and Weishuapt U. (1989b) Laboratory simulation of a cometary nucleus: Experimental setup and first results. Proc. Lunar Planet. Sci. Conf. 19th, 487-492.

    Google Scholar 

  • Kochan H., Roessler K., Ratke L., Heyl M, Hellmann H., and Schwehm G. (1989c) Crustal strength of different model comet materials. In Physics and Mechanics of Cometary Materials, (Hunt J. and Guyenne T. D., eds.), pp. 115-119. European Space Agency, Spec. Pub. 302.

    Google Scholar 

  • Kochan H., Markiewicz W. J., and Keller H. U. (1991) KOSI: Gas drag derived from ice/dust-particle trajectories. Geophys. Res. Lett. 18, 273–276.

    Article  ADS  Google Scholar 

  • Kochan H., Feibig W., Möhlmann D., Willnecker R., Gerasimov M. V., Speth B., Köhler U., Weckesser S., Admiraal E., Levefere M., Roskam P., Re E., Hazan D., Brighenti A., Coste P., Vidquist J., and Ylikorpi T. (1997) The new planetary simulation facility of DLR — and its first full operational performance during breadboard — test of a “small sample acquisition and distribution tool (SSA/DT)” for space mission applications to Mars, Moon and comets. In Proceedings of the 6th International Symposium on Environmental Testing for Space Programmes, 25–27. European Space Agency.

    Google Scholar 

  • Kölzer G., Grün E., Kochan H., Lämmerzahl P., and Thiel K. (1995) Dust particle dynamics from insolated ice/dust mixtures: results from the KOSI 5 experiment. Planet. Space. Sci. 43, 391–407.

    Article  ADS  Google Scholar 

  • Kömle N. I., Steiner G., Baguhl M., Kohl H., Kochan H. and Thiel K. (1991) The effect of non-volatile porous layers on temperature and vapor pressure of underlying ice. Geophys. Res. Lett. 18, 265–268.

    Article  ADS  Google Scholar 

  • Kömle, N.I., Kargl, G., Thiel, K., and Seiferlin, K., Thermal properties of cometary ices and sublimation residua including organics, Planet. Space Sci., Vol. 44, No. 7, 675–689, 1996.

    Article  ADS  Google Scholar 

  • Kömle, N.I., Ball, A.J., Kargl, G., Stöcker, J., Thiel, M., Jolly, H.S., Dziruni, M., and Zarnecki, J.C., Using the anchoring device of a comet lander to determine surface mechanical properties, Planet. Space Sci., Vol. 45, No. 12, 1515–1538, 1997.

    Article  ADS  Google Scholar 

  • Kossacki, K.J., Kömle, N.I., Kargl, G., and Steiner, G., The influence of grain sintering on the thermoconductivity of porous ice, Planet. Space Sci., Vol. 42, No. 5, 383–389, 1994.

    Article  ADS  Google Scholar 

  • Krueger F. R., Korth A. and Kissel J. (1991) The organic matter of comet Halley as inferred by joint gas phase and solid phase analyses. Space Sci. Rev. 56, 167–175.

    Article  ADS  Google Scholar 

  • Kührt, E. and Keller, H.U., The formation of cometary surface crusts, ICARUS 109, 121–132, 1994.

    Article  ADS  Google Scholar 

  • Lämmerzahl, P., Gebhard, J., Grün, E., and Klees, G., Gas release from ice/dust mixtures: results from eleven KOSI experiments, Planet. Space Sci., Vol. 43, Nos. 3/4, 363–373, 1995.

    Article  ADS  Google Scholar 

  • Lafontaine J. de, Champetier C, Régnier P. and Serrano J. (1992) The importance of comet models in the design of the Rosetta mission. Ann. Geophysicae 10, 123–130.

    ADS  Google Scholar 

  • Lorenz, E., Knollenberg, J., Kroker, H., and Kührt, E., IR observations of KOSI samples, Planet. Space Sci., Vol. 43, Nos. 3/4, 341–351, 1995.

    Article  ADS  Google Scholar 

  • Markiewicz, W.J., Kochan, H., and Keller, U., Gas-particle interaction in KOSI cometary simulations, in Theoretical Modelling Of Comet Simulation Experiments, Proc. of the KOSI modeler’s workshop, Graz, October 4-5, 1990, Editors: Kömle, N.I., Bauer, S.J., and Spohn, T., Verlag der Österreichischen Akademie der Wissenschaften.

    Google Scholar 

  • Mauersberger K., Michel H.-J., Krankowsky D., Lämmerzahl P., and Hesselbarth P. (1991) Measurement of the volatile component in particles emitted from an ice/dust mixture. Geophys. Res. Lett. 18, 277–280.

    Article  ADS  Google Scholar 

  • Markiewicz, W.J., Skorov, Yu.V., Keller, H.U., and Kömle, N.I., Evolution of ice surfaces within porous near-surface layers on cometary nuclei, Planet. Space Sci., Vol. 46, No. 4, 357–366, 1998.

    Article  ADS  Google Scholar 

  • Maas D., Krueger F. R. and Kissel J. (1990) mass and sensity of silicate-and CHON-type particles released by comet P/Halley. In Asteroids, comets, meteoroids III, (C. I. Langerkvist, H. Rickman, B. A. Lindblad and M. Lindgren, eds.), pp. 389-392. (1986), Uppsala Univ., Astronomiska Observatoriet.

    Google Scholar 

  • McDonnell J. A. M., Alexander W. M., Burton W. M., Bussoletti E., Evans G. C, Evans S. T., Firth J. G., Grard R. J. L., Green S. F., Grün E., Hanner M. S., Hughes D. W., Igenbergs E., Kissel J., Kuczera H., Lindblad B. A., Langevin Y., Mandeville J.-C, Nappo S., Pankiewicz G. S. A., Perry C. H., Schwehm G. H., Sekanina Z., Stevenson T. J., Turner R. F., Weishaupt U., Wallis M. K. and Zamecki J. C. (1987) The dust distribution within the inner coma of Comet P/Halley 1982i: Encounter by Giotto’s impact detectors. Astron. Astrophys. 187, 719–741.

    ADS  Google Scholar 

  • Mekler Yu., Prialnik D. and Podolak D. K. (1990) Evaporation from a porous cometary nucleus. Astrophys. J. 356, 682–686.

    Article  ADS  Google Scholar 

  • Möhlmann, D. Cometary activity and nucleus models, Planet. Space Sci., Vol. 43, Nos. 3/4, 327–332, 1995.

    Article  ADS  Google Scholar 

  • Möhlmann, D. Cometary activity and nucleus modelling: a new approach, Planet. Space Sci., Vol. 44, No. 6, 541–546, 1996.

    Article  ADS  Google Scholar 

  • Newburn R. L., Neugebauer M., and Rahe J. (1991) Comets in the Post-Halley Era. Kluwer, Dordrecht.

    Book  Google Scholar 

  • Oehler A. and Neukum G. (1991) Visible and near IR albedo measurements of ice/dust mixtures. Geophys. Res. Lett. 18, 253–256.

    Article  ADS  Google Scholar 

  • Oort J. H. (1950) The structure of the cloud of comets surrounding the solar system, and an hypothesis concerning its origin. Bull. Astron. Inst. Neth. 11, 91-110.

    Google Scholar 

  • Ponnamperuma C, ed. (1981) Comets and the Origin of Life, Proceedings of the Fifth College Park Colloquium on Chemical Evolution. D. Reidel, Dordrecht.

    Google Scholar 

  • Prialnik D. and Bar-Nun A. (1988). The formation of a permanent dust mantle and its effect on cometary activity. Icarus 74, 272–283.

    Article  ADS  Google Scholar 

  • Prinn R. G. and Fegley B. (1989) Solar nebular chemistry: Origin of planetary, satellite and cometary volatiles. In Origin and Evolution of Planetary and Satellite Atmospheres (S. K. Atreya, J. B. Pollack and M. S. Matthews, eds.), pp. 78–136. University of Arizona Press, Tucson.

    Google Scholar 

  • Rickman H. (1991) The thermal history and structure of cometary nuclei. In Comets in the Post-Halley Era, volume 2, (R. L. Newburn, Neugerbauer M. and Rahe J., eds.), pp. 733-760. Kluwer Academic Publishers.

    Google Scholar 

  • Rickman H. (1992) Cometary nuclei — recent gas flux modelling and applications. Ann. Geophysicae 10, 157–168.

    ADS  Google Scholar 

  • Rickman H. and Huebner W. F. (1990) Comet formation and evolution. In Physics and Chemistry of Comets. (Huebner W. F., ed.), pp. 245–303. Springer, Berlin.

    Chapter  Google Scholar 

  • Roessler K., Hsiung P., Kochan H., Hellmann H., Düren H., Thiel K. and Kölzer G. (1990) A model comet made from mineral dust and H2O-CO2 ice: Sample preparation development. Proc. Lunar Planet. Sci. Conf. 20, 379–388.

    ADS  Google Scholar 

  • Roessler K., Sauer M., and Schultz R. (1992a) Gaseous products from VUV photolysis of cometary solids. Ann. Geophysicae 10, 226–231.

    ADS  Google Scholar 

  • Rolfe E. J. and Battrick B., eds. (1987) Symposium on the Diversity and Similarity of Comets. European Space Agency, Spec. Pub. 278.

    Google Scholar 

  • Saunders R. S., Fanale F., Parker T. J., Stephens I. B., and Sutton S. (1986) Properties of filamentary sublimation residues from dispersion of clay in ice. Icarus 47, 94–104.

    Article  ADS  Google Scholar 

  • Seidensticker K. J. and Kochan H. (1992) Experiments with cometary analogues at the DLR. Ann. Geophysicae 10, 198–205.

    ADS  Google Scholar 

  • Skorov, Yu.V. and Rickman, H., A kinetic model of gas flow in a porous cometary mantle, Planet. Space Sci., Vol. 43, No. 12 1587–1594, 1995.

    Article  ADS  Google Scholar 

  • Shulman E. M. (1972) The evolution of cometary nuclei. In The Motion, Evolution of Orbits, and Origin of Comets (G. A. Chebotarev, E. I. Kazimirchak-Polanskaya and B. G. Marsden, eds.), pp 271–276. Reidel, Dordrecht.

    Chapter  Google Scholar 

  • Spohn T. and Benkhoff J. (1990) Thermal history models for KOSI sublimation experiments. Icarus 87, 358–371.

    Article  ADS  Google Scholar 

  • Spohn T., Seiferlin K., and Benkhoff J. (1989a) Thermal conductivities and diffusivities of porous ice samples at low pressure and temperatures and possible modes of heat transfer near surface layers of comets. In Physics and Mechanics of Cometary Materials, (Hunt J. and Guyenne T. D., eds.), pp. 77-82. European Space Agency, Spec. Pub. 302.

    Google Scholar 

  • Spohn T., Benkhoff J., Klinger J., Grün E. and Kochan H. (1989b) Thermal modelling of two KOSI comet nucleus simulation experiments. Adv. Space Res. 9, 127–131.

    Article  ADS  Google Scholar 

  • Stern S. A. and Campins H. (1996) Chiron and the Centaurs: escapees from the Kuiper belt. Nature 382, 507–510.

    Article  ADS  Google Scholar 

  • Stöffler D., Düren H., Knöker J., Hische R., and Bischoff A. (1991) Cometary analogue material: Preparation, composition, and thin section petrography. Geophys. Res. Lett. 18, 285–288.

    Article  ADS  Google Scholar 

  • Stöffler D. and Düren H. (1992) Cometary analogue material: Types, tests, and results. Ann. Geophysicae 10, 206–216.

    ADS  Google Scholar 

  • Storrs A. D., Fanale F., Saunders R. S., and Stephens J. B. (1988) The formation of filamentary sublimate residues (FSR) from mineral grains. Icarus 76, 493–512.

    Article  ADS  Google Scholar 

  • Strazzulla G., Pirronello V., and Foti G. (1983) Physical and chemical effects induced by energetic ions on comets. Astron. Astrophys. 123, 93–97.

    ADS  Google Scholar 

  • Strazzulla G., and Johnson R. E. (1991) Irradiation effects on comets and cometary debris. In Comets in the Post-Halley Era, volume 1, (Newburn R. L., Neugerbauer M. and Rahe J., eds.), pp. 243-275. Kluwer Academic Publishers.

    Google Scholar 

  • Strazzulla G., Barratta G. A., Johnson R. E. and Donn B. (1991) The primordial comet mantle: Irradiation production of a stable, organic crust. Icarus 91, 101–104.

    Article  ADS  Google Scholar 

  • Thiel K., Kölzer G., and Kohl H. (1991) Dust emission of mineral/ice mixtures: Redisue structure and dynamical parameters. Geophys. Res. Lett. 18, 281–284.

    Article  ADS  Google Scholar 

  • Thiel K., Schwehm G., and Weishaupt U. (1989a) Comet simulation experiments in the DFVLR space simulators. Adv. Space Res. 9, 375–390.

    Google Scholar 

  • Thiel K., Kölzer G., Kochan H., Lämmerzahl P., and Lorenz. (1995) Phenomenology and dynamic behavior of the dust component in the KOSI experiments. Planet. Space Sci. 43, 375–390.

    Article  ADS  Google Scholar 

  • Thomas, H, Ratke, L., and Kochan, H., Crushing strength of porous ice-mineral bodies — relevance for comets, Adv. Space Res. Vol. 14, No. 12, (12)207-(12)216, 1994.

    Google Scholar 

  • Weissman P. R. (1986) Are cometary nuclei primordial rubble piles? Nature 320, 242–244.

    Article  ADS  Google Scholar 

  • Weissman P. R., A’Hearn M. F., McFadden L. A., and Rickman H. (1989) Evolution of comets into asteroids. In Asteroids II (Binzel R. P., Gehrels T. and Matthews M. S., eds.), pp. 880–920. University of Arizona Press, Tucson.

    Google Scholar 

  • Wetherill G. W. (1991) End products of cometary evolution: Cometary origin of Earth-crossing bodies of asteroidal appearance. In Comets in the Post-Halley Era, volume 1, (R. L. Newburn R. L., Neugerbauer M. and Rahe J., eds.), pp. 537-556. Kluwer Academic Publishers.

    Google Scholar 

  • Whipple F. L. (1950) The comet model I. The acceleration of Comet Encke. Astrophys. J. 111, 375–394.

    Article  ADS  Google Scholar 

  • Whipple F. L. (1951) The comet model II. Physical relations for comets and meteorites. Astrophys. J. 113, 464–474.

    Article  ADS  Google Scholar 

  • Wilkening L. L. (1982) Comets. University of Arizona Press, Tucson.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Kochan, H.W., Huebner, W.F., Sears, D.W.G. (1999). Simulation Experiments with Cometary Analogous Material. In: Ehrenfreund, P., Krafft, C., Kochan, H., Pirronello, V. (eds) Laboratory Astrophysics and Space Research. Astrophysics and Space Science Library, vol 236. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-4728-6_25

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-4728-6_25

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-5988-6

  • Online ISBN: 978-94-011-4728-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics