Skip to main content

Abstract

The word Physics comes from the Greek word ‘phusis’ which means ‘that what comes into existence’, and itself is derived from the Greek verb ‘phuoo’ which means ‘to create, to come into existence’.

Absolute space, in its own nature, without relation to anything external, remains always similar and immovable. Absolute, true, and mathematical time, of itself, and from its own nature, flows equally without relation to anything external.

Isaac Newton, 1642–1726

An intelligence that would know at a certain moment all the forces existing in nature and the situations of the bodies that compose nature, and if it would be powerful enough to analyze all these data, would be able to grasp in one formula the movements of the biggest bodies of the Universe as well as of the lightest atom.

Simon Laplace, 1749–1827

Because of the relativity of the concept of simultaneity, space and time melt together to a four dimensional continuum.

Albert Einstein, 1879–1955

Everything is still unclear to me, but my feeling is getting stronger everyday. I believe that in the scheme that I am developing the particles will not move anymore on orbits, and we shall have to reconsider fundamental classical concepts.

Werner Heisenberg, 1901–1976

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Rauch, H. et al., “Test of a single crystal neutron interferometer”, Phys. Lett., 47 A, 1974, p. 369.

    Google Scholar 

  2. Rauch, H. et al., “Verification of coherent spinor rotations of fermions”, Phys. Lett., 54 A, 1975, p. 425.

    Google Scholar 

  3. Rauch, H., “Neutron interferometric tests of quantum mechanics”, Helv. Phys. Acta, 61, 1988, p. 589.

    Google Scholar 

  4. Aerts, D., “An attempt to imagine parts of the reality of the micro-world”, in the proceedings of the conference Problems in Quantum Physics; Gdansk ’89, World Scientific Publishing Company, Singapore, 1990, p. 3.

    Google Scholar 

  5. Aerts, D. and Reignier, J., “The spin of a quantum entity and problems of non-locality”, in the proceedings of the Symposium on the Foundations of modern Physics 1990, Joensuu, Finland, World Scientific Publishing Company, Singapore, 1990, p. 9.

    Google Scholar 

  6. Aerts, D. and Reignier, J., “On the problem of non-locality in quantum mechanics”, Helv. Phys. Acta, 64, 1991, p. 527.

    Google Scholar 

  7. Aerts, D., “A possible explanation for the probabilities of quantum mechanics and a macroscopic situation that violates Bell inequalities”, in: Mittelstaedt, P. et al. (eds.), Recent Developments in Quantum Logic, in Grundlagen der Exacten Naturwissenschaften, vol. 6, Wissenschaftverlag, Bibliographisches Institut, Mannheim, 1983, p. 235.

    Google Scholar 

  8. Aerts, D., “A possible explanation for the probabilities of quantum mechanics”, J. Math. Phys., 27, 1986, p. 202.

    Article  Google Scholar 

  9. Aerts, D., “The origin of the non-classical character of the quantum probability model”, in: Blanquiere, A. et al. (eds.), Information, Complexity, and Control in Quantum Physics, Springer-Verlag, 1987.

    Google Scholar 

  10. Aerts, D., “The construction of reality and its influence on the understanding of quantum structures”, Int. J. Theor. Phys., 31, 1992, p. 1815.

    Article  Google Scholar 

  11. Aerts, D., “Quantum structures, separated physical entities and probability”, Found. Phys., 24, 1994, p. 1227.

    Article  Google Scholar 

  12. Aerts, D., “Quantum structures: an attempt to explain the origin of their appearance in nature”, Int. J. Theor. Phys., 34, 1995, p. 1165.

    Article  Google Scholar 

  13. de Broglie, L., “Sur la possibilité de relier les phénomènes d’interférence et de diffraction à la théorie des quanta de lumière”, Comptes Rendus, 183, 1926, p. 447.

    Google Scholar 

  14. Böhm, D. and Vigier, J.P., “Model of the causal interpretation of quantum theory in terms of a fluid with irregular fluctuations”, Physical Review, 96, p. 208.

    Google Scholar 

  15. Böhm, D., Wholeness and the implicate order, ARK Edition, 1983.

    Google Scholar 

  16. Heisenberg, W., “Uber quantentheoretische Umdeuting kinematischer und mechanischer Beziehungen”, Zeitschrift für Physik, 33, 1925, p. 879.

    Article  Google Scholar 

  17. Schrödinger, E., “Quantisiering als Eigenwertproblem”, Ann. der Phys., 79, 1926, p. 361.

    Article  Google Scholar 

  18. Dirac, P.A.M., The principles of quantum mechanics, Oxford University Press, 1930.

    Google Scholar 

  19. von Neumann, J., Mathematische Grundlagen der Quantenmechanik, Berlin, Springer, 1932.

    Google Scholar 

  20. Jauch, J.M., Foundations of Quantum Mechanics, Addison Wesley, 1968.

    Google Scholar 

  21. Piron, C., Foundations of Quantum Physics, Benjamin, 1976.

    Google Scholar 

  22. Ludwig, G., Foundations of Quantum Mechanics, (two volumes), Springer-Verlag, New York, Berlin, 1983/5.

    Book  Google Scholar 

  23. Randall, C. and Foulis, D., “The operational approach to quantum mechanics”, in: Hooker, CA. (ed.), Physical theory as logico-operational structure, Reidel, 1979.

    Google Scholar 

  24. Randall, C. and Foulis, D., “A mathematical language for quantum physics”, in: Gruber, C. et al. (eds.), Les Fondements de la Mécanique Quantique, A.V.C.P., case postale 101, 1015 Lausanne, Suisse, 1983.

    Google Scholar 

  25. Mittelstaedt, P., Quantum Logic, Reidel, Dordrecht, 1978.

    Book  Google Scholar 

  26. Segal, I.E., Ann. Math., 48, 1947, p. 930.

    Google Scholar 

  27. Emch, G.G.,Mathematical and conceptual foundations of 20th century physics, North-Holland, Amsterdam, 1984.

    Google Scholar 

  28. Feynman, R. and Hibbs, A.R., Quantum Mechanics and Path Integrals, McGraw Hill-International Series in the Earth and Planetary Sciences, 1965.

    Google Scholar 

  29. Aerts, D., The one and the many, Doctoral Thesis, Brussels Free University, 1981.

    Google Scholar 

  30. Aerts, D., “Description of many physical entities without the paradoxes encountered in quantum mechanics”, Found. Phys., 12, 1982, p. 1131.

    Article  Google Scholar 

  31. Aerts, D., “Classical theories and non classical theories as a special case of a more general theory”, J. Math. Phys., 24, 1983, p. 2441.

    Article  Google Scholar 

  32. Aerts, D., “Foundations of quantum physics: a general realistic and operational approach”, Int. J. Theor. Phys., 38, 1999, p. 289.

    Article  Google Scholar 

  33. Coecke, B., “Hidden Measurement Representation for Quantum Entities Described by Finite Dimensional Complex Hilbert Spaces”, Found. Phys., 25, 1995, p. 203.

    Article  Google Scholar 

  34. Coecke, B., “Generalization of the Proof on the Existence of Hidden Measurements to Experiments with an Infinite Set of Outcomes”, Found. Phys. Lett, 8, 1995, p. 437.

    Article  Google Scholar 

  35. Coecke, B., “New Examples of Hidden Measurement Systems and Outline of a General Scheme”, Tatra Mountains Mathematical Publications, 10, 1996, p. 203.

    Google Scholar 

  36. Birkhoff, G. and von Neumann, J., J. Ann. Math., 37, 1936, p. 823.

    Article  Google Scholar 

  37. Gudder, S.P., Quantum Probability, Academic Press, Harcourt Brave Jovanovitch Publishers, 1988.

    Google Scholar 

  38. Accardi, L., “On the statistical meaning of the complex numbers in quantum mechanics”, Nuovo Cimento, 34, 1982, p. 161.

    Google Scholar 

  39. Pitovski, I., Quantum Probability—Quantum Logic, Springer Verlag, 1989.

    Google Scholar 

  40. Aerts, D. and D’Hooghe, B., “Operator structure of a non-quantum and a non-classical system”, Int. J. Theor. Phys., 35, 1996, p. 2241.

    Google Scholar 

  41. D’Hooghe, B., “Structure of the algebra of observables in the intermediate situation of the epsilon-model”, Int. J. Theor. Phys., 37, 1998, p. 323.

    Article  Google Scholar 

  42. Aerts, D. and Van Bogaert, B., A mechanical classical laboratory situation with a quantum logic structure, Int. J. Theor. Phys., 31, 1992, p. 1839.

    Article  Google Scholar 

  43. Aerts, D., Durt, T. and Van Bogaert, B., “A physical example of quantum fuzzy sets, and the classical limit”, in Proceedings of the first International Conference on Fuzzy Sets and their Applications, Tatra Montains Math. Publ. 1, 1992, p. 5.

    Google Scholar 

  44. Aerts, D., Durt, T., Grib, A.A., Van Bogaert, B. and Zapatrin, R.R., “Quantum structures in macroscopic reality”, Int. J. Theor. Phys., 32, 3, 1993, p. 489.

    Article  Google Scholar 

  45. Aerts, D., Durt, T. and Van Bogaert, B., “Quantum probability, the classical limit and non-locality”, in: Hyvonen, T. (ed.), Symposium on the Foundations of Modern Physics, World Scientific, Singapore, 1993.

    Google Scholar 

  46. Aerts, D. and Durt, T., “Quantum, Classical and Intermediate, an illustrative example”, Found. Phys., 24, 1994.

    Google Scholar 

  47. Aerts, D. and Durt, T., “Quantum, classical and intermediate: a measurement model”, in Montonen C. (ed.), Editions Frontières, Gives Sur Yvettes, France, 1994.

    Google Scholar 

  48. Aerts, D., spi“The Entity and Modern Physics”, in: Castellani, E. (ed.), Interpreting Bodies: Classical and Quantum Objects in Modern Physics, Princeton University Press, Princeton University Press, 1998.

    Google Scholar 

  49. Aerts, D. and Coecke, B., “The creation-discovery-view: towards a possible explanation of quantum reality”, in: Dalla Chiara, M.L. (ed.), Language, Quantum, Music, Kluwer Academic, Dordrecht, 1999.

    Google Scholar 

  50. Aerts, D. and Aerts, S., “The hidden measurement approach and conditional probabilities”, in: Ferrero, M. and van der Merwe, A. (eds.), Fundamental Problems in Quantum Physics II, Kluwer Academic Publishers, Dordrecht, 1996.

    Google Scholar 

  51. Aerts, D., “The hidden measurement formalism: what can be explained and where paradoxes remain?” Int. J. Theor. Phys., 37, 1998, p. 291.

    Article  Google Scholar 

  52. Aerts, D. and Aerts, S., “Applications of quantum statistics in psychological studies of decision processes”, Foundations of Science, 1, 1994, p. 85.

    Google Scholar 

  53. Schrödinger, E., “Die gegenwärtige Situation in der Quantenmechanik”, Naturwissenschaften, 23, 1935, pp. 807, 823 and 844.

    Article  Google Scholar 

  54. Valckenborgh, F., “Closure Structures and the Theorem of Decomposition in Classical Components”, Tatra Mountains Mathematical Publications, 10, 1997, p. 75.

    Google Scholar 

  55. Aerts, D., “How do we have to change quantum mechanics in order to describe separated systems”, in: Diner, S. et al. (eds.), The wave-particle Dualism, D. Reidel Publishing Company, 1984, p. 419.

    Chapter  Google Scholar 

  56. Aerts, D., “The physical origin of the Einstein Podolsky Rosen paradox”, in: Tarozzi, G. and van der Merwe, A. (eds.), Open Questions in Quantum Physics, D. Reidel Publishing Cy, 1985, p. 33.

    Chapter  Google Scholar 

  57. Aerts, D., “The physical origin of the EPR paradox and how to violate Bell inequalities by macroscopic systems”, in: Lahti, P. and Mittelstaedt, P. (eds.), On the Foundations of modern Physics, World Scientific, Singapore, 1985, p. 305.

    Google Scholar 

  58. Aerts, D., Coecke, B., Durt T. and Valckenborgh, F., “Quantum, classical and intermediate I; a model on the Poincare Sphere”, Tatra Mountains Mathematical Publications,10, 1997, p. 225.

    Google Scholar 

  59. Aerts, D., Coecke, B., Durt, T. and Valckenborgh, F., “Quantum, classical and intermediate II; the vanishing vector space structure”, Tatra Mountains Mathematical Publications, 10, 1997, p. 241.

    Google Scholar 

  60. Aerts D., Aerts, S., Durt, T. and Lévèque, O., “Classical and quantum probability in the epsilon model”, Int. J. Theor. Phys., 38, p. 407.

    Google Scholar 

  61. Einstein, A., Ann. Phys., 17, 1905, p. 891.

    Article  Google Scholar 

  62. Misner, C.W., Thorne, K.S. and Wheeler, J.A., Gravitation, W.H. Freeman and Company, San Francisco, 1973.

    Google Scholar 

  63. Aerts, D., “Framework for possible unification of quantum and relativity theories”, Int. J. Theor. Phys., 35, 1996, p. 2431.

    Google Scholar 

  64. Aerts, D., “Relativity theory: what is reality?”, Found. Phys., 26, 1996, p. 1627.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Aerts, D. (1999). The Stuff the World is Made of: Physics and Reality. In: Aerts, D., Broekaert, J., Mathijs, E. (eds) Einstein Meets Magritte: An Interdisciplinary Reflection. Einstein Meets Magritte: An Interdisciplinary Reflection on Science, Nature, Art, Human Action and Society, vol 1. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-4704-0_9

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-4704-0_9

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-5979-4

  • Online ISBN: 978-94-011-4704-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics