Skip to main content

Pressure Denaturation of Proteins

  • Chapter
High Pressure Molecular Science

Part of the book series: NATO Science Series ((NSSE,volume 358))

Abstract

The study of pressure effects on protein stability has occupied a relatively marginal position in the field of protein folding, with very few thorough thermodynamic, structural and kinetic studies of this phenomenon. Moreover, theoretical treatment of the issue with a few recent exceptions, has been limited to declarations of its complexity and lack of concordance with the results from other approaches. This paucity of data and theory notwithstanding, understanding the fundamental physical basis for pressure effects on proteins is essential to progress in the field of protein folding. Moreover, pressure presents certain advantages as a perturbation methodology that render it an important, useful and complementary approach. In the present review, the issue of the fundamental basis for the effects of pressure is discussed. Reference is made to studies in the literature, but I have concentrated the detailed presentation on the body of work in pressure-induced protein unfolding carried out by my research group and collaborators on staphylococcal nuclease (Snase) over the past 5 years. The origins of the value of the change in volume upon unfolding must be understood prior to any thorough theoretical analysis of pressure effects. The various arguments for the multiple contributing factors are discussed and then recent studies from my research group designed to probe this question are presented, the overall conclusion being that the existence of packing defects in the folded structure represents the most likely candidate for the negative change in volume upon unfolding. Moreover, the results of the temperature dependence of the volume change for unfolding of Snase implicate the difference in thermal expansivity in the temperature dependence of the value of the volume change of unfolding. Next I present results of a characterization of the physical properties of the pressure denatured state of Snase, and compare these to studies on a number of other pressure denatured proteins. Finally, the results of a series of pressure-jump kinetic studies on the folding/unfolding reactions of this protein are discussed. It is too early to conclude whether the results from these pressure studies on Snase stability and their interpretations are general. For this, many more studies on a number of small, reversibly folding proteins will be required.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. 1. Kauzmann, W (1959) Some factors in the interpretation of protein denaturation in Advances in Protein Chemistry in J C B Anfinsen, K Bailey, M L Anson, and J T Edsall, eds. Academic Press, New York and London, 1–66.

    Google Scholar 

  2. 2. Kim, P. S. & Baldwin, R. L. (1990) Intermediates in the folding reactions of small proteins, Annu. Rev. Biochem. 59, 631–660.

    Article  CAS  Google Scholar 

  3. 3. Onuchic, J. N., Luthey-Schulten, Z. & Wolynes, P. G. (1997) Theory of protein folding: the energy landscape perspective, Annu. Rev. Phys. Chem. 48, 545–600.

    Article  CAS  Google Scholar 

  4. 4. Onuchic, J. N., Wolynes, P. G., Luthey-Schulten, Z. & Socci, N. D. (1995) Toward an outline of the topography of a realistic protein folding funnel Proc. Natl. Acad. Sci. USA 92, 3626–3630.

    Article  CAS  Google Scholar 

  5. 5. Socci, N. D., Onuchic, J. N. & Wolynes, P. G. (1996) Diffusive dynamics for the reaction coordinate for protein folding funnels, J. Chem. Phys. 104, 5860–5868.

    Article  CAS  Google Scholar 

  6. 6. Privalov, P L & Gill, S J (1988) Stability of protein structure and hydrophobic interaction, Adv. Prot. Chem. 39, 191–234.

    Article  CAS  Google Scholar 

  7. 7. Brandts, J F, Oliveira, R J & Westort, C (1970) Thermodynamics of protein denaturation: Effects of pressure on the denaturation of ribonuclease A, Biochemistry, 9, 1038–104

    Article  CAS  Google Scholar 

  8. 8. Zipp, A & Kauzmann, W (1973) Pressure denaturation of metmyoglobin, Biochemistry, 12, 4217–422

    Article  CAS  Google Scholar 

  9. 9. Katz, S, Crissman, J K Jr. & Beall, J A (1973) Structure volume relationships of proteins: Dilatometric studies of the structural transitions engendered in serum albumin and myoglobin as a consequence of acid-base reaction in water and in denaturing media, J. Biol. Chem. 248, 4840–4845.

    CAS  Google Scholar 

  10. 10. Suzuki, K, Miyosawa, Y & Suzuki, C (1963) Protein denaturation by high pressure. Measurements of turbidity of isoelectric ovalbumin and horse serum albumin under high pressure, Arch. Biochem. Biophys., 101, 225–22

    Article  CAS  Google Scholar 

  11. 11. Li, T M, Hook, T W, Drickamer, H G & Weber, G (1976) Plurality of pressure denatured forms in chymotrypsinogen and lysozyme, Biochemistry, 15, 5572–558

    Google Scholar 

  12. 12. Samarasinghe, S D, Campbell, D M, Jonas, A & Jonas, J (1992) High resolution NMR study of the pressure-induced unfolding of lysozyme, Biochemistry, 31, 7773–777

    Article  CAS  Google Scholar 

  13. 13. Hawley, S A (1971) Reversible temperature-pressure denaturation of chymotrypsinogen, Biochemistry, 10, 2436–244

    Article  CAS  Google Scholar 

  14. 14. Wong, P T T & Heremans, K (1988) Pressure effects on protein secondary structure and hydrogen deuterium exchange in chymotrypsinogen: A Fourier transform infrared spectroscopy study, Biochim. Biophys. Acta., 965, 1–9

    Article  Google Scholar 

  15. 15. Marden, M C, Hui Bon Hoa, G & Marden-Stetzkowski, F (1986) Heme protein fluorescence vs. pressure Biophys. J. 49, 619–627.

    Article  CAS  Google Scholar 

  16. 16. Takeda, N, Kato, M & Taniguchi, Y (1995) Pressure and thermally induced reversible changes in the secondary structure of ribonuclease A, Biochemistry, 34, 5980–598

    Article  CAS  Google Scholar 

  17. 17. Zhang, J., Peng, X., Jonas, A. & Jonas, J. (1995) NMR study of the cold, heat and pressure unfolding of ribonuclease A, Biochemistry 34, 8631–8641.

    Article  CAS  Google Scholar 

  18. 18. Nash D., Lee B.S., & Jonas J. (1996) Hydrogen exchange kinetics in the cold denatured state of ribonuclease A, Biochim. Biophys. Acta, 1297, 40–4

    Article  Google Scholar 

  19. 19. Royer, C A, Hinck, A P, Loh, S N, Prehoda, K E, Peng, X, Jonas, J & Markley, J L (1993) Effects of amino acid substitutions on the pressure denaturation of staphylococcal nuclease as monitored by fluorescence and nuclear magnetic resonance spectroscopy, Biochemistry, 32, 5222–523

    Article  CAS  Google Scholar 

  20. 20. Vidugiris, G J A, Markley, J L & Royer, C A (1995) Evidence for a molten globule-like transition state in protein folding, Biochemistry, 34, 4909–491

    Article  CAS  Google Scholar 

  21. 21. Vidugiris, G J A, Truckses, D M, Markley, J L & Royer, C A (1996) High pressure denaturation of staphylococcal nuclease proline to glycine substitution mutants, Biochemistry, 35, 3857–386

    Article  CAS  Google Scholar 

  22. 22. Frye, K J, Perman, C S & Royer, C A (1996) Testing the correlation between ΓA and ΓV in protein unfolding using m-value mutants of staphylococcal nuclease, Biochemistry, 35, 10234–1023

    Article  CAS  Google Scholar 

  23. 23. Frye, K J & Royer, C A (1997) The kinetic basis for the stabilization of staphylococcal nuclease by xylose, Prot. Sci., 6, 789–79

    Article  CAS  Google Scholar 

  24. 24. Eftink, M R, Ghiron, C A, Kautz, R A, & Fox, R O (1991) Fluorescence studies with staphylococcal nuclease and its site directed mutant, Biochemistry, 30, 1193–119

    Article  CAS  Google Scholar 

  25. 25. Eftink, M R & Ramsay, G D (1996) Temperature and pressure induced unfolding of a mutant of staphylococcal nuclease A, In High-Pressure Effects in Molecular Biophysics and Enzymology. J. L. Markley, D. B. Northrop, and C. A. Royer, editors. Oxford University Press, New York. 62–73.

    Google Scholar 

  26. 26. Dill, K A (1990)Dominant forces in protein folding, Biochemistry 29, 7133–7155.

    Article  CAS  Google Scholar 

  27. 27. Mozhaev, V V, Heremans, K, Frank, J, Masson, P & Balny, C (1996) High pressure effects on protein structure and function, Proteins: Struct. Funct. Genet., 24, 81–9

    Article  CAS  Google Scholar 

  28. 28. Kauzmann, W. (1986) Protein stabilization: Thermodynamics of unfolding, Nature 325, 763–764.

    Article  Google Scholar 

  29. 29. Klapper, M. H. (1971) On the nature of the protein interior, Biochim. Biophys. Acta 229, 557–566.

    Article  CAS  Google Scholar 

  30. 30. Hvidt, A. (1975) A discussion of pressure-volume effects in aqueous protein solutions, J. theor. Biol. 50, 245–252.

    Article  CAS  Google Scholar 

  31. 31. Masterton, W L (1954) Partial molar volumes of hydrocarbons in solution, J. Chem. Phys. 22, 1830–1833.

    Article  CAS  Google Scholar 

  32. 32. Assarsson, P & Eirich, F R (1968) Properties of amides in aqueous solution. I. A. Viscosity and density changes of amide-water systems. B. An analysis of volume deficiencies of mixtures based on molecular size differences (Mixing of hard spheres), J. Phys. Chem. 72, 2710–2719.

    Article  CAS  Google Scholar 

  33. 33. Prehoda, K E, & Markley, J L (1996) Use of partial molar volumes of model compounds in the interpretation of high pressure effects on proteins, In High-Pressure Effects in Molecular Biophysics and Enzymology. J L Markley, D B Northrop, and C A. Royer, eds. Oxford University Press, New York. 33–43.

    Google Scholar 

  34. 34. Frank, H. S. & Evans, M. W. (1945) Free volume and entropy in condensed systems: III Entropy in binary liquid mixtures, partial molal entropy in dilute solutions, structure and thermodynamics of aqueous electrolytes, J. Phys. Chem. 13, 507–532.

    Article  CAS  Google Scholar 

  35. 35. Masterton, W L & Seiler, H (1968) Apparent and partial molar volumes of water in organic solvents, J. Phys. Chem. 72, 4257–4262.

    Article  CAS  Google Scholar 

  36. 36. Richards, F M (1977) Areas, volumes, packing and protein structure, Ann. Rev. Biophys. Bioeng. 6, 151–176.

    Article  CAS  Google Scholar 

  37. 37. Rashin A A Iofin M & Honig B (1986) Internal cavities and buried waters in globular proteins Biochemistry 25: 3619–3625

    Google Scholar 

  38. 38. Nogochi, H & Yang, JT (1963) Dilatometric and refractometric studies of the helix-coil transition of poly-glutamic acid in aqueous solutions, Biopolymers 1, 359–370.

    Article  Google Scholar 

  39. 39. Weber, G & Drickamer, H G (1983) The effect of high pressure on proteins and other biomolecules, Quart Rev. Biophys., 16, 89–11

    Article  CAS  Google Scholar 

  40. 40. Jaenicke, R (1981) Enzymes under extreme conditions, Ann. Rev. Biophys. Bioeng. 10, 1–67.

    Article  CAS  Google Scholar 

  41. 41. Heremans, K (1982) High pressure effects on proteins and other biomolecules, Annu. Rev Biophy. Bioeng. 11, 1–21.

    Article  CAS  Google Scholar 

  42. 42. Chalikian, T V and Breslauer K J (1996) On volume changes accompanying conformational transitions of biopolymers, Biopolymers 39, 619–626.

    Article  CAS  Google Scholar 

  43. 43. Hummer, G., Garde, S., Garcia, A.E. Paulaitis, ME. & Pratt, L. R. (1998) The pressure dependence of hydrophobic interactions is consistent with the observed pressure denaturation of proteins, Proc. Natl. Acad. Sci. USA 95, 1552–1555.

    Article  CAS  Google Scholar 

  44. 44. Hummer, G., Garde, S., Garcia, A. E., Pohorille, A. & Pratt, L. R. (1996) An information theory model of hydropobic interactions, Proc. Natl. Acad. Sci. USA 93, 8951–8955.

    Article  CAS  Google Scholar 

  45. 45. Murphy, KP & Freire, E. (1992) Thermodynamics of structural stability and cooperative folding behavior in proteins, Adv. Prot. Chem. 43, 313–361.

    Article  CAS  Google Scholar 

  46. 46. Hynes, T R & Fox, R O (1991) The crystal structure of staphylococcal nuclease refines at 1.7 Å resolution, Proteins: Struct. Funct. Genet., 10, 92–10

    Article  CAS  Google Scholar 

  47. 47. Shortle, D & Meeker, A K (1986) Mutant forms of staphylococcal nuclease with altered patterns of guanidine hydrochloride and urea denaturation, Proteins: Struct. Funct. Genet., 1, 81–8

    Article  CAS  Google Scholar 

  48. 48. Carra, J H & Privalov, P L (1995)Energetics of denaturation and m-values of staphylococcal nuclease mutants, Biochemistry, 34, 2034–204

    Article  CAS  Google Scholar 

  49. 49. Chen, H M, You, J L, Markin, V S & Tsong, T Y (1991) Kinetic analysis of the acid and alkaline unfolded states of staphylococcal nuclease, J. Mol. Biol. 220, 771–778.

    Article  CAS  Google Scholar 

  50. 50. Chen, H M, Markin, V S & Tsong, T Y (1992) pH-induced folding/unfolding of staphylococcal nuclease: Determination of kinetic parameters by the sequential jump method, Biochemistry, 31, 1483–149

    Article  CAS  Google Scholar 

  51. 51. Su Z D Arooz M T Chen H M Gross C J & Tsong T Y (1996) Least activation path for protein folding: investigation of staphylococcal nuclease folding by stopped-flow circular dichroism Proc. Natl. Acad. Sci. USA 93 2539–2544

    Google Scholar 

  52. 52. Shortle, D, Meeker, A K & Gerring, S L (1989) Effects of denaturant at low concentrations on the reversible denaturation of staphylococcal nuclease, Arch. Biochem. Biophy. 2721, 103–113.

    Article  Google Scholar 

  53. 53. Tanford, C. (1970) Protein denaturation, Adv. Protein. Chem. 24, 1–95.

    Article  CAS  Google Scholar 

  54. 54. Schellman, J. A. (1978) Solvent denaturation, Biopolymers 17, 1305–1322.

    Article  CAS  Google Scholar 

  55. 55. Pace, C. N. (1986)Determination and analysis of urea and guanidine hydrochloride denaturation curves, Meth. Enzymol. 131, 266–280.

    Article  CAS  Google Scholar 

  56. 56. Shortle, D, Meeker, A K & Freire, E. (1988) Stability mutants of staphylococcal nuclease: large compensating enthalpy-entropy changes for the reversible denaturation reaction, Biochemistry 27, 4761–4768.

    Article  CAS  Google Scholar 

  57. 57. Myers, J. K., Pace, C. N. & Scholtz, J. M. (1995) Denaturant m-values and heat capacity changes: Relation of changes in solvent accessible surface areas of protein folding, Protein Sci. 4, 2138–2148.

    Article  CAS  Google Scholar 

  58. 58. Carra, J. H., Anderson, E. A. & Privalov, P. L. (1994) Three-state thermodynamic analysis of the denaturation of staphylococcal nuclease mutants, Biochemistry 33, 10842–10850.

    Article  CAS  Google Scholar 

  59. 59. Richards, F M (1974) The interpretation of protein structures: Total volume, group volume and packing densities, J. Mol. Biol. 82, 1–14.

    Article  CAS  Google Scholar 

  60. 60. Eriksson, A E, Baase, W A, Zhang, X.J, Heinz, D W, Blaber, M, Baldwin, E & Matthews, B W (1992) The response of proteins structure to cavity creating mutations and its relationship to the hydrophobic effect, Science 255, 178–183.

    Article  CAS  Google Scholar 

  61. 61. Wynn, R, Harkins, P C, Richards, F M & Fox, R O (1997) Mobile unnatural amino acid side chains in the core of staphylococcal nuclease, Prot. Sci. 6, 1621–1626.

    Article  CAS  Google Scholar 

  62. 62. Goosens, K., Smeller, L., Frank, J. & Heremans, K. (1996) Pressure-tuning the conformation of bovine pancreatic trypsin inhibitor studied by Fourier transform infrared spectroscopy, Eur. J. Biochem., 236, 254–26

    Article  Google Scholar 

  63. 63. Peng, X., Jonas, J. & Silva, J. L. (1994) High pressure NMR study of the dissociation of arc repressor, Biochemistry, 33, 8323–832

    Article  CAS  Google Scholar 

  64. 64. Silva, J. L., Silveira, C. F., Correia Junior, A. & Pontes, L. (1992) Dissociation of a native dimer of a molten globule monomer: Effects of pressure and dilution on the dissociation equilibrium of arc repressor, J. Mol. Biol., 223, 545–55

    Article  CAS  Google Scholar 

  65. 65. Panick G Malessa R Winter R Rapp G Frye K J & Royer C A (1998) Structural characterization of the pressure denatured state and unfolding/refolding kinetics of staphylococcal nuclease by synchrotron small angle X-ray diffraction and Fourier Transform infrared spectroscopy J. Mol. Biol. 389–402

    Google Scholar 

  66. 66. Flanagan, J. M., Kataoka, M., Shortle, D. & Engelman, D. M. (1992) Truncated staphylococcal nuclease in compact but disordered, Proc. Natl. Acad. Sci., 89, 748–75

    Article  CAS  Google Scholar 

  67. 67. Kataoka, M., Flanagan, J. M., Tokunaga, F. & Engelman, D. M. (1994) Use of X-ray solution scattering for a protein folding study, In: Synchrotron Radiation in the Biosciences, pp. 187–194, Chance, B., Deisenhofer, J., Ebashi, S., Goodhead, D. T., Helliwell, J. R., Huxley, H. E., Iizuka, T., Kirz, J., Mitsui, T., Rubenstein, E., Sakabe, N., Sasaki, T., Schmahl, G., Stuhrmann, H. B., Wüthrich, K. & Zaccai, G. (Eds.), Calendon Press, Oxford.

    Google Scholar 

  68. 68. Desai, G., Panick, G., Winter, R. & Royer, C. A. (1998) Pressure denaturation of trp repressor, (submitted for publication).

    Google Scholar 

  69. 69. Lumry, R. & Biltonen, R. (1969) in Structure and Stability of Biological Macromolecules, G. D. Fasman and S. N. Timasheff, Eds. (Marcel, Dekker, Inc., New York), vol. 2,chap. 2.

    Google Scholar 

  70. 70. Gladstone, S., Laidler, K. J. & Eyring, H. (1941) in The Theory of Rate Processes, (McGraw-Hill Book Co., New York.

    Google Scholar 

  71. 71. Eigen, M. & de Maeyer, L. in Techniques in Organic Chemistry, (1963) A. Weissberger, Ed., (Wiley, New York), pp. 895–1054.

    Google Scholar 

  72. 72. Scalley, M. L. & Baker, D. (1997) Protein folding kinetics exhibit an Arrhenius temperature behavior when corrected for the temperature dependence of protein stability, Proc Natl. Acad. Sci. USA. 94, 10636–10640.

    Article  CAS  Google Scholar 

  73. 73. Panick, G., Vidugiris, G. J. A., Winter, R. & Royer, C. A. (1998) Exploring the temperature-pressure phase diagram of staphyiococcal nuclease (submitted for publication).

    Google Scholar 

  74. 74. Nymeyer, H. Frye, K. J.. Rover, C. A., Garcia, A. E. Hummer. G. & Onuchic, J. N. Pressure probes the protein folding landscape (manuscript in preparation).

    Google Scholar 

  75. 75. Kraulis. P J (1991) Molscript: A program to produce detailed and schematic plots of protein structure. J. appl. Cryst. 24, 946–950.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Royer, C.A. (1999). Pressure Denaturation of Proteins. In: Winter, R., Jonas, J. (eds) High Pressure Molecular Science. NATO Science Series, vol 358. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-4669-2_24

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-4669-2_24

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-5807-7

  • Online ISBN: 978-94-011-4669-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics