Skip to main content

Laboratory Simulation of Cometary Structures

  • Chapter
Comets in the Post-Halley Era

Part of the book series: Astrophysics and Space Science Library ((ASSL,volume 167))

Abstract

The properties of a porous mineral crust on the surface of an icy cometary nucleus and the crust’s influence on the thermal regime and gas production in the nucleus have been studied by laboratory simulation experiments. A nucleus model of H2O ice with the impurity of graphite particles has been shown to display the same temperature and surface albedo as those determined for Comet Halley’s nucleus by the VEGA 1, VEGA 2, and Giotto spacecraft. The effective thermal conductivity of a crust with a density of 0.5 × 102 kg m-3 to 0.7 × 102 kg m-3 is less than 10-1 W m-1 K-1, while the crust’s strength (103 to 104 Pa) is not sufficient to withstand its erosion by the sublimating gases. A crust that is 1 cm thick lowers the gas production of the nucleus model by one order of magnitude. The destruction of the crust, and the gas and dust production of Comet Halley’s nucleus can be explained either by a spotty surface on the nucleus or, more likely, by the presence of volatile impurities such as CO2 with concentrations of 1 × 10-2 to 3 × 10-2 in the H2O ice under the crust.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Combes, M., et al. (1986). “Infrared sounding of comet Halley from VEGA I”, Nature, 321, 266–268.

    Article  ADS  Google Scholar 

  • Dobrovolsky, O.V., and Ibadinov, K.I. (1971). “Destruction of dust matrix on comet nucleus surface”, Dokladi Akademii Nauk Tadjik SSR, 14, 16–19.

    ADS  Google Scholar 

  • Dobrovolsky, O.V., and Kajmakov, E.A. (1977). “Surface phenomena in simulated cometary nuclei”, in A. H. Delsemme (ed.), Comets, Asteroids, Meteorites, The University of Toledo, Toledo, Ohio, 37–46.

    Google Scholar 

  • Dobrovolsky, O.V., et al. (1984). “Secular brightness decrease and nuclei structure of periodical comets”, Dokladi Akademii Nauk Tadjik SSR, 27, 198–200.

    ADS  Google Scholar 

  • Dobrovolsky, O.V., et al. (1986). “Thermal regime and surface of periodic comet nuclei,” in B. Battrick, E.J. Rolfe, and R. Reinhard (eds.), Exploration of Halley’s Comet, Proceedings of the International Symposium held in Heidelberg, Germany, 27–31 October 1986, ESA SP-250, Vol. II, Noordwijk, The Netherlands, 389–394.

    Google Scholar 

  • Emerich, C., et al. (1986). “Temperature and size of the nucleus of Halley’s comet deduced from I.K.S. infrared VEGA I measurements”, in B. Battrick, E.J. Rolfe, and R. Reinhard (eds.), Exploration of Halley’s Comet, Proceedings of the International Symposium held in Heidelberg, Germany, 27–31 October 1986, ESA SP-250, Vol. II, Noordwijk, The Netherlands, 381–384.

    Google Scholar 

  • Fanale, F.P., and Salvail, J.R. (1984). “An idealized short-period comet model: Surface insolation, H2O flux, dust flux, and mantle evolution”, Icarus, 60, 476–511.

    Article  ADS  Google Scholar 

  • Grün, E., et al. (1987). “Simulation of cometary nuclei”, in E.J. Rolfe and B. Battrick (eds.), Diversity and Similarity of Comets, Proceedings of an International Symposium held in Brussels, Belgium, 6–9 April 1987, ESA SP-278, Noordwijk, The Netherlands, 501–508.

    Google Scholar 

  • Ibadinov, K.I. (1982). “The durability of dust formed under the dusty ice sublimation”, Komety i Meteory, 34, 19–23.

    ADS  Google Scholar 

  • Ibadinov, K.I. (1989). “Laboratory investigations of the sublimation of comet nucleus models”, Adv. Space Res., 9(3), 97–112.

    Article  ADS  Google Scholar 

  • Ibadinov, K.I., and Aliev, S. (1984). “Laboratory investigation of the comet H2O, CO2 and NH3 ice conglomerates”, Komety i Meteory, 36, 35–37.

    ADS  Google Scholar 

  • Ibadinov, K.I., and Aliev, S. (1987). “Sublimation characteristics of H2O comet nucleus with CO2 impurities”, in E.J. Rolfe and B. Battrick (eds.), Diversity and Similarity of Comets, Proceedings of an International Symposium held in Brussels, Belgium, 6–9 April 1987, ESA SP-278, Noordwijk, The Netherlands, 717–719.

    Google Scholar 

  • Ibadinov, K.I., and Kajmakov, E.A. (1970). “Formation and destruction of dust matrices during sublimation of dusty ice”, Komety i Meteory, 19, 20–24.

    ADS  Google Scholar 

  • Ibadinov, K.I., and Rahmonov, A.A. (1988). “Laboratory simulation layer on comet Halley nucleus surface”, Kometny Circ, 395, 4.

    Google Scholar 

  • Ibadinov, K.I., et al. (1985). “The formation rate and physical+mechanical characteristics of organic matrixes on the surface comet nuclei models”, Dokladi Akademii Nauk Tadjik SSR, 28, 21–24.

    ADS  Google Scholar 

  • Ibadinov, K.I., et al. (1987a). “Physical-mechanical properties of matrixes on the comet nuclei surface model”, in E.J. Rolfe and B. Battrick (eds.), Diversity and Similarity of Comets, Proceedings of an International Symposium held in Brussels, Belgium, 6–9 April 1987, ESA SP-278, Noordwijk, The Netherlands, 713–716.

    Google Scholar 

  • Ibadinov, K.I., et al. (1987b). “Laboratory investigation of thermal conductivity of dust models on the ice comet nuclei surfaces”, in Z. Ceplecha and P. Pecina (eds.), Interplanetary Matter, Proceedings of the 10th European Regional Astronomy Meeting of the IAU, 24–29 August 1987, Praha, Czechoslovakia, 2, 55–57.

    Google Scholar 

  • Kajmakov, E.A., and Ibadinov, K.I. (1971). “Influence of light on dusty ices”, Komety i Meteory, 20, 9–13.

    ADS  Google Scholar 

  • Klinger, J., et al. (1989). “How far do results of recent simulation experiments fit current models of cometary nuclei”, in Proceedings of the 19th Lunar and Planetary Science Conference, Lunar and Planetary Institute, Houston, 493–497.

    Google Scholar 

  • Kochan, H., et al. (1989). “Laboratory simulation of a cometary nucleus: Experimental setup and first results”, in Proceedings of the 19th Lunar and Planetary Science Conference, Lunar and Planetary Institute, Houston, 487–492.

    Google Scholar 

  • Lizunkova, I.S., et al. (1977). “Simulation of cometary dust particles”, Sov. Astron. J., Letter 3, 518–521.

    Google Scholar 

  • Markovich, M.Z. (1958). “Thermal conductivity of cometary nucleus surface layer”, Bulleten Instituta Astrofiziki Akademii Nauk Tadjik SSR, 3–14.

    Google Scholar 

  • Markovich, M.Z. (1961). “Nuclei temperature of comets with great aphelion distances”, Bulleten Komissii po Kometam i Meteoram, 6, 25–31.

    Google Scholar 

  • Markovich, M.Z. (1986). “On the theory of the’ spotty’ model of cometary nucleus”, Kinematika i Fizika Nebesnykh Tel, 2, 70–76.

    ADS  Google Scholar 

  • Matveev, N.N., and Kajmakov, E.A. (1980). “Experimental research of the probable parent Na-and Li-containing molecules in comet”, Komety i Meteory, 28, 17–25.

    ADS  Google Scholar 

  • Mendis, D.A., and Brin, G.O. (1977). “Monochromatic brightness variations of comets. II. Core-mantle model”, Moon, 17, 359–372.

    Article  ADS  Google Scholar 

  • Reinhard, R. (1986). “The Giotto encounter with comet Halley”, Nature, 321(6067), 313–318.

    Article  ADS  Google Scholar 

  • Riives, V.G. (1966). “Intensity of gas production in comets”, Komety i Meteory, 13, 3–8.

    Google Scholar 

  • Sagdeev, R.Z., et al. (1986). “VEGA spacecraft encounters with comet Halley”, Nature, 321(6067), 259–262.

    Article  ADS  Google Scholar 

  • Sekanina, Z., and Larson, S.M. (1986). “Coma morphology and dust emission pattern of Periodic Comet Halley. N. Spin vector refinement and map of discrete dust sources for 1910”, Astron. J., 92, 462–482.

    Article  ADS  Google Scholar 

  • Shul’man, L.M. (1972). Dinamika kometnyh atmospher. Nejtralnyj gas, Naukova Dumka, Kiev.

    Google Scholar 

  • Shul’man, L.M. (1987). Jadra komet, Nauka, Moscow.

    Google Scholar 

  • Whipple, F.L. (1950). “A comet model. I. The acceleration of comet Encke”, Astrophys. J., 111, 375–394.

    Article  ADS  Google Scholar 

  • Whipple, F.L. (1951). “A comet model. II. Physical relations for comets and meteors”, Astrophys. J., 113, 464–474.

    Article  ADS  Google Scholar 

  • Yeomans, D.K. (1986). “The comet Halley ephemeris development effort”, in R. Reinhard and B. Battrick (eds.), Space Missions to Halley’s Comet, ESA SP-1066, Noordwijk, The Netherlands, 179–198.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Ibadinov, K.I., Rahmonov, A.A., Bjasso, A.S. (1991). Laboratory Simulation of Cometary Structures. In: Newburn, R.L., Neugebauer, M., Rahe, J. (eds) Comets in the Post-Halley Era. Astrophysics and Space Science Library, vol 167. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-3378-4_13

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-3378-4_13

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-5494-2

  • Online ISBN: 978-94-011-3378-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics